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1.1 The problem at hand is to find the parameters based on the following equality: 

𝑈3(𝜃, 𝜙, 𝜆) = [
cos

𝜃

2
−𝑒𝑖𝜆 sin

𝜃

2

𝑒𝑖𝜙 sin
𝜃

2
𝑒𝑖(𝜆+𝜙) cos

𝜃

2

] = [
0 1
1 0

] = 𝑁𝑂𝑇 

In the following we assume the interval [0, 𝜋]. Since cos
𝜃

2
= 0, 

𝜃

2
 must equal 

𝜋

2
, and thus 𝜃 = 𝜋. 

Since sin
𝜋

2
= 1, 𝑒𝑖𝜙 = 1 as well, and hence 𝑖𝜙 = 0 and therefore also 𝜙 = 0. Again, since sin

𝜋

2
= 1, 

−𝑒𝑖𝜆 = 1, and hence by squaring both sides we have 𝑒𝑖2𝜆 = 1 and from this 𝜆 = 0. 

1.2 Along the same lines as in exercise 1.1 

𝑈3(𝜃, 𝜙, 𝜆) = [
cos

𝜃

2
−𝑒𝑖𝜆 sin

𝜃

2

𝑒𝑖𝜙 sin
𝜃

2
𝑒𝑖(𝜆+𝜙) cos

𝜃

2

] =

[
 
 
 
1

√2

1

√2
1

√2
−

1

√2]
 
 
 

= 𝐻 

In order for cos
𝜃

2
=

1

√2
, 
𝜃

2
=

𝜋

4
 and therefore 𝜃 =  

𝜋

2
. For this value of 𝜃, sin

𝜋

4
=

1

√2
 as well, and hence 

𝑒𝑖𝜙 = 1. From this it follows that 𝜙 = 0. Since 𝑒𝑖(𝜆+𝜙) = −1 and given that 𝜙 = 0, we have that 

𝑒𝑖𝜆 = −1  and therefore 𝜆 = 𝜋.  

1.3 As in both previous exercises, we set  

𝑈3(𝜃, 𝜙, 𝜆) = [
cos

𝜃

2
−𝑒𝑖𝜆 sin

𝜃

2

𝑒𝑖𝜙 sin
𝜃

2
𝑒𝑖(𝜆+𝜙) cos

𝜃

2

] = [
1 0
0 −1

] = 𝑍 

With cos
𝜃

2
= 1 it follows that 𝜃 = 0. Since cos

𝜋

2
= 0, it must be the case that 𝑒𝑖(𝜆+𝜙) = −1. It must 

therefore be the case that 𝜆 + 𝜙 = 𝜋. With sin
𝜋

2
= 0 the values of 𝜆 and 𝜙 cannot be established 

from the off-diagonal formulas. For that reason, the gate Z can have many parametrizations, 

including when 𝜙 = 𝜆 =
𝜋

2
.  

1.4 Again, as above 

𝑈3(𝜃, 𝜙, 𝜆) = [
cos

𝜃

2
−𝑒𝑖𝜆 sin

𝜃

2

𝑒𝑖𝜙 sin
𝜃

2
𝑒𝑖(𝜆+𝜙) cos

𝜃

2

] = [
0 −𝑖
𝑖 0

] = 𝑌 

With cos
𝜃

2
= 0, 𝜃 = 𝜋. sin

𝜋

2
= 1. Hence, 𝑒𝑖𝜙 = 𝑖 and −𝑒𝑖𝜆 = −𝑖. From these equations we obtain 

the values 𝜙 =
𝜋

2
 and 𝜆 =

𝜋

2
.  

1.5 As above, 

𝑈3(𝜃, 𝜙, 𝜆) = [
cos

𝜃

2
−𝑒𝑖𝜆 sin

𝜃

2

𝑒𝑖𝜙 sin
𝜃

2
𝑒𝑖(𝜆+𝜙) cos

𝜃

2

] = [
1 0
0 𝑖

] = 𝑆 

With cos
𝜃

2
= 1, 𝜃 = 0. Then 𝑒𝑖(𝜆+𝜙) = 𝑖. This means that 𝜆 + 𝜙 =

𝜋

2
. Again, there are multiple 

parametrizations that achieve this, e.g., 𝜆 = 𝜙 =
𝜋

4
.  

1.6 The 𝑆+ gate differs from the S gate in the sign of the complex number i only. Therefore, the 

parameters are as follows: 𝜃 = 0 and 𝜆 + 𝜙 =
3𝜋

2
.  
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1.7 The gate T differs from the S only by having the value 
1+𝑖

√2
 instead of i. Therefore, the parameter 𝜃 =

0, while for the remaining two parameters there are multiple values for which holds that 𝑒𝑖(𝜆+𝜙) =
1+𝑖

√2
. To obtain the parameters we use trigonometric identities 

𝑒𝑖(𝜆+𝜙) = 𝑒𝑖𝜆𝑒𝑖𝜙 = (cos 𝜆 + 𝑖 sin 𝜆)(cos𝜙 + 𝑖 sin𝜙) 
This corresponds to 

cos 𝜆 cos𝜙 + 𝑖 sin𝜙 cos 𝜆 + 𝑖 sin 𝜆 cos𝜙 − sin𝜙 sin𝜆 

= (cos 𝜆 cos𝜙 − sin𝜆 sin𝜙) + 𝑖(sin𝜙 cos 𝜆 + sin𝜆 cos𝜙)

= cos (𝜆 + 𝜙) + 𝑖 sin (𝜆 + 𝜙) =
1

√2
+

𝑖

√2
 

Thus we have 𝜆 + 𝜙 =
𝜋

4
.  

1.8 The reasoning regarding the 𝑇+ gate is similar to that for the T gate. Instead of 
1+𝑖

√2
, the 𝑇+has its 

conjugate 
1−𝑖

√2
. The parameter 𝜃 = 0. Using trigonometric identities  

cos(𝜆 + 𝜙) + 𝑖 sin(𝜆 + 𝜙) =
1

√2
−

𝑖

√2
 

From cos(𝜆 + 𝜙) =
1

√2
 and sin(𝜆 + 𝜙) = −

1

√2
 we have that 𝜆 + 𝜙 = 315∘ =

7𝜋

4
. Therefore, any 

combination of values for 𝜆 and 𝜙 that conforms to the condition 𝜆 + 𝜙 =
7𝜋

4
 is a valid 

parametrization.  

1.9 Finding the parameters for the identity gate is straightforward. From cos
𝜃

2
= 1 it follows that 𝜃 = 0. 

Then, from 𝑒𝑖(𝜆+𝜙) = 1 it follows that 𝜆 + 𝜙 = 0 and therefore 𝜆 = 𝜙 = 0. 

1.10 For the gate  

𝑈1(𝜆) = [
1 0
0 𝑒𝑖𝜆] 

𝜃 = 0, as above. Then, from 𝑒𝑖(𝜆+𝜙) = 𝑒𝑖𝜆 it follows that 𝜙 = 0.  

1.11 For the gate 𝑈2(𝜙, 𝜆) we have  

𝑈3(𝜃, 𝜙, 𝜆) = [
cos

𝜃

2
−𝑒𝑖𝜆 sin

𝜃

2

𝑒𝑖𝜙 sin
𝜃

2
𝑒𝑖(𝜆+𝜙) cos

𝜃

2

] =

[
 
 
 
 

1

√2
−

𝑒𝑖𝜆

√2

𝑒𝑖𝜙

√2

𝑒𝑖(𝜆+𝜙)

√2 ]
 
 
 
 

= 𝑈2(𝜙, 𝜆) 

we have that cos
𝜃

2
=

1

√2
, and therefore 𝜃 =

𝜋

2
.  
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Solutions to chapter 2 

 

2.1 To obtain the required operation, 3 quantum bits and 3 classical bits are needed. In the following circuit, 

q[0] represents the x operand, q[1] represents the y operand, while q[2] is the additional bit in the OR gate 

introduced in the material of this chapter. First, set the two operands into a superposition by applying to 

each a Hadamard gate H. As the OR gate requires that the auxialiary quantum bit be equal 1, apply the NOT 

gate to it. The OR gate would require a total of 4 NOT gates. It can however be simplified due to the fact 

that one of the operands, namely x, is negated. The equivalence of the two subcircuits can be easily checked 

by writing down truth tables for each of them. Note that the output is presented in the order c[2], c[1], c[0].  

The circuit:  

 

The code: 

1. OPENQASM 2.0; 

2. include "qelib1.inc"; 

3. qreg q[5]; 

4. creg c[3]; 

5. h q[0]; 

6. h q[1]; 

7. x q[1]; 

8. x q[2]; 

9. ccx q[0],q[1],q[2]; 

10. x q[1]; 

11. measure q[0] -> c[0]; 

12. measure q[1] -> c[1]; 

13. measure q[2] -> c[2]; 

 

The output:  
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2.2 To obtain the required operation, 3 quantum bits and 3 classical bits are needed. q[0] represents the x 

operand, q[1] represents y, while q[2] is the additional bit in the OR gate introduced in the material of this 

chapter. First, set the two operands into a superposition by applying to each a Hadamard gate H. As the OR 

gate requires that the auxialiary quantum bit be equal 1, apply the Pauli X gate to it. The OR gate would 

require a total of 4 X gates. It can however be simplified due to the fact that one of the operands, namely y, 

is negated. Note that the output is presented in the order c[2], c[1], c[0].   

The circuit:  

 

The code: 

1. OPENQASM 2.0; 

2. include "qelib1.inc"; 

3. qreg q[5]; 

4. creg c[3]; 

5. h q[0]; 

6. h q[1]; 

7. x q[2]; 

8. x q[0]; 

9. ccx q[0],q[1],q[2]; 

10. x q[0]; 

11. measure q[0] -> c[0]; 

12. measure q[1] -> c[1]; 

13. measure q[2] -> c[2];]; 

14. measure q[0] -> c[0]; 

15. measure q[1] -> c[1]; 

16. measure q[2] -> c[2]; 
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The output:  

 

2.3 A possible implementation of this operation could be as below. To this end, 5 quantum bits and 3 

classical bits are required. Observe that 𝑦̅ ∧ (𝑥 ∨ 𝑥̅) = (𝑦̅ ∧ 𝑥) ∨ (𝑦̅ ∧ 𝑥̅). Therefore, in the following, we 

separate the operations into three parts: (𝑦̅ ∧ 𝑥), (𝑦̅ ∧ 𝑥̅), and the OR operation on the two. The three 

operations are separated by barriers (barriers are only used for convenience and they do not contribute to 

the meaning of the circuit). Everything up to the first barrier, except the two Hadamard gates, encodes the 

clause (𝑦̅ ∧ 𝑥). Clause (𝑦̅ ∧ 𝑥̅) is encoded between the first and the second barrier. The OR operation on 

the two clauses is encoded between the second and the third barrier. In the following circuit, q[0] represents 

x, q[1] represents y, q[2] is the auxialiary quantum bit for the AND operation in the term (𝑦̅ ∧ 𝑥), q[3] is 

the auxiliary bit for the AND operation in the term (𝑦̅ ∧ 𝑥̅), while q[4] is the auxiliary bit for the OR 

operation mentioned above. Note that the output is presented in the order c[2], c[1], c[0]. 

The circuit:  

 

The code:  

1. OPENQASM 2.0; 

2. include "qelib1.inc"; 

3. qreg q[5]; 

4. creg c[3]; 

5. h q[0]; 

6. h q[1]; 

7. x q[1]; 

8. ccx q[0],q[1],q[2]; 

9. x q[1]; 
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10. barrier q[0],q[1],q[2],q[3],q[4]; 

11. x q[0]; 

12. x q[1]; 

13. ccx q[0],q[1],q[3]; 

14. x q[0]; 

15. x q[1]; 

16. barrier q[0],q[1],q[2],q[3],q[4]; 

17. x q[2]; 

18. x q[3]; 

19. x q[4]; 

20. ccx q[2],q[3],q[4]; 

21. x q[2]; 

22. x q[3]; 

23. barrier q[0],q[1],q[2],q[3],q[4]; 

24. measure q[0] -> c[0]; 

25. measure q[1] -> c[1]; 

26. measure q[4] -> c[2]; 

 

The output:  

 

2.4 A possible implementation of this operation could be as below. To this end, 5 quantum bits and 3 

classical bits are required. The separation of operations is along the same lines as in the previous exercise. 

Observe that 𝑥̅ ∧ (𝑦 ∨ 𝑦̅) = (𝑥̅ ∧ 𝑦) ∨ (𝑥̅ ∧ 𝑦̅). Therefore, in the following, we separate the operations into 

three parts: (𝑥̅ ∧ 𝑦), (𝑥̅ ∧ 𝑦̅), and the OR operation on the two. The three operations are separated by 

barriers (barriers are only used for convenience and they do not contribute to the meaning of the circuit). 

Everything up to the first barrier, except the two Hadamard gates, encodes the clause (𝑥̅ ∧ 𝑦). Clause (𝑥̅ ∧

𝑦̅) is encoded between the first and the second barrier. The OR operation on the two clauses is encoded 

between the second and the third barrier.  q[0] represents x, q[1] represents y, q[2] is the auxialiary quantum 

bit for the AND operation in the term (𝑥̅ ∧ 𝑦), q[3] is the auxiliary bit for the AND operation in the term 

(𝑥̅ ∧ 𝑦̅), while q[4] is the auxiliary bit for the OR operation mentioned above. Note that the output is 

presented in the order c[2], c[1], c[0]. 

The circuit:  
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The code:  

1. OPENQASM 2.0; 

2. include "qelib1.inc"; 

3. qreg q[5]; 

4. creg c[3]; 

5. h q[0]; 

6. h q[1]; 

7. x q[0]; 

8. ccx q[0],q[1],q[2]; 

9. x q[0]; 

10. barrier q[0],q[1],q[2],q[3],q[4]; 

11. x q[0]; 

12. x q[1]; 

13. ccx q[0],q[1],q[3]; 

14. x q[0]; 

15. x q[1]; 

16. barrier q[0],q[1],q[2],q[3],q[4]; 

17. x q[2]; 

18. x q[3]; 

19. x q[4]; 

20. ccx q[2],q[3],q[4]; 

21. x q[2]; 

22. x q[3]; 

23. barrier q[0],q[1],q[2],q[3],q[4]; 

24. measure q[0] -> c[0]; 

25. measure q[1] -> c[1]; 

26. measure q[4] -> c[2]; 

 

The output:  
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2.5 To obtain the required operation, 3 quantum bits and 3 classical bits are needed. q[0] represents the x 

operand, q[1] represents y, while q[2] is the additional bit in the AND gate introduced in the material 

of this chapter. First, set the two operands into a superposition by applying to each a Hadamard gate H. 

The two X gates are to account for the fact that operand x is negated. Note that the output is presented 

in the order c[2], c[1], c[0]. 

The circuit:  

 

The code:  

1. OPENQASM 2.0; 

2. include "qelib1.inc"; 

3. qreg q[5]; 

4. creg c[3]; 

5. h q[0]; 

6. h q[1]; 

7. x q[0]; 

8. ccx q[0],q[1],q[2]; 

9. x q[0]; 

10. measure q[0] -> c[0]; 

11. measure q[1] -> c[1]; 

12. measure q[2] -> c[2]; 

 

The output:  
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2.6 To obtain the required operation, 3 quantum bits and 3 classical bits are needed. q[0] represents the x 

operand, q[1] represents y, while q[2] is the additional bit in the AND gate introduced in the material 

of this chapter. First, set the two operands into a superposition by applying to each a Hadamard gate H. 

The two X gates are to account for the fact that operand y is negated. Note that the output is presented 

in the order c[2], c[1], c[0]. 

The circuit:  

 

The code:  

1. OPENQASM 2.0; 

2. include "qelib1.inc"; 

3. qreg q[5]; 

4. creg c[3]; 

5. h q[0]; 

6. h q[1]; 

7. x q[1]; 

8. ccx q[0],q[1],q[2]; 

9. x q[1]; 

10. measure q[0] -> c[0]; 

11. measure q[1] -> c[1]; 

12. measure q[2] -> c[2]; 

 

The output:  
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Solutions to chapter 3 

 

3.1 The circuit for the satisfiability problem specified by the oracle 𝐹(𝑥1, 𝑥2) = 𝑥1̅̅ ̅ ∧ 𝑥2 is very similar to 

the one given for 𝐹(𝑥1, 𝑥2) = 𝑥1 ∧ 𝑥2  in this chapter (see also the answer to exercise 3.4). The 

difference is that the input 𝑥1 is negated (that is q[3]). q[0] is a workspace qubit, q[1] is not used, q[2] 

represents 𝑠2, q[3] is for 𝑥1, while q[4] is for 𝑥2. We introduce barriers to separate different parts of 

the code. Everything up to the first barrier represents the initial encoding. q[0] represents the state 

|−⟩ =
1

√2
(|0⟩ − |1⟩), as in the material, while q[3] and q[4] are set into a uniform superposition. The 

oracle that negates the amplitude of the qubit for which the condition 𝑥1̅̅ ̅ ∧ 𝑥2 = 1 is fulfilled is located 

between the first and the second barrier. To represent the fact that the value of 𝑥1 is negated, the NOT 

gate is used on the qubit representing 𝑥1. After the oracle has completed its task, another NOT gate is 

applied to 𝑥1  to uncompute. The circuit part between the second and the third barriers has been 

introduced in the material of this chapter and encodes the Grover diffusion operator.  

The circuit:  

 

The code:  

1. OPENQASM 2.0; 

2. include "qelib1.inc"; 

3. qreg q[5]; 

4. creg c[2]; 

5. x q[0]; 

6. h q[3]; 

7. h q[4]; 

8. h q[0]; 

9. barrier q[0],q[1],q[2],q[3],q[4]; 

10. x q[3]; 

11. ccx q[4],q[3],q[2]; 

12. cx q[2],q[0]; 

13. ccx q[4],q[3],q[2]; 

14. x q[3]; 

15. barrier q[0],q[1],q[2],q[3],q[4]; 

16. h q[3]; 

17. h q[4]; 

18. x q[3]; 

19. x q[4]; 

20. h q[4]; 
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21. cx q[3],q[4]; 

22. x q[3]; 

23. h q[4]; 

24. u3(2*pi,0,0) q[3]; 

25. x q[4]; 

26. h q[3]; 

27. h q[4]; 

28. barrier q[0],q[1],q[2],q[3],q[4]; 

29. measure q[4] -> c[0]; 

30. measure q[3] -> c[1]; 

 

The output:  

 

3.2 The circuit for the satisfiability problem specified by the oracle 𝐹(𝑥1, 𝑥2) = 𝑥1 ∧ 𝑥2̅̅ ̅ is very similar to 

the one given for 𝐹(𝑥1, 𝑥2) = 𝑥1̅̅ ̅ ∧ 𝑥2 in exercise 3.1. The difference is that the input 𝑥2 is negated 

(that is q[2]) instead of 𝑥1. q[0] is a workspace qubit, q[1] is not used, q[2] represents 𝑠2, q[3] is for 

𝑥1, while q[4] is for 𝑥2. We introduce barriers to separate different parts of the code. Everything up to 

the first barrier represents the initial encoding. q[0] represents the state |−⟩ =
1

√2
(|0⟩ − |1⟩), as in the 

material, while q[3] and q[4] are set into a uniform superposition. The oracle that negates the amplitude 

of the qubit for which the condition 𝑥1 ∧ 𝑥2̅̅ ̅ = 1 is fulfilled is located between the first and the second 

barrier. To represent the fact that the value of 𝑥2  is negated, the NOT gate is used on the qubit 

representing 𝑥2 . After the oracle has completed its task, another NOT gate is applied to 𝑥2  to 

uncompute. The circuit part between the second and the third barriers has been introduced in the 

material of this chapter and encodes the Grover diffusion operator. 

The circuit:  
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The code:  

1. OPENQASM 2.0; 

2. include "qelib1.inc"; 

3. qreg q[5]; 

4. creg c[2]; 

5. x q[0]; 

6. h q[3]; 

7. h q[4]; 

8. h q[0]; 

9. barrier q[0],q[1],q[2],q[3],q[4]; 

10. x q[4]; 

11. ccx q[4],q[3],q[2]; 

12. cx q[2],q[0]; 

13. ccx q[4],q[3],q[2]; 

14. x q[4]; 

15. barrier q[0],q[1],q[2],q[3],q[4]; 

16. h q[3]; 

17. h q[4]; 

18. x q[3]; 

19. x q[4]; 

20. h q[4]; 

21. cx q[3],q[4]; 

22. x q[3]; 

23. h q[4]; 

24. u3(2*pi,0,0) q[3]; 

25. x q[4]; 

26. h q[3]; 

27. h q[4]; 

28. barrier q[0],q[1],q[2],q[3],q[4]; 

29. measure q[4] -> c[0]; 

30. measure q[3] -> c[1]; 

 

The output:  

 

3.3 In theory, the circuit for the satisfiability problem specified by the oracle 𝐹(𝑥1, 𝑥2) = 𝑥1 ∧ 𝑥2̅̅ ̅̅ ̅̅ ̅̅ ̅ should 

be very similar to the one given for 𝐹(𝑥1, 𝑥2) = 𝑥1 ∧ 𝑥2 in this chapter (see also the answer to exercise 

3.4). The difference would be that the quantum bit q[2] is negated in order to represent the NAND gate. 

q[0] is a workspace qubit, q[1] is not used, q[2] represents 𝑠2, q[3] is for 𝑥1, while q[4] is for 𝑥2. We 
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introduce barriers to separate different parts of the code. Everything up to the first barrier represents 

the initial encoding. q[0] represents the state |−⟩ =
1

√2
(|0⟩ − |1⟩), as in the material, while q[3] and 

q[4] are set into a uniform superposition. The oracle that negates the amplitude of the qubit for which 

the condition 𝑥1 ∧ 𝑥2̅̅ ̅̅ ̅̅ ̅̅ ̅  = 1 is fulfilled is located between the first and the second barrier. As mentioned 

above, the NOT gate is used on the qubit representing 𝑠2. After the oracle has completed its task, 

another NOT gate is applied to 𝑠2 to uncompute. The circuit part between the second and the third 

barriers has been introduced in the material of this chapter and encodes the Grover diffusion operator. 

After executing the code we notice that the obtained output is incorrect. In fact it shows the state |11⟩ 

with probability 1. The correct answer should have included equal probabilities for three states: |00⟩, 
|01⟩, and |10⟩. These three states are the correct outcomes for the NAND gate. The reason we obtained 

the wrong answer is that Grover’s algorithm imposes a limitation on the ratio between the number of 

answers (A) and the number of all opossible outcomes (O). This limitation is 
𝐴

𝑂
<

1

2
. In this exercise, 

this ratio is 
3

4
>

1

2
 however.  

The circuit:  

 

The code:  

1. OPENQASM 2.0; 

2. include "qelib1.inc"; 

3. qreg q[5]; 

4. creg c[2]; 

5. x q[0]; 

6. h q[3]; 

7. h q[4]; 

8. h q[0]; 

9. barrier q[0],q[1],q[2],q[3],q[4]; 

10. x q[2]; 

11. ccx q[4],q[3],q[2]; 

12. cx q[2],q[0]; 

13. ccx q[4],q[3],q[2]; 

14. x q[2]; 

15. barrier q[0],q[1],q[2],q[3],q[4]; 

16. h q[3]; 

17. h q[4]; 

18. x q[3]; 

19. x q[4]; 

20. h q[4]; 
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21. cx q[3],q[4]; 

22. x q[3]; 

23. h q[4]; 

24. u3(0,0,0) q[3]; 

25. x q[4]; 

26. h q[3]; 

27. h q[4]; 

28. barrier q[0],q[1],q[2],q[3],q[4]; 

29. measure q[4] -> c[0]; 

30. measure q[3] -> c[1]; 

 

The output:  

 

 

3.4 The circuit for the satisfiability problem specified by the oracle 𝐹(𝑥1, 𝑥2) = 𝑥1 ∧ 𝑥2 which was given 

in the material of this chapter, can be simplified by replacing the twelve gates used to represent the 

CCNOT operation with the CCNOT gate itself (in code: ccx). As the procedure of deriving the circuit 

has been described in detail in the material, here we only present the corresponding circuit, the code 

and its output. As before, q[0] is a workspace qubit, q[1] is not used, q[2] represents 𝑠2, q[3] is for 𝑥1, 

while q[4] is for 𝑥2. We introduce barriers to separate different parts of the code. Everything up to the 

first barrier represents the initial encoding. q[0] represents the state |−⟩ =
1

√2
(|0⟩ − |1⟩), as in the 

material, while q[3] and q[4] are set into a uniform superposition. The oracle that negates the amplitude 

of the qubit for which the condition 𝑥1 ∧ 𝑥2 = 1 is fulfilled is located between the first and the second 

barrier. The circuit part between the second and the third barriers has been introduced in the material 

of this chapter and encodes the Grover diffusion operator. 

The circuit:  
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The code:  

1. OPENQASM 2.0; 

2. include "qelib1.inc"; 

3. qreg q[5]; 

4. creg c[2]; 

5. x q[0]; 

6. h q[3]; 

7. h q[4]; 

8. h q[0]; 

9. barrier q[0],q[1],q[2],q[3],q[4]; 

10. ccx q[4],q[3],q[2]; 

11. cx q[2],q[0]; 

12. ccx q[4],q[3],q[2]; 

13. barrier q[0],q[1],q[2],q[3],q[4]; 

14. h q[3]; 

15. h q[4]; 

16. x q[3]; 

17. x q[4]; 

18. h q[4]; 

19. cx q[3],q[4]; 

20. x q[3]; 

21. h q[4]; 

22. u3(2*pi,0,0) q[3]; 

23. x q[4]; 

24. h q[3]; 

25. h q[4]; 

26. barrier q[0],q[1],q[2],q[3],q[4]; 

27. measure q[4] -> c[1]; 

28. measure q[3] -> c[0]; 

 

The output:  
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Solutions to chapter 4 

 

4.1 The mapping this oracle performs is 𝑎1𝑎2𝑎3𝑎4 →
1

4
𝑒2𝜋𝑖×0.𝑎2𝑎3𝑎4 =

1

4
𝑒

2𝜋𝑖(
𝑎2
2

+
𝑎3
4

+
𝑎4
8

)
. The following 

table shows the particular results. Input 0/1 indicates that the respective value is either 0 or 1.  

𝑎1 𝑎2 𝑎3 𝑎4 
1

4
𝑒

2𝜋𝑖(
𝑎2
2

+
𝑎3
4

+
𝑎4
8

)
 

0/1 0 0 0 1 4⁄  

0/1 0 0 1 √2 8⁄ + 𝑖√2 8⁄  

0/1 0 1 0 𝑖 4⁄  

0/1 0 1 1 −√2 8⁄ + 𝑖√2 8⁄  

0/1 1 0 0 −1 4⁄  

0/1 1 0 1 −√2 8⁄ − 𝑖√2 8⁄  

0/1 1 1 0 −𝑖 4⁄  

0/1 1 1 1 √2 8⁄ − 𝑖√2 8⁄  

This corresponds to the sequence of rotations 0°, 45°, 90°, 125°, 180°, 225°, 270°, 315°. As these values 

(see the table above) appear twice, the expected frequency 𝑓 is 2. With this the period is 𝑟 = 8.  

The solution follows closely that already introduced in the material of this chapter. Quantum bits q[0], q[1], 

q[2], and q[3] correspond to 𝑎1, 𝑎2, 𝑎3, 𝑎4, respectively. The first column indicates that all 4 quantum bits 

are set into a uniform superposition by applying to them the Hadamard gate. In the next column, the 

respective rotations are encoded. In accordance with the mapping formula, quantum bit q[1] is rotated by 

180°, q[2] by 90°, and q[3] by 45°. These operations are delineated by the barrier. After the barrier, the 

inverse quantum Fourier transform is applied. This transformation is the same (starting in row 13 of the 

code) as introduced in the chapter material. What changes is the application of the U1 gates to the qubits 

q[1], q[2], q[3] corresponding to 𝑎2, 𝑎3, 𝑎4, respectively.  

The circuit:  

 

The code: 

1. OPENQASM 2.0; 

2. include "qelib1.inc"; 

3. qreg q[4]; 

4. creg c[4]; 

5. h q[0]; 

6. h q[1]; 

7. h q[2]; 
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8. h q[3]; 

9. u1(pi) q[1]; 

10. u1(pi/2) q[2]; 

11. u1(pi/4) q[3]; 

12. barrier q[0],q[1],q[2],q[3]; 

13. h q[0]; 

14. cu1(-pi/2) q[1],q[0]; 

15. cu1(-pi/4) q[2],q[0]; 

16. cu1(-pi/8) q[3],q[0]; 

17. h q[1]; 

18. cu1(-pi/2) q[2],q[1]; 

19. cu1(-pi/4) q[3],q[1]; 

20. h q[2]; 

21. cu1(-pi/2) q[3],q[2]; 

22. h q[3]; 

23. swap q[0],q[3]; 

24. swap q[1],q[2]; 

25. measure q[0] -> c[3]; 

26. measure q[1] -> c[2]; 

27. measure q[2] -> c[1]; 

28. measure q[3] -> c[0]; 

 

The output:  

 

4.2 The mapping this oracle performs is 𝑎1𝑎2𝑎3 →
1

2√2
𝑒2𝜋𝑖×0.𝑎3 =

1

2√2
𝑒

2𝜋𝑖(
𝑎3
2

)
=

1

2√2
𝑒𝑖𝜋𝑎3. The following 

table shows the particular results. Input 0/1 indicates that the respective value is either 0 or 1. 

𝑎1𝑎2 𝑎3 
1

2√2
𝑒𝑖𝜋𝑎3 

00/01/10/11 0 1 2√2⁄  

00/01/10/11 1 −1 2√2⁄  

 

The oracle oscillates between two values corresponding to rotations by 180°. The frequency is 4, whereby 

the period equals 8/4=2. Our solution follows closely that already introduced in the material of this chapter. 

Quantum bits q[0], q[1], and q[2] correspond to 𝑎1, 𝑎2, 𝑎3, respectively. 3 classical registers are needed to 

encode the output. The first column indicates that all 3 quantum bits are set into a uniform superposition by 
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applying to them the Hadamard gate. In the next column, the respective rotations are encoded. In accordance 

with the mapping formula, quantum bit q[2] is rotated by 180°. These operations are delineated by the 

barrier. After the barrier, the inverse quantum Fourier transform is applied. This transformation is the same 

(starting in row 10 of the code) as in the chapter material, but applied to 3 quantum bits instead of 4. What 

changes is the application of the U1 gate to the qubit q[2] corresponding to 𝑎3. Moreover, the swapping 

operation takes place between the most significant digit and the least significant digit only.  

The circuit:  

 

The code:  

1. OPENQASM 2.0; 

2. include "qelib1.inc"; 

3. qreg q[3]; 

4. creg c[3]; 

5. h q[0]; 

6. h q[1]; 

7. h q[2]; 

8. u1(pi) q[2]; 

9. barrier q[0],q[1],q[2]; 

10. h q[0]; 

11. cu1(-pi/2) q[1],q[0]; 

12. cu1(-pi/4) q[2],q[0]; 

13. h q[1]; 

14. cu1(-pi/2) q[2],q[1]; 

15. h q[2]; 

16. swap q[0],q[2]; 

17. measure q[0] -> c[2]; 

18. measure q[1] -> c[1]; 

19. measure q[2] -> c[0]; 

 

The output:  
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4.3 The mapping this oracle performs is 𝑎1𝑎2𝑎3 →
1

2√2
𝑒2𝜋𝑖×0.𝑎2𝑎3 =

1

2√2
𝑒

2𝜋𝑖(
𝑎2
2

+
𝑎3
4

)
. The following table 

shows the particular results. Input 0/1 indicates that the respective value is either 0 or 1. 

𝑎1 𝑎2 𝑎3 
1

2√2
𝑒

2𝜋𝑖(
𝑎2
2

+
𝑎3
4

)
 

0/1 0 0 1 2√2⁄  

0/1 0 1 𝑖 2√2⁄  

0/1 1 0 −1 2√2⁄  

0/1 1 1 −𝑖 2√2⁄  

 

The oracle oscillates between four values corresponding to rotations by 90°. The frequency is 2, whereby 

the period equals 8/2=4. Our solution follows closely that already introduced in the material of this chapter. 

Quantum bits q[0], q[1], and q[2] correspond to 𝑎1, 𝑎2, 𝑎3, respectively. 3 classical registers are needed to 

encode the output. The first column indicates that all 3 quantum bits are set into a uniform superposition by 

applying to them the Hadamard gate. In the next column, the respective rotations are encoded. In accordance 

with the mapping formula, quantum bit q[1] is rotated by 180°, while q[2] is rotated by 90°. These 

operations are delineated by the barrier. After the barrier, the inverse quantum Fourier transform is applied. 

This transformation is the same (starting in row 11 of the code) as in the chapter material, but applied to 3 

quantum bits instead of 4. What changes is the application of the U1 gate to the qubits q[1] and q[2] 

corresponding to 𝑎2 and 𝑎3, respectively. Moreover, the swapping operation takes place between the most 

significant digit and the least significant digit only. 

The circuit:  

 

The code:  
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1. OPENQASM 2.0; 

2. include "qelib1.inc"; 

3. qreg q[3]; 

4. creg c[3]; 

5. h q[0]; 

6. h q[1]; 

7. h q[2]; 

8. u1(pi) q[1]; 

9. u1(pi/2) q[2]; 

10. barrier q[0],q[1],q[2]; 

11. h q[0]; 

12. cu1(-pi/2) q[1],q[0]; 

13. cu1(-pi/4) q[2],q[0]; 

14. h q[1]; 

15. cu1(-pi/2) q[2],q[1]; 

16. h q[2]; 

17. swap q[0],q[2]; 

18. measure q[0] -> c[2]; 

19. measure q[1] -> c[1]; 

20. measure q[2] -> c[0]; 

 

The output:  
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Solutions: 

 

5.1 Since the remainder 𝑟 ≠ 0, 𝑐 = 𝑥𝑑 + 𝑟, where xd is a multiple of d. From this it follows that 𝑟 = 𝑐 −

𝑥𝑑. Let 𝑏1 = gcd (𝑐, 𝑑) and let 𝑏2 = gcd (𝑑, 𝑟). Then, on the one hand, 𝑏1|𝑐 and 𝑏1|𝑑, and also 

𝑏1|𝑥𝑑. With this, we have that 𝑏1|𝑐 − 𝑥𝑑 and thus 𝑏1|𝑟. Thus, 𝑏1|𝑏2. On the other hand, 𝑏2|𝑑 and 

𝑏2|𝑟. Hence, 𝑏2|𝑥𝑑, from which it follows that  𝑏2|𝑥𝑑 + 𝑟 with 𝑥𝑑 + 𝑟 = 𝑐. Thus, 𝑏2|𝑏1. Therefore it 

must hold that 𝑏1 = 𝑏2.  

 

5.2 Let  

𝑌𝑖 =
𝑌

𝑦𝑖
 

Since gcd(𝑦𝑖 , 𝑦𝑗) = 1 for each 𝑖 ≠ 𝑗, it follows that gcd(𝑌𝑖 , 𝑦𝑖) = 1 as well. By Bézout’s identity there 

exist two integers 𝐾𝑖  and 𝑘𝑖  such that 𝐾𝑖𝑌𝑖 + 𝑘𝑖𝑦𝑖 = gcd(𝑌𝑖 , 𝑦𝑖) = 1 . Then a solution can be 

constructed as follows: 

𝑧 = ∑𝑐𝑖𝐾𝑖𝑌𝑖

𝑛

𝑖=1

 

 Each congruence relation 𝑖 is then represented as 

𝑧 = 𝑐𝑖𝐾𝑖𝑌𝑖 = 𝑐𝑖(1 − 𝑘𝑖𝑦𝑖) = 𝑐𝑖(𝑚𝑜𝑑 𝑦𝑖) 

 Moreover, any two solutions are equal modulo Y. To prove that let 𝑧1 and 𝑧2 be two solutions to the 

given system of equations. Since 𝑦1, 𝑦2, ⋯ , 𝑦𝑛  are pairwise coprime, it follows that 𝑦1|(𝑧1 − 𝑧2) , 

𝑦2|(𝑧1 − 𝑧2), … 𝑦𝑛|(𝑧1 − 𝑧2). Thus, 𝑦1𝑦2 ⋯𝑦𝑛|(𝑧1 − 𝑧2), or, equivalently 

𝑧1 = 𝑧2(𝑚𝑜𝑑 𝑦1𝑦2 ⋯𝑦𝑛) 

 

5.3 By the definition of binomial coefficients  

(
𝑝
𝑘
) =

𝑝!

𝑘! (𝑝 − 𝑘)!
=

𝑝(𝑝 − 1)⋯ (𝑝 − 𝑘 + 1)(𝑝 − 𝑘)!

𝑘! (𝑝 − 𝑘)!
=

𝑝(𝑝 − 1)⋯ (𝑝 − 𝑘 + 1)

𝑘!
 

As binomial coefficients represent integers, 
𝑝(𝑝−1)⋯(𝑝−𝑘+1)

𝑘!
 is an integer. From the above equation it 

can be verified that (
𝑝
𝑘
)  is a multiple of p. Hence, what must be shown is that 

(𝑝−1)⋯(𝑝−𝑘+1)

𝑘!
 is an 

integer. To that end we use Euclid’s lemma. Euclid’s lemma states that if a prime n divides the 

product ab, where both a and b are integers, then n must divide at least one of them. Since 
𝑝(𝑝−1)⋯(𝑝−𝑘+1)

𝑘!
 is an integer, it follows that k! divides 𝑝(𝑝 − 1)⋯(𝑝 − 𝑘 + 1). Moreover, since k! 

does not divide p because p is prime, then by Euclid’s lemma, k! must divide (𝑝 − 1)⋯ (𝑝 − 𝑘 + 1) 

and so 
(𝑝−1)⋯(𝑝−𝑘+1)

𝑘!
 is an integer. Therefore, p divides (

𝑝
𝑘
). 
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5.4 This proof is due to James Ivory (“Demonstration of a theorem respecting prime numbers”, New 

Series of the Mathematical Depository, 1(2): 6-8, 1806). Let a be an integer and p be prime that does 

not divide a. The list of the first p-1 positive multiples of a is 

𝑎, 2𝑎, 3𝑎,⋯ , (𝑝 − 1)𝑎 

By reducing each element modulo p, a new list is obtained that consists of a permutation of the 

integers 1, 2, 3,⋯ , 𝑝 − 1. Therefore, multiplying the elements 

𝑎 ⋅ 2𝑎 ⋅ 3𝑎 ⋯ (𝑝 − 1)𝑎 = 1 ⋅ 2 ⋅ 3⋯(𝑝 − 1)(𝑚𝑜𝑑 𝑝) 

 This corresponds to 

(𝑝 − 1)! 𝑎𝑝−1 = (𝑝 − 1)! (𝑚𝑜𝑑 𝑝) 

 and further to 

𝑎𝑝−1 = 1(𝑚𝑜𝑑 𝑝) 

 Now let a be any integer and p be a prime. If 𝑝|𝑎 then 𝑎𝑝 = 𝑎(𝑚𝑜𝑑 𝑝) = 0. If p does not divide a 

then multiplying the above equation by a  

𝑎 ⋅ 𝑎𝑝−1 = 𝑎(𝑚𝑜𝑑 𝑝) 

 gives the required result 𝑎𝑝 = 𝑎(𝑚𝑜𝑑 𝑝). 

 

5.5 Consider the multiplicative group modulo 𝑛: ℤ/𝑛ℤ. Every element in this group has a unique inverse. 

Let the elements of this group be denoted as 𝑘1, 𝑘2,⋯ , 𝑘𝜙(𝑛). Then for 𝑎 ∈ ℤ/𝑛ℤ the elements 

𝑎𝑘1, 𝑎𝑘2, ⋯ , 𝑎𝑘𝜙(𝑛) are also element of ℤ/𝑛ℤ. In analogy to the proof of Fermat’s little theorem, 

multiplying the elements 𝑘𝑖 corresponds then to 

𝑘1 ⋅ 𝑘2 ⋯𝑘𝜙(𝑛) = 𝑎𝑘1 ⋅ 𝑎𝑘2 ⋯𝑎𝑘 = 𝑎𝜙(𝑛)𝑘1 ⋅ 𝑘2 ⋯𝑘𝜙(𝑛) 

 Cancelling equal terms leads to 𝑎𝜙(𝑛) = 1(𝑚𝑜𝑑 𝑛). 
 

 

5.6 The following proof has been adapted from the proof given in “Continued Fractions, Pell's equation, 

and other applications" by Jeremy Booher and holds for any rational fraction, not only 
𝑖

2𝑛.  

 

Assume 
𝑖

2𝑛 is not a convergent of the continued fraction of 
𝑖

2𝑛. Then r can be picked to lie between the 

denominators of two convergents 
𝑝𝑛

𝑞𝑛
 and 

𝑝𝑛+1

𝑞𝑛+1
 of 

𝑖

2𝑛, that is, 𝑞𝑛 < 𝑟 < 𝑞𝑛+1. Suppose 

|𝑧 − 𝑟
𝑖

2𝑛| ≤ |𝑝𝑛 − 𝑞𝑛

𝑖

2𝑛|       (1) 

 The determinant of the matrix in the following equation 

(
𝑝𝑛 𝑝𝑛+1

𝑞𝑛 𝑞𝑛+1
) (

𝑢
𝑣
) = (

𝑧
𝑟
) 
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is 1 or -1 based on the difference between two successive convergents, which is given by 
𝑝𝑛+1

𝑞𝑛+1
−

𝑝𝑛

𝑞𝑛
=

(−1)𝑛

𝑞𝑛𝑞𝑛+1
 

 Then for the system of equations 

𝑧 = 𝑢𝑝𝑛 + 𝑣𝑝𝑛+1       (2) 

𝑟 = 𝑢𝑞𝑛 + 𝑣𝑞𝑛+1 

holds that 𝑢𝑣 ≤ 0. u and v cannot be both positive or both negative beause this would imply that 

|𝑟| > |𝑞𝑛+1| which contradicts our assumption that 𝑞𝑛 < 𝑟 < 𝑞𝑛+1.  

With (2) we have  

|𝑧 − 𝑟
𝑖

2𝑛| = |(𝑢𝑝𝑛 + 𝑣𝑝𝑛+1) − (𝑢𝑞𝑛 + 𝑣𝑞𝑛+1)
𝑖

2𝑛| = |𝑢 (𝑝𝑛 − 𝑞𝑛

𝑖

2𝑛
) + 𝑣 (𝑝𝑛+1 − 𝑞𝑛+1

𝑖

2𝑛
)| 

Since even convergents are increasing and odd convergents are decreasing with 
𝑖

2𝑛 lying in between 

them, and given that 𝑢𝑣 ≤ 0, it must be that either (1) 𝑢 (𝑝𝑛 − 𝑞𝑛
𝑖

2𝑛) and 𝑣 (𝑝𝑛+1 − 𝑞𝑛+1
𝑖

2𝑛) have 

the same sign, or (2) one of them is zero. Therefore,  

|𝑧 − 𝑟
𝑖

2𝑛| = |𝑢 (𝑝𝑛 − 𝑞𝑛

𝑖

2𝑛
)| + |𝑣 (𝑝𝑛+1 − 𝑞𝑛+1

𝑖

2𝑛
)| 

For  

 

|𝑧 − 𝑟
𝑖

2𝑛| < |𝑝𝑛 − 𝑞𝑛

𝑖

2𝑛| 

to be true, either (1) |𝑢| = 1 and 𝑣 =  0, or (2) 𝑢 =  0. Assuming (1) is the case, then 
𝑧

𝑟
=

𝑝𝑛

𝑞𝑛
 and is 

thus a convergent of 
𝑖

2𝑛. Assuming (2) is the case, then |𝑟| = |𝑣𝑞𝑛+1|, which contradicts our 

assumption that 𝑟 <  𝑞𝑛+1. 

As opposed to equation (1) suppose that 

|𝑧 − 𝑟
𝑖

2𝑛| ≥ |𝑝𝑛 − 𝑞𝑛

𝑖

2𝑛| 

 

 Then  

|𝑝𝑛 − 𝑞𝑛

𝑖

2𝑛| <
1

2𝑟
 

 From this it follows that 

|
𝑧

𝑟
−

𝑝𝑛

𝑞𝑛
| ≤ |

𝑧

𝑟
−

𝑖

2𝑛| + |
𝑝𝑛

𝑞𝑛
−

𝑖

2𝑛| <
1

2𝑟2
+

1

𝑞𝑛𝑞𝑛+1
≤

1

2𝑟𝑞𝑛
+

1

2𝑞𝑛𝑟
=

1

𝑟𝑞𝑛
       (3) 

 However 

|
𝑧

𝑟
−

𝑝𝑛

𝑞𝑛
| = |

𝑧𝑞𝑛 − 𝑟𝑝𝑛

𝑟𝑞𝑛
|        (4) 

Since due to (3)  
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|𝑧𝑞𝑛 − 𝑟𝑝𝑛| ≤ 1 

and because we assumed that z and r are positive integers and therefore the nominator in (4) has to be 

an integer, we have 
|𝑧𝑞𝑛 − 𝑟𝑝𝑛| = 1 

which implies that 
𝑧

𝑟
 is a convergent of 

𝑖

2𝑛.  

 

5.7  

|1 − 𝑒𝑖θ|
2

= (1 − 𝑒𝑖𝜃)(1 − 𝑒−𝑖𝜃) = 1 − 𝑒−𝑖𝜃 − 𝑒𝑖𝜃 + 1 = 2 − (cos 𝜃 − 𝑖 sin 𝜃) − (cos 𝜃 + 𝑖 sin 𝜃)

= 2 − 2 cos 𝜃 

 Let 𝛿 =
𝜃

2
. Then by trigonometric identity formula for double angles cos(2𝜃) = 1 − 2 sin2 𝜃

2
 we 

obtain 

2 − 2 cos(2𝛿) = 2 − 2(1 − 2 sin2 𝛿) = 4 sin2 𝛿 = 4 sin2
𝜃

2
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Solutions to exercises in chapter 6: 

 

6.1 Let |𝑥0⟩ be the only solution of a given search problem. Then, recalling that the inner product 

⟨𝑥|𝑥⟩ = 1, we have 

𝑂|𝑥0⟩ = (𝐼 − 2|𝑥0⟩⟨𝑥0|)|𝑥0⟩ = 𝐼|𝑥0⟩ − 2|𝑥0⟩⟨𝑥0|𝑥0⟩ = |𝑥0⟩ − 2|𝑥0⟩ = −|𝑥0⟩ 

 

6.2 For |𝑥0⟩ = |2⟩ = |10⟩ the matrix has dimensions 4x4 and can be derived as follows: 

[

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

] − 2 [

0
0
1
0

] [0 0 1 0] = [

1 0
0 1

 0   0
 0   0

0 0
0 0

−1 0
0 1

] 

 

6.3 First, derive 𝑈 = 2|𝜙1⟩⟨𝜙1| − 𝐼  

𝑈 = 2

[
 
 
 
 
 
√

𝑁 − 𝑆

𝑁

√
𝑆

𝑁 ]
 
 
 
 
 

[√
𝑁 − 𝑆

𝑁
√

𝑆

𝑁
] − [

1 0
0 1

] =

[
 
 
 
 𝑁 − 2𝑆

𝑁

2√𝑆(𝑁 − 𝑆)

𝑁

2√𝑆(𝑁 − 𝑆)

𝑁

2𝑆 − 𝑁

𝑁 ]
 
 
 
 

 

Then applying U to |𝜙2⟩ we obtain |𝜙3⟩ 

 

𝑈

[
 
 
 
 
 
√

𝑁 − 𝑆

𝑁

√
𝑆

𝑁 ]
 
 
 
 
 

=

[
 
 
 
 
 
√

𝑁 − 𝑆

𝑁

𝑁 − 4𝑆

𝑁

√
𝑆

𝑁
 
3𝑁 − 4𝑆

𝑁 ]
 
 
 
 
 

 

Thus U has reflected vector |𝜙2⟩ about |𝜙1⟩ as shown in Fig. 6.7. 

 

6.4 The matrix of G is 

𝐺 = [
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

] 

From the state |𝜙1⟩ we have that sin
𝜃

2
= √

𝑆

𝑁
 and cos

𝜃

2
= √

𝑁−𝑆

𝑁
. From the state |𝜙3⟩ we have that 

sin
3𝜃

2
=

3𝑁−4𝑆

𝑁
√

𝑆

𝑁
 while cos

3𝜃

2
=

𝑁−4𝑆

𝑁
√

𝑁−𝑆

𝑁
. The elements of Grovers operator can then be obtained 

from the following triginometric identities  
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sin𝜃 = sin (
3𝜃

2
−

𝜃

2
) = sin

3𝜃

2
cos

𝜃

2
− cos

3𝜃

2
sin

𝜃

2
=

2√𝑆(𝑁 − 𝑆)

𝑁
 

cos 𝜃 = cos (
3𝜃

2
−

𝜃

2
) = cos

3𝜃

2
cos

𝜃

2
+ sin

3𝜃

2
sin

𝜃

2
=

𝑁 − 2𝑆

𝑁
 

With the above the mtrix has the form 

𝐺 =

[
 
 
 
 𝑁 − 2𝑆

𝑁
−

2√𝑆(𝑁 − 𝑆)

𝑁

2√𝑆(𝑁 − 𝑆)

𝑁

𝑁 − 2𝑆

𝑁 ]
 
 
 
 

 

 

6.5 We need to solve the equation 

𝐺|𝜓⟩ = 𝜆|𝜓⟩ 

where |𝜓⟩ is an eigenvector and 𝜆 is its corresponding eigenvalue. To that end we find the characteristic 

equation 

|𝐺 − 𝜆𝐼| = 0 

to be 

||

[
 
 
 
 𝑁 − 2𝑆

𝑁
−

2√𝑆(𝑁 − 𝑆)

𝑁

2√𝑆(𝑁 − 𝑆)

𝑁

𝑁 − 2𝑆

𝑁 ]
 
 
 
 

− [
𝜆 0
0 𝜆

]|| = ||

[
 
 
 
 𝑁 − 2𝑆

𝑁
− 𝜆 −

2√𝑆(𝑁 − 𝑆)

𝑁

2√𝑆(𝑁 − 𝑆)

𝑁

𝑁 − 2𝑆

𝑁
− 𝜆 ]

 
 
 
 

||

= (
𝑁 − 2𝑆

𝑁
− 𝜆)

2

+ (
2√𝑆(𝑁 − 𝑆)

𝑁
)

2

= 𝜆2 −
2𝑁 − 4𝑆

𝑁
𝜆 + 1 = 0 

The two eigenvalues are therefore (the complex value is due to the fact that 𝑁 ≤ 𝑆) 

𝜆1 =
𝑁 − 2𝑆 + 2𝑖√𝑆(𝑁 − 𝑆)

𝑁
 

and  

𝜆2 =
𝑁 − 2𝑆 − 2𝑖√𝑆(𝑁 − 𝑆)

𝑁
 

The corresponding eigenvectors are calculated as follows. For 𝜆1 

[
 
 
 
 𝑁 − 2𝑆

𝑁
− 𝜆1 −

2√𝑆(𝑁 − 𝑆)

𝑁

2√𝑆(𝑁 − 𝑆)

𝑁

𝑁 − 2𝑆

𝑁
− 𝜆1 ]

 
 
 
 

|𝜓1⟩ =

[
 
 
 
 −

2𝑖√𝑆(𝑁 − 𝑆)

𝑁
−

2√𝑆(𝑁 − 𝑆)

𝑁

2√𝑆(𝑁 − 𝑆)

𝑁
−

2𝑖√𝑆(𝑁 − 𝑆)

𝑁 ]
 
 
 
 

[
𝜓1,1

𝜓1,2
] = 0 

and hence 𝜓1,1 = 𝑖𝜓1,2. Therefore the eigenvector is 
1

√2
[
𝑖
1
]. For 𝜆2 
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[
 
 
 
 𝑁 − 2𝑆

𝑁
− 𝜆2 −

2√𝑆(𝑁 − 𝑆)

𝑁

2√𝑆(𝑁 − 𝑆)

𝑁

𝑁 − 2𝑆

𝑁
− 𝜆2 ]

 
 
 
 

|𝜓1⟩ =

[
 
 
 
 2𝑖√𝑆(𝑁 − 𝑆)

𝑁
−

2√𝑆(𝑁 − 𝑆)

𝑁

2√𝑆(𝑁 − 𝑆)

𝑁

2𝑖√𝑆(𝑁 − 𝑆)

𝑁 ]
 
 
 
 

[
𝜓1,1

𝜓1,2
] = 0 

and hence 𝜓1,1 =
1

𝑖
𝜓1,2. This corresponds to the eigenvector 

1

√2
[
−𝑖
1

]. 


