
1

1.1 The problem at hand is to find the parameters based on the following equality:

𝑈3(𝜃, 𝜙, 𝜆) = [
cos

𝜃

2
−𝑒𝑖𝜆 sin

𝜃

2

𝑒𝑖𝜙 sin
𝜃

2
𝑒𝑖(𝜆+𝜙) cos

𝜃

2

] = [
0 1
1 0

] = 𝑁𝑂𝑇

In the following we assume the interval [0, 𝜋]. Since cos
𝜃

2
= 0,

𝜃

2
 must equal

𝜋

2
, and thus 𝜃 = 𝜋.

Since sin
𝜋

2
= 1, 𝑒𝑖𝜙 = 1 as well, and hence 𝑖𝜙 = 0 and therefore also 𝜙 = 0. Again, since sin

𝜋

2
= 1,

−𝑒𝑖𝜆 = 1, and hence by squaring both sides we have 𝑒𝑖2𝜆 = 1 and from this 𝜆 = 0.

1.2 Along the same lines as in exercise 1.1

𝑈3(𝜃, 𝜙, 𝜆) = [
cos

𝜃

2
−𝑒𝑖𝜆 sin

𝜃

2

𝑒𝑖𝜙 sin
𝜃

2
𝑒𝑖(𝜆+𝜙) cos

𝜃

2

] =

[

1

√2

1

√2
1

√2
−

1

√2]

= 𝐻

In order for cos
𝜃

2
=

1

√2
,
𝜃

2
=

𝜋

4
 and therefore 𝜃 =

𝜋

2
. For this value of 𝜃, sin

𝜋

4
=

1

√2
 as well, and hence

𝑒𝑖𝜙 = 1. From this it follows that 𝜙 = 0. Since 𝑒𝑖(𝜆+𝜙) = −1 and given that 𝜙 = 0, we have that

𝑒𝑖𝜆 = −1 and therefore 𝜆 = 𝜋.

1.3 As in both previous exercises, we set

𝑈3(𝜃, 𝜙, 𝜆) = [
cos

𝜃

2
−𝑒𝑖𝜆 sin

𝜃

2

𝑒𝑖𝜙 sin
𝜃

2
𝑒𝑖(𝜆+𝜙) cos

𝜃

2

] = [
1 0
0 −1

] = 𝑍

With cos
𝜃

2
= 1 it follows that 𝜃 = 0. Since cos

𝜋

2
= 0, it must be the case that 𝑒𝑖(𝜆+𝜙) = −1. It must

therefore be the case that 𝜆 + 𝜙 = 𝜋. With sin
𝜋

2
= 0 the values of 𝜆 and 𝜙 cannot be established

from the off-diagonal formulas. For that reason, the gate Z can have many parametrizations,

including when 𝜙 = 𝜆 =
𝜋

2
.

1.4 Again, as above

𝑈3(𝜃, 𝜙, 𝜆) = [
cos

𝜃

2
−𝑒𝑖𝜆 sin

𝜃

2

𝑒𝑖𝜙 sin
𝜃

2
𝑒𝑖(𝜆+𝜙) cos

𝜃

2

] = [
0 −𝑖
𝑖 0

] = 𝑌

With cos
𝜃

2
= 0, 𝜃 = 𝜋. sin

𝜋

2
= 1. Hence, 𝑒𝑖𝜙 = 𝑖 and −𝑒𝑖𝜆 = −𝑖. From these equations we obtain

the values 𝜙 =
𝜋

2
 and 𝜆 =

𝜋

2
.

1.5 As above,

𝑈3(𝜃, 𝜙, 𝜆) = [
cos

𝜃

2
−𝑒𝑖𝜆 sin

𝜃

2

𝑒𝑖𝜙 sin
𝜃

2
𝑒𝑖(𝜆+𝜙) cos

𝜃

2

] = [
1 0
0 𝑖

] = 𝑆

With cos
𝜃

2
= 1, 𝜃 = 0. Then 𝑒𝑖(𝜆+𝜙) = 𝑖. This means that 𝜆 + 𝜙 =

𝜋

2
. Again, there are multiple

parametrizations that achieve this, e.g., 𝜆 = 𝜙 =
𝜋

4
.

1.6 The 𝑆+ gate differs from the S gate in the sign of the complex number i only. Therefore, the

parameters are as follows: 𝜃 = 0 and 𝜆 + 𝜙 =
3𝜋

2
.

2

1.7 The gate T differs from the S only by having the value
1+𝑖

√2
 instead of i. Therefore, the parameter 𝜃 =

0, while for the remaining two parameters there are multiple values for which holds that 𝑒𝑖(𝜆+𝜙) =
1+𝑖

√2
. To obtain the parameters we use trigonometric identities

𝑒𝑖(𝜆+𝜙) = 𝑒𝑖𝜆𝑒𝑖𝜙 = (cos 𝜆 + 𝑖 sin 𝜆)(cos𝜙 + 𝑖 sin𝜙)
This corresponds to

cos 𝜆 cos𝜙 + 𝑖 sin𝜙 cos 𝜆 + 𝑖 sin 𝜆 cos𝜙 − sin𝜙 sin𝜆

= (cos 𝜆 cos𝜙 − sin𝜆 sin𝜙) + 𝑖(sin𝜙 cos 𝜆 + sin𝜆 cos𝜙)

= cos (𝜆 + 𝜙) + 𝑖 sin (𝜆 + 𝜙) =
1

√2
+

𝑖

√2

Thus we have 𝜆 + 𝜙 =
𝜋

4
.

1.8 The reasoning regarding the 𝑇+ gate is similar to that for the T gate. Instead of
1+𝑖

√2
, the 𝑇+has its

conjugate
1−𝑖

√2
. The parameter 𝜃 = 0. Using trigonometric identities

cos(𝜆 + 𝜙) + 𝑖 sin(𝜆 + 𝜙) =
1

√2
−

𝑖

√2

From cos(𝜆 + 𝜙) =
1

√2
 and sin(𝜆 + 𝜙) = −

1

√2
 we have that 𝜆 + 𝜙 = 315∘ =

7𝜋

4
. Therefore, any

combination of values for 𝜆 and 𝜙 that conforms to the condition 𝜆 + 𝜙 =
7𝜋

4
 is a valid

parametrization.

1.9 Finding the parameters for the identity gate is straightforward. From cos
𝜃

2
= 1 it follows that 𝜃 = 0.

Then, from 𝑒𝑖(𝜆+𝜙) = 1 it follows that 𝜆 + 𝜙 = 0 and therefore 𝜆 = 𝜙 = 0.

1.10 For the gate

𝑈1(𝜆) = [
1 0
0 𝑒𝑖𝜆]

𝜃 = 0, as above. Then, from 𝑒𝑖(𝜆+𝜙) = 𝑒𝑖𝜆 it follows that 𝜙 = 0.

1.11 For the gate 𝑈2(𝜙, 𝜆) we have

𝑈3(𝜃, 𝜙, 𝜆) = [
cos

𝜃

2
−𝑒𝑖𝜆 sin

𝜃

2

𝑒𝑖𝜙 sin
𝜃

2
𝑒𝑖(𝜆+𝜙) cos

𝜃

2

] =

[

1

√2
−

𝑒𝑖𝜆

√2

𝑒𝑖𝜙

√2

𝑒𝑖(𝜆+𝜙)

√2]

= 𝑈2(𝜙, 𝜆)

we have that cos
𝜃

2
=

1

√2
, and therefore 𝜃 =

𝜋

2
.

3

Solutions to chapter 2

2.1 To obtain the required operation, 3 quantum bits and 3 classical bits are needed. In the following circuit,

q[0] represents the x operand, q[1] represents the y operand, while q[2] is the additional bit in the OR gate

introduced in the material of this chapter. First, set the two operands into a superposition by applying to

each a Hadamard gate H. As the OR gate requires that the auxialiary quantum bit be equal 1, apply the NOT

gate to it. The OR gate would require a total of 4 NOT gates. It can however be simplified due to the fact

that one of the operands, namely x, is negated. The equivalence of the two subcircuits can be easily checked

by writing down truth tables for each of them. Note that the output is presented in the order c[2], c[1], c[0].

The circuit:

The code:

1. OPENQASM 2.0;

2. include "qelib1.inc";

3. qreg q[5];

4. creg c[3];

5. h q[0];

6. h q[1];

7. x q[1];

8. x q[2];

9. ccx q[0],q[1],q[2];

10. x q[1];

11. measure q[0] -> c[0];

12. measure q[1] -> c[1];

13. measure q[2] -> c[2];

The output:

4

2.2 To obtain the required operation, 3 quantum bits and 3 classical bits are needed. q[0] represents the x

operand, q[1] represents y, while q[2] is the additional bit in the OR gate introduced in the material of this

chapter. First, set the two operands into a superposition by applying to each a Hadamard gate H. As the OR

gate requires that the auxialiary quantum bit be equal 1, apply the Pauli X gate to it. The OR gate would

require a total of 4 X gates. It can however be simplified due to the fact that one of the operands, namely y,

is negated. Note that the output is presented in the order c[2], c[1], c[0].

The circuit:

The code:

1. OPENQASM 2.0;

2. include "qelib1.inc";

3. qreg q[5];

4. creg c[3];

5. h q[0];

6. h q[1];

7. x q[2];

8. x q[0];

9. ccx q[0],q[1],q[2];

10. x q[0];

11. measure q[0] -> c[0];

12. measure q[1] -> c[1];

13. measure q[2] -> c[2];];

14. measure q[0] -> c[0];

15. measure q[1] -> c[1];

16. measure q[2] -> c[2];

5

The output:

2.3 A possible implementation of this operation could be as below. To this end, 5 quantum bits and 3

classical bits are required. Observe that 𝑦̅ ∧ (𝑥 ∨ 𝑥̅) = (𝑦̅ ∧ 𝑥) ∨ (𝑦̅ ∧ 𝑥̅). Therefore, in the following, we

separate the operations into three parts: (𝑦̅ ∧ 𝑥), (𝑦̅ ∧ 𝑥̅), and the OR operation on the two. The three

operations are separated by barriers (barriers are only used for convenience and they do not contribute to

the meaning of the circuit). Everything up to the first barrier, except the two Hadamard gates, encodes the

clause (𝑦̅ ∧ 𝑥). Clause (𝑦̅ ∧ 𝑥̅) is encoded between the first and the second barrier. The OR operation on

the two clauses is encoded between the second and the third barrier. In the following circuit, q[0] represents

x, q[1] represents y, q[2] is the auxialiary quantum bit for the AND operation in the term (𝑦̅ ∧ 𝑥), q[3] is

the auxiliary bit for the AND operation in the term (𝑦̅ ∧ 𝑥̅), while q[4] is the auxiliary bit for the OR

operation mentioned above. Note that the output is presented in the order c[2], c[1], c[0].

The circuit:

The code:

1. OPENQASM 2.0;

2. include "qelib1.inc";

3. qreg q[5];

4. creg c[3];

5. h q[0];

6. h q[1];

7. x q[1];

8. ccx q[0],q[1],q[2];

9. x q[1];

6

10. barrier q[0],q[1],q[2],q[3],q[4];

11. x q[0];

12. x q[1];

13. ccx q[0],q[1],q[3];

14. x q[0];

15. x q[1];

16. barrier q[0],q[1],q[2],q[3],q[4];

17. x q[2];

18. x q[3];

19. x q[4];

20. ccx q[2],q[3],q[4];

21. x q[2];

22. x q[3];

23. barrier q[0],q[1],q[2],q[3],q[4];

24. measure q[0] -> c[0];

25. measure q[1] -> c[1];

26. measure q[4] -> c[2];

The output:

2.4 A possible implementation of this operation could be as below. To this end, 5 quantum bits and 3

classical bits are required. The separation of operations is along the same lines as in the previous exercise.

Observe that 𝑥̅ ∧ (𝑦 ∨ 𝑦̅) = (𝑥̅ ∧ 𝑦) ∨ (𝑥̅ ∧ 𝑦̅). Therefore, in the following, we separate the operations into

three parts: (𝑥̅ ∧ 𝑦), (𝑥̅ ∧ 𝑦̅), and the OR operation on the two. The three operations are separated by

barriers (barriers are only used for convenience and they do not contribute to the meaning of the circuit).

Everything up to the first barrier, except the two Hadamard gates, encodes the clause (𝑥̅ ∧ 𝑦). Clause (𝑥̅ ∧

𝑦̅) is encoded between the first and the second barrier. The OR operation on the two clauses is encoded

between the second and the third barrier. q[0] represents x, q[1] represents y, q[2] is the auxialiary quantum

bit for the AND operation in the term (𝑥̅ ∧ 𝑦), q[3] is the auxiliary bit for the AND operation in the term

(𝑥̅ ∧ 𝑦̅), while q[4] is the auxiliary bit for the OR operation mentioned above. Note that the output is

presented in the order c[2], c[1], c[0].

The circuit:

7

The code:

1. OPENQASM 2.0;

2. include "qelib1.inc";

3. qreg q[5];

4. creg c[3];

5. h q[0];

6. h q[1];

7. x q[0];

8. ccx q[0],q[1],q[2];

9. x q[0];

10. barrier q[0],q[1],q[2],q[3],q[4];

11. x q[0];

12. x q[1];

13. ccx q[0],q[1],q[3];

14. x q[0];

15. x q[1];

16. barrier q[0],q[1],q[2],q[3],q[4];

17. x q[2];

18. x q[3];

19. x q[4];

20. ccx q[2],q[3],q[4];

21. x q[2];

22. x q[3];

23. barrier q[0],q[1],q[2],q[3],q[4];

24. measure q[0] -> c[0];

25. measure q[1] -> c[1];

26. measure q[4] -> c[2];

The output:

8

2.5 To obtain the required operation, 3 quantum bits and 3 classical bits are needed. q[0] represents the x

operand, q[1] represents y, while q[2] is the additional bit in the AND gate introduced in the material

of this chapter. First, set the two operands into a superposition by applying to each a Hadamard gate H.

The two X gates are to account for the fact that operand x is negated. Note that the output is presented

in the order c[2], c[1], c[0].

The circuit:

The code:

1. OPENQASM 2.0;

2. include "qelib1.inc";

3. qreg q[5];

4. creg c[3];

5. h q[0];

6. h q[1];

7. x q[0];

8. ccx q[0],q[1],q[2];

9. x q[0];

10. measure q[0] -> c[0];

11. measure q[1] -> c[1];

12. measure q[2] -> c[2];

The output:

9

2.6 To obtain the required operation, 3 quantum bits and 3 classical bits are needed. q[0] represents the x

operand, q[1] represents y, while q[2] is the additional bit in the AND gate introduced in the material

of this chapter. First, set the two operands into a superposition by applying to each a Hadamard gate H.

The two X gates are to account for the fact that operand y is negated. Note that the output is presented

in the order c[2], c[1], c[0].

The circuit:

The code:

1. OPENQASM 2.0;

2. include "qelib1.inc";

3. qreg q[5];

4. creg c[3];

5. h q[0];

6. h q[1];

7. x q[1];

8. ccx q[0],q[1],q[2];

9. x q[1];

10. measure q[0] -> c[0];

11. measure q[1] -> c[1];

12. measure q[2] -> c[2];

The output:

10

11

Solutions to chapter 3

3.1 The circuit for the satisfiability problem specified by the oracle 𝐹(𝑥1, 𝑥2) = 𝑥1̅̅ ̅ ∧ 𝑥2 is very similar to

the one given for 𝐹(𝑥1, 𝑥2) = 𝑥1 ∧ 𝑥2 in this chapter (see also the answer to exercise 3.4). The

difference is that the input 𝑥1 is negated (that is q[3]). q[0] is a workspace qubit, q[1] is not used, q[2]

represents 𝑠2, q[3] is for 𝑥1, while q[4] is for 𝑥2. We introduce barriers to separate different parts of

the code. Everything up to the first barrier represents the initial encoding. q[0] represents the state

|−⟩ =
1

√2
(|0⟩ − |1⟩), as in the material, while q[3] and q[4] are set into a uniform superposition. The

oracle that negates the amplitude of the qubit for which the condition 𝑥1̅̅ ̅ ∧ 𝑥2 = 1 is fulfilled is located

between the first and the second barrier. To represent the fact that the value of 𝑥1 is negated, the NOT

gate is used on the qubit representing 𝑥1. After the oracle has completed its task, another NOT gate is

applied to 𝑥1 to uncompute. The circuit part between the second and the third barriers has been

introduced in the material of this chapter and encodes the Grover diffusion operator.

The circuit:

The code:

1. OPENQASM 2.0;

2. include "qelib1.inc";

3. qreg q[5];

4. creg c[2];

5. x q[0];

6. h q[3];

7. h q[4];

8. h q[0];

9. barrier q[0],q[1],q[2],q[3],q[4];

10. x q[3];

11. ccx q[4],q[3],q[2];

12. cx q[2],q[0];

13. ccx q[4],q[3],q[2];

14. x q[3];

15. barrier q[0],q[1],q[2],q[3],q[4];

16. h q[3];

17. h q[4];

18. x q[3];

19. x q[4];

20. h q[4];

12

21. cx q[3],q[4];

22. x q[3];

23. h q[4];

24. u3(2*pi,0,0) q[3];

25. x q[4];

26. h q[3];

27. h q[4];

28. barrier q[0],q[1],q[2],q[3],q[4];

29. measure q[4] -> c[0];

30. measure q[3] -> c[1];

The output:

3.2 The circuit for the satisfiability problem specified by the oracle 𝐹(𝑥1, 𝑥2) = 𝑥1 ∧ 𝑥2̅̅ ̅ is very similar to

the one given for 𝐹(𝑥1, 𝑥2) = 𝑥1̅̅ ̅ ∧ 𝑥2 in exercise 3.1. The difference is that the input 𝑥2 is negated

(that is q[2]) instead of 𝑥1. q[0] is a workspace qubit, q[1] is not used, q[2] represents 𝑠2, q[3] is for

𝑥1, while q[4] is for 𝑥2. We introduce barriers to separate different parts of the code. Everything up to

the first barrier represents the initial encoding. q[0] represents the state |−⟩ =
1

√2
(|0⟩ − |1⟩), as in the

material, while q[3] and q[4] are set into a uniform superposition. The oracle that negates the amplitude

of the qubit for which the condition 𝑥1 ∧ 𝑥2̅̅ ̅ = 1 is fulfilled is located between the first and the second

barrier. To represent the fact that the value of 𝑥2 is negated, the NOT gate is used on the qubit

representing 𝑥2 . After the oracle has completed its task, another NOT gate is applied to 𝑥2 to

uncompute. The circuit part between the second and the third barriers has been introduced in the

material of this chapter and encodes the Grover diffusion operator.

The circuit:

13

The code:

1. OPENQASM 2.0;

2. include "qelib1.inc";

3. qreg q[5];

4. creg c[2];

5. x q[0];

6. h q[3];

7. h q[4];

8. h q[0];

9. barrier q[0],q[1],q[2],q[3],q[4];

10. x q[4];

11. ccx q[4],q[3],q[2];

12. cx q[2],q[0];

13. ccx q[4],q[3],q[2];

14. x q[4];

15. barrier q[0],q[1],q[2],q[3],q[4];

16. h q[3];

17. h q[4];

18. x q[3];

19. x q[4];

20. h q[4];

21. cx q[3],q[4];

22. x q[3];

23. h q[4];

24. u3(2*pi,0,0) q[3];

25. x q[4];

26. h q[3];

27. h q[4];

28. barrier q[0],q[1],q[2],q[3],q[4];

29. measure q[4] -> c[0];

30. measure q[3] -> c[1];

The output:

3.3 In theory, the circuit for the satisfiability problem specified by the oracle 𝐹(𝑥1, 𝑥2) = 𝑥1 ∧ 𝑥2̅̅ ̅̅ ̅̅ ̅̅ ̅ should

be very similar to the one given for 𝐹(𝑥1, 𝑥2) = 𝑥1 ∧ 𝑥2 in this chapter (see also the answer to exercise

3.4). The difference would be that the quantum bit q[2] is negated in order to represent the NAND gate.

q[0] is a workspace qubit, q[1] is not used, q[2] represents 𝑠2, q[3] is for 𝑥1, while q[4] is for 𝑥2. We

14

introduce barriers to separate different parts of the code. Everything up to the first barrier represents

the initial encoding. q[0] represents the state |−⟩ =
1

√2
(|0⟩ − |1⟩), as in the material, while q[3] and

q[4] are set into a uniform superposition. The oracle that negates the amplitude of the qubit for which

the condition 𝑥1 ∧ 𝑥2̅̅ ̅̅ ̅̅ ̅̅ ̅ = 1 is fulfilled is located between the first and the second barrier. As mentioned

above, the NOT gate is used on the qubit representing 𝑠2. After the oracle has completed its task,

another NOT gate is applied to 𝑠2 to uncompute. The circuit part between the second and the third

barriers has been introduced in the material of this chapter and encodes the Grover diffusion operator.

After executing the code we notice that the obtained output is incorrect. In fact it shows the state |11⟩

with probability 1. The correct answer should have included equal probabilities for three states: |00⟩,
|01⟩, and |10⟩. These three states are the correct outcomes for the NAND gate. The reason we obtained

the wrong answer is that Grover’s algorithm imposes a limitation on the ratio between the number of

answers (A) and the number of all opossible outcomes (O). This limitation is
𝐴

𝑂
<

1

2
. In this exercise,

this ratio is
3

4
>

1

2
 however.

The circuit:

The code:

1. OPENQASM 2.0;

2. include "qelib1.inc";

3. qreg q[5];

4. creg c[2];

5. x q[0];

6. h q[3];

7. h q[4];

8. h q[0];

9. barrier q[0],q[1],q[2],q[3],q[4];

10. x q[2];

11. ccx q[4],q[3],q[2];

12. cx q[2],q[0];

13. ccx q[4],q[3],q[2];

14. x q[2];

15. barrier q[0],q[1],q[2],q[3],q[4];

16. h q[3];

17. h q[4];

18. x q[3];

19. x q[4];

20. h q[4];

15

21. cx q[3],q[4];

22. x q[3];

23. h q[4];

24. u3(0,0,0) q[3];

25. x q[4];

26. h q[3];

27. h q[4];

28. barrier q[0],q[1],q[2],q[3],q[4];

29. measure q[4] -> c[0];

30. measure q[3] -> c[1];

The output:

3.4 The circuit for the satisfiability problem specified by the oracle 𝐹(𝑥1, 𝑥2) = 𝑥1 ∧ 𝑥2 which was given

in the material of this chapter, can be simplified by replacing the twelve gates used to represent the

CCNOT operation with the CCNOT gate itself (in code: ccx). As the procedure of deriving the circuit

has been described in detail in the material, here we only present the corresponding circuit, the code

and its output. As before, q[0] is a workspace qubit, q[1] is not used, q[2] represents 𝑠2, q[3] is for 𝑥1,

while q[4] is for 𝑥2. We introduce barriers to separate different parts of the code. Everything up to the

first barrier represents the initial encoding. q[0] represents the state |−⟩ =
1

√2
(|0⟩ − |1⟩), as in the

material, while q[3] and q[4] are set into a uniform superposition. The oracle that negates the amplitude

of the qubit for which the condition 𝑥1 ∧ 𝑥2 = 1 is fulfilled is located between the first and the second

barrier. The circuit part between the second and the third barriers has been introduced in the material

of this chapter and encodes the Grover diffusion operator.

The circuit:

16

The code:

1. OPENQASM 2.0;

2. include "qelib1.inc";

3. qreg q[5];

4. creg c[2];

5. x q[0];

6. h q[3];

7. h q[4];

8. h q[0];

9. barrier q[0],q[1],q[2],q[3],q[4];

10. ccx q[4],q[3],q[2];

11. cx q[2],q[0];

12. ccx q[4],q[3],q[2];

13. barrier q[0],q[1],q[2],q[3],q[4];

14. h q[3];

15. h q[4];

16. x q[3];

17. x q[4];

18. h q[4];

19. cx q[3],q[4];

20. x q[3];

21. h q[4];

22. u3(2*pi,0,0) q[3];

23. x q[4];

24. h q[3];

25. h q[4];

26. barrier q[0],q[1],q[2],q[3],q[4];

27. measure q[4] -> c[1];

28. measure q[3] -> c[0];

The output:

17

18

Solutions to chapter 4

4.1 The mapping this oracle performs is 𝑎1𝑎2𝑎3𝑎4 →
1

4
𝑒2𝜋𝑖×0.𝑎2𝑎3𝑎4 =

1

4
𝑒

2𝜋𝑖(
𝑎2
2

+
𝑎3
4

+
𝑎4
8

)
. The following

table shows the particular results. Input 0/1 indicates that the respective value is either 0 or 1.

𝑎1 𝑎2 𝑎3 𝑎4
1

4
𝑒

2𝜋𝑖(
𝑎2
2

+
𝑎3
4

+
𝑎4
8

)

0/1 0 0 0 1 4⁄

0/1 0 0 1 √2 8⁄ + 𝑖√2 8⁄

0/1 0 1 0 𝑖 4⁄

0/1 0 1 1 −√2 8⁄ + 𝑖√2 8⁄

0/1 1 0 0 −1 4⁄

0/1 1 0 1 −√2 8⁄ − 𝑖√2 8⁄

0/1 1 1 0 −𝑖 4⁄

0/1 1 1 1 √2 8⁄ − 𝑖√2 8⁄

This corresponds to the sequence of rotations 0°, 45°, 90°, 125°, 180°, 225°, 270°, 315°. As these values

(see the table above) appear twice, the expected frequency 𝑓 is 2. With this the period is 𝑟 = 8.

The solution follows closely that already introduced in the material of this chapter. Quantum bits q[0], q[1],

q[2], and q[3] correspond to 𝑎1, 𝑎2, 𝑎3, 𝑎4, respectively. The first column indicates that all 4 quantum bits

are set into a uniform superposition by applying to them the Hadamard gate. In the next column, the

respective rotations are encoded. In accordance with the mapping formula, quantum bit q[1] is rotated by

180°, q[2] by 90°, and q[3] by 45°. These operations are delineated by the barrier. After the barrier, the

inverse quantum Fourier transform is applied. This transformation is the same (starting in row 13 of the

code) as introduced in the chapter material. What changes is the application of the U1 gates to the qubits

q[1], q[2], q[3] corresponding to 𝑎2, 𝑎3, 𝑎4, respectively.

The circuit:

The code:

1. OPENQASM 2.0;

2. include "qelib1.inc";

3. qreg q[4];

4. creg c[4];

5. h q[0];

6. h q[1];

7. h q[2];

19

8. h q[3];

9. u1(pi) q[1];

10. u1(pi/2) q[2];

11. u1(pi/4) q[3];

12. barrier q[0],q[1],q[2],q[3];

13. h q[0];

14. cu1(-pi/2) q[1],q[0];

15. cu1(-pi/4) q[2],q[0];

16. cu1(-pi/8) q[3],q[0];

17. h q[1];

18. cu1(-pi/2) q[2],q[1];

19. cu1(-pi/4) q[3],q[1];

20. h q[2];

21. cu1(-pi/2) q[3],q[2];

22. h q[3];

23. swap q[0],q[3];

24. swap q[1],q[2];

25. measure q[0] -> c[3];

26. measure q[1] -> c[2];

27. measure q[2] -> c[1];

28. measure q[3] -> c[0];

The output:

4.2 The mapping this oracle performs is 𝑎1𝑎2𝑎3 →
1

2√2
𝑒2𝜋𝑖×0.𝑎3 =

1

2√2
𝑒

2𝜋𝑖(
𝑎3
2

)
=

1

2√2
𝑒𝑖𝜋𝑎3. The following

table shows the particular results. Input 0/1 indicates that the respective value is either 0 or 1.

𝑎1𝑎2 𝑎3
1

2√2
𝑒𝑖𝜋𝑎3

00/01/10/11 0 1 2√2⁄

00/01/10/11 1 −1 2√2⁄

The oracle oscillates between two values corresponding to rotations by 180°. The frequency is 4, whereby

the period equals 8/4=2. Our solution follows closely that already introduced in the material of this chapter.

Quantum bits q[0], q[1], and q[2] correspond to 𝑎1, 𝑎2, 𝑎3, respectively. 3 classical registers are needed to

encode the output. The first column indicates that all 3 quantum bits are set into a uniform superposition by

20

applying to them the Hadamard gate. In the next column, the respective rotations are encoded. In accordance

with the mapping formula, quantum bit q[2] is rotated by 180°. These operations are delineated by the

barrier. After the barrier, the inverse quantum Fourier transform is applied. This transformation is the same

(starting in row 10 of the code) as in the chapter material, but applied to 3 quantum bits instead of 4. What

changes is the application of the U1 gate to the qubit q[2] corresponding to 𝑎3. Moreover, the swapping

operation takes place between the most significant digit and the least significant digit only.

The circuit:

The code:

1. OPENQASM 2.0;

2. include "qelib1.inc";

3. qreg q[3];

4. creg c[3];

5. h q[0];

6. h q[1];

7. h q[2];

8. u1(pi) q[2];

9. barrier q[0],q[1],q[2];

10. h q[0];

11. cu1(-pi/2) q[1],q[0];

12. cu1(-pi/4) q[2],q[0];

13. h q[1];

14. cu1(-pi/2) q[2],q[1];

15. h q[2];

16. swap q[0],q[2];

17. measure q[0] -> c[2];

18. measure q[1] -> c[1];

19. measure q[2] -> c[0];

The output:

21

4.3 The mapping this oracle performs is 𝑎1𝑎2𝑎3 →
1

2√2
𝑒2𝜋𝑖×0.𝑎2𝑎3 =

1

2√2
𝑒

2𝜋𝑖(
𝑎2
2

+
𝑎3
4

)
. The following table

shows the particular results. Input 0/1 indicates that the respective value is either 0 or 1.

𝑎1 𝑎2 𝑎3
1

2√2
𝑒

2𝜋𝑖(
𝑎2
2

+
𝑎3
4

)

0/1 0 0 1 2√2⁄

0/1 0 1 𝑖 2√2⁄

0/1 1 0 −1 2√2⁄

0/1 1 1 −𝑖 2√2⁄

The oracle oscillates between four values corresponding to rotations by 90°. The frequency is 2, whereby

the period equals 8/2=4. Our solution follows closely that already introduced in the material of this chapter.

Quantum bits q[0], q[1], and q[2] correspond to 𝑎1, 𝑎2, 𝑎3, respectively. 3 classical registers are needed to

encode the output. The first column indicates that all 3 quantum bits are set into a uniform superposition by

applying to them the Hadamard gate. In the next column, the respective rotations are encoded. In accordance

with the mapping formula, quantum bit q[1] is rotated by 180°, while q[2] is rotated by 90°. These

operations are delineated by the barrier. After the barrier, the inverse quantum Fourier transform is applied.

This transformation is the same (starting in row 11 of the code) as in the chapter material, but applied to 3

quantum bits instead of 4. What changes is the application of the U1 gate to the qubits q[1] and q[2]

corresponding to 𝑎2 and 𝑎3, respectively. Moreover, the swapping operation takes place between the most

significant digit and the least significant digit only.

The circuit:

The code:

22

1. OPENQASM 2.0;

2. include "qelib1.inc";

3. qreg q[3];

4. creg c[3];

5. h q[0];

6. h q[1];

7. h q[2];

8. u1(pi) q[1];

9. u1(pi/2) q[2];

10. barrier q[0],q[1],q[2];

11. h q[0];

12. cu1(-pi/2) q[1],q[0];

13. cu1(-pi/4) q[2],q[0];

14. h q[1];

15. cu1(-pi/2) q[2],q[1];

16. h q[2];

17. swap q[0],q[2];

18. measure q[0] -> c[2];

19. measure q[1] -> c[1];

20. measure q[2] -> c[0];

The output:

23

Solutions:

5.1 Since the remainder 𝑟 ≠ 0, 𝑐 = 𝑥𝑑 + 𝑟, where xd is a multiple of d. From this it follows that 𝑟 = 𝑐 −

𝑥𝑑. Let 𝑏1 = gcd (𝑐, 𝑑) and let 𝑏2 = gcd (𝑑, 𝑟). Then, on the one hand, 𝑏1|𝑐 and 𝑏1|𝑑, and also

𝑏1|𝑥𝑑. With this, we have that 𝑏1|𝑐 − 𝑥𝑑 and thus 𝑏1|𝑟. Thus, 𝑏1|𝑏2. On the other hand, 𝑏2|𝑑 and

𝑏2|𝑟. Hence, 𝑏2|𝑥𝑑, from which it follows that 𝑏2|𝑥𝑑 + 𝑟 with 𝑥𝑑 + 𝑟 = 𝑐. Thus, 𝑏2|𝑏1. Therefore it

must hold that 𝑏1 = 𝑏2.

5.2 Let

𝑌𝑖 =
𝑌

𝑦𝑖

Since gcd(𝑦𝑖 , 𝑦𝑗) = 1 for each 𝑖 ≠ 𝑗, it follows that gcd(𝑌𝑖 , 𝑦𝑖) = 1 as well. By Bézout’s identity there

exist two integers 𝐾𝑖 and 𝑘𝑖 such that 𝐾𝑖𝑌𝑖 + 𝑘𝑖𝑦𝑖 = gcd(𝑌𝑖 , 𝑦𝑖) = 1 . Then a solution can be

constructed as follows:

𝑧 = ∑𝑐𝑖𝐾𝑖𝑌𝑖

𝑛

𝑖=1

 Each congruence relation 𝑖 is then represented as

𝑧 = 𝑐𝑖𝐾𝑖𝑌𝑖 = 𝑐𝑖(1 − 𝑘𝑖𝑦𝑖) = 𝑐𝑖(𝑚𝑜𝑑 𝑦𝑖)

 Moreover, any two solutions are equal modulo Y. To prove that let 𝑧1 and 𝑧2 be two solutions to the

given system of equations. Since 𝑦1, 𝑦2, ⋯ , 𝑦𝑛 are pairwise coprime, it follows that 𝑦1|(𝑧1 − 𝑧2) ,

𝑦2|(𝑧1 − 𝑧2), … 𝑦𝑛|(𝑧1 − 𝑧2). Thus, 𝑦1𝑦2 ⋯𝑦𝑛|(𝑧1 − 𝑧2), or, equivalently

𝑧1 = 𝑧2(𝑚𝑜𝑑 𝑦1𝑦2 ⋯𝑦𝑛)

5.3 By the definition of binomial coefficients

(
𝑝
𝑘
) =

𝑝!

𝑘! (𝑝 − 𝑘)!
=

𝑝(𝑝 − 1)⋯ (𝑝 − 𝑘 + 1)(𝑝 − 𝑘)!

𝑘! (𝑝 − 𝑘)!
=

𝑝(𝑝 − 1)⋯ (𝑝 − 𝑘 + 1)

𝑘!

As binomial coefficients represent integers,
𝑝(𝑝−1)⋯(𝑝−𝑘+1)

𝑘!
 is an integer. From the above equation it

can be verified that (
𝑝
𝑘
) is a multiple of p. Hence, what must be shown is that

(𝑝−1)⋯(𝑝−𝑘+1)

𝑘!
 is an

integer. To that end we use Euclid’s lemma. Euclid’s lemma states that if a prime n divides the

product ab, where both a and b are integers, then n must divide at least one of them. Since
𝑝(𝑝−1)⋯(𝑝−𝑘+1)

𝑘!
 is an integer, it follows that k! divides 𝑝(𝑝 − 1)⋯(𝑝 − 𝑘 + 1). Moreover, since k!

does not divide p because p is prime, then by Euclid’s lemma, k! must divide (𝑝 − 1)⋯ (𝑝 − 𝑘 + 1)

and so
(𝑝−1)⋯(𝑝−𝑘+1)

𝑘!
 is an integer. Therefore, p divides (

𝑝
𝑘
).

24

5.4 This proof is due to James Ivory (“Demonstration of a theorem respecting prime numbers”, New

Series of the Mathematical Depository, 1(2): 6-8, 1806). Let a be an integer and p be prime that does

not divide a. The list of the first p-1 positive multiples of a is

𝑎, 2𝑎, 3𝑎,⋯ , (𝑝 − 1)𝑎

By reducing each element modulo p, a new list is obtained that consists of a permutation of the

integers 1, 2, 3,⋯ , 𝑝 − 1. Therefore, multiplying the elements

𝑎 ⋅ 2𝑎 ⋅ 3𝑎 ⋯ (𝑝 − 1)𝑎 = 1 ⋅ 2 ⋅ 3⋯(𝑝 − 1)(𝑚𝑜𝑑 𝑝)

 This corresponds to

(𝑝 − 1)! 𝑎𝑝−1 = (𝑝 − 1)! (𝑚𝑜𝑑 𝑝)

 and further to

𝑎𝑝−1 = 1(𝑚𝑜𝑑 𝑝)

 Now let a be any integer and p be a prime. If 𝑝|𝑎 then 𝑎𝑝 = 𝑎(𝑚𝑜𝑑 𝑝) = 0. If p does not divide a

then multiplying the above equation by a

𝑎 ⋅ 𝑎𝑝−1 = 𝑎(𝑚𝑜𝑑 𝑝)

 gives the required result 𝑎𝑝 = 𝑎(𝑚𝑜𝑑 𝑝).

5.5 Consider the multiplicative group modulo 𝑛: ℤ/𝑛ℤ. Every element in this group has a unique inverse.

Let the elements of this group be denoted as 𝑘1, 𝑘2,⋯ , 𝑘𝜙(𝑛). Then for 𝑎 ∈ ℤ/𝑛ℤ the elements

𝑎𝑘1, 𝑎𝑘2, ⋯ , 𝑎𝑘𝜙(𝑛) are also element of ℤ/𝑛ℤ. In analogy to the proof of Fermat’s little theorem,

multiplying the elements 𝑘𝑖 corresponds then to

𝑘1 ⋅ 𝑘2 ⋯𝑘𝜙(𝑛) = 𝑎𝑘1 ⋅ 𝑎𝑘2 ⋯𝑎𝑘 = 𝑎𝜙(𝑛)𝑘1 ⋅ 𝑘2 ⋯𝑘𝜙(𝑛)

 Cancelling equal terms leads to 𝑎𝜙(𝑛) = 1(𝑚𝑜𝑑 𝑛).

5.6 The following proof has been adapted from the proof given in “Continued Fractions, Pell's equation,

and other applications" by Jeremy Booher and holds for any rational fraction, not only
𝑖

2𝑛.

Assume
𝑖

2𝑛 is not a convergent of the continued fraction of
𝑖

2𝑛. Then r can be picked to lie between the

denominators of two convergents
𝑝𝑛

𝑞𝑛
 and

𝑝𝑛+1

𝑞𝑛+1
 of

𝑖

2𝑛, that is, 𝑞𝑛 < 𝑟 < 𝑞𝑛+1. Suppose

|𝑧 − 𝑟
𝑖

2𝑛| ≤ |𝑝𝑛 − 𝑞𝑛

𝑖

2𝑛| (1)

 The determinant of the matrix in the following equation

(
𝑝𝑛 𝑝𝑛+1

𝑞𝑛 𝑞𝑛+1
) (

𝑢
𝑣
) = (

𝑧
𝑟
)

25

is 1 or -1 based on the difference between two successive convergents, which is given by
𝑝𝑛+1

𝑞𝑛+1
−

𝑝𝑛

𝑞𝑛
=

(−1)𝑛

𝑞𝑛𝑞𝑛+1

 Then for the system of equations

𝑧 = 𝑢𝑝𝑛 + 𝑣𝑝𝑛+1 (2)

𝑟 = 𝑢𝑞𝑛 + 𝑣𝑞𝑛+1

holds that 𝑢𝑣 ≤ 0. u and v cannot be both positive or both negative beause this would imply that

|𝑟| > |𝑞𝑛+1| which contradicts our assumption that 𝑞𝑛 < 𝑟 < 𝑞𝑛+1.

With (2) we have

|𝑧 − 𝑟
𝑖

2𝑛| = |(𝑢𝑝𝑛 + 𝑣𝑝𝑛+1) − (𝑢𝑞𝑛 + 𝑣𝑞𝑛+1)
𝑖

2𝑛| = |𝑢 (𝑝𝑛 − 𝑞𝑛

𝑖

2𝑛
) + 𝑣 (𝑝𝑛+1 − 𝑞𝑛+1

𝑖

2𝑛
)|

Since even convergents are increasing and odd convergents are decreasing with
𝑖

2𝑛 lying in between

them, and given that 𝑢𝑣 ≤ 0, it must be that either (1) 𝑢 (𝑝𝑛 − 𝑞𝑛
𝑖

2𝑛) and 𝑣 (𝑝𝑛+1 − 𝑞𝑛+1
𝑖

2𝑛) have

the same sign, or (2) one of them is zero. Therefore,

|𝑧 − 𝑟
𝑖

2𝑛| = |𝑢 (𝑝𝑛 − 𝑞𝑛

𝑖

2𝑛
)| + |𝑣 (𝑝𝑛+1 − 𝑞𝑛+1

𝑖

2𝑛
)|

For

|𝑧 − 𝑟
𝑖

2𝑛| < |𝑝𝑛 − 𝑞𝑛

𝑖

2𝑛|

to be true, either (1) |𝑢| = 1 and 𝑣 = 0, or (2) 𝑢 = 0. Assuming (1) is the case, then
𝑧

𝑟
=

𝑝𝑛

𝑞𝑛
 and is

thus a convergent of
𝑖

2𝑛. Assuming (2) is the case, then |𝑟| = |𝑣𝑞𝑛+1|, which contradicts our

assumption that 𝑟 < 𝑞𝑛+1.

As opposed to equation (1) suppose that

|𝑧 − 𝑟
𝑖

2𝑛| ≥ |𝑝𝑛 − 𝑞𝑛

𝑖

2𝑛|

 Then

|𝑝𝑛 − 𝑞𝑛

𝑖

2𝑛| <
1

2𝑟

 From this it follows that

|
𝑧

𝑟
−

𝑝𝑛

𝑞𝑛
| ≤ |

𝑧

𝑟
−

𝑖

2𝑛| + |
𝑝𝑛

𝑞𝑛
−

𝑖

2𝑛| <
1

2𝑟2
+

1

𝑞𝑛𝑞𝑛+1
≤

1

2𝑟𝑞𝑛
+

1

2𝑞𝑛𝑟
=

1

𝑟𝑞𝑛
 (3)

 However

|
𝑧

𝑟
−

𝑝𝑛

𝑞𝑛
| = |

𝑧𝑞𝑛 − 𝑟𝑝𝑛

𝑟𝑞𝑛
| (4)

Since due to (3)

26

|𝑧𝑞𝑛 − 𝑟𝑝𝑛| ≤ 1

and because we assumed that z and r are positive integers and therefore the nominator in (4) has to be

an integer, we have
|𝑧𝑞𝑛 − 𝑟𝑝𝑛| = 1

which implies that
𝑧

𝑟
 is a convergent of

𝑖

2𝑛.

5.7

|1 − 𝑒𝑖θ|
2

= (1 − 𝑒𝑖𝜃)(1 − 𝑒−𝑖𝜃) = 1 − 𝑒−𝑖𝜃 − 𝑒𝑖𝜃 + 1 = 2 − (cos 𝜃 − 𝑖 sin 𝜃) − (cos 𝜃 + 𝑖 sin 𝜃)

= 2 − 2 cos 𝜃

 Let 𝛿 =
𝜃

2
. Then by trigonometric identity formula for double angles cos(2𝜃) = 1 − 2 sin2 𝜃

2
 we

obtain

2 − 2 cos(2𝛿) = 2 − 2(1 − 2 sin2 𝛿) = 4 sin2 𝛿 = 4 sin2
𝜃

2

27

Solutions to exercises in chapter 6:

6.1 Let |𝑥0⟩ be the only solution of a given search problem. Then, recalling that the inner product

⟨𝑥|𝑥⟩ = 1, we have

𝑂|𝑥0⟩ = (𝐼 − 2|𝑥0⟩⟨𝑥0|)|𝑥0⟩ = 𝐼|𝑥0⟩ − 2|𝑥0⟩⟨𝑥0|𝑥0⟩ = |𝑥0⟩ − 2|𝑥0⟩ = −|𝑥0⟩

6.2 For |𝑥0⟩ = |2⟩ = |10⟩ the matrix has dimensions 4x4 and can be derived as follows:

[

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

] − 2 [

0
0
1
0

] [0 0 1 0] = [

1 0
0 1

 0 0
 0 0

0 0
0 0

−1 0
0 1

]

6.3 First, derive 𝑈 = 2|𝜙1⟩⟨𝜙1| − 𝐼

𝑈 = 2

[

√

𝑁 − 𝑆

𝑁

√
𝑆

𝑁]

[√
𝑁 − 𝑆

𝑁
√

𝑆

𝑁
] − [

1 0
0 1

] =

[

 𝑁 − 2𝑆

𝑁

2√𝑆(𝑁 − 𝑆)

𝑁

2√𝑆(𝑁 − 𝑆)

𝑁

2𝑆 − 𝑁

𝑁]

Then applying U to |𝜙2⟩ we obtain |𝜙3⟩

𝑈

[

√

𝑁 − 𝑆

𝑁

√
𝑆

𝑁]

=

[

√

𝑁 − 𝑆

𝑁

𝑁 − 4𝑆

𝑁

√
𝑆

𝑁

3𝑁 − 4𝑆

𝑁]

Thus U has reflected vector |𝜙2⟩ about |𝜙1⟩ as shown in Fig. 6.7.

6.4 The matrix of G is

𝐺 = [
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

]

From the state |𝜙1⟩ we have that sin
𝜃

2
= √

𝑆

𝑁
 and cos

𝜃

2
= √

𝑁−𝑆

𝑁
. From the state |𝜙3⟩ we have that

sin
3𝜃

2
=

3𝑁−4𝑆

𝑁
√

𝑆

𝑁
 while cos

3𝜃

2
=

𝑁−4𝑆

𝑁
√

𝑁−𝑆

𝑁
. The elements of Grovers operator can then be obtained

from the following triginometric identities

28

sin𝜃 = sin (
3𝜃

2
−

𝜃

2
) = sin

3𝜃

2
cos

𝜃

2
− cos

3𝜃

2
sin

𝜃

2
=

2√𝑆(𝑁 − 𝑆)

𝑁

cos 𝜃 = cos (
3𝜃

2
−

𝜃

2
) = cos

3𝜃

2
cos

𝜃

2
+ sin

3𝜃

2
sin

𝜃

2
=

𝑁 − 2𝑆

𝑁

With the above the mtrix has the form

𝐺 =

[

 𝑁 − 2𝑆

𝑁
−

2√𝑆(𝑁 − 𝑆)

𝑁

2√𝑆(𝑁 − 𝑆)

𝑁

𝑁 − 2𝑆

𝑁]

6.5 We need to solve the equation

𝐺|𝜓⟩ = 𝜆|𝜓⟩

where |𝜓⟩ is an eigenvector and 𝜆 is its corresponding eigenvalue. To that end we find the characteristic

equation

|𝐺 − 𝜆𝐼| = 0

to be

||

[

 𝑁 − 2𝑆

𝑁
−

2√𝑆(𝑁 − 𝑆)

𝑁

2√𝑆(𝑁 − 𝑆)

𝑁

𝑁 − 2𝑆

𝑁]

− [
𝜆 0
0 𝜆

]|| = ||

[

 𝑁 − 2𝑆

𝑁
− 𝜆 −

2√𝑆(𝑁 − 𝑆)

𝑁

2√𝑆(𝑁 − 𝑆)

𝑁

𝑁 − 2𝑆

𝑁
− 𝜆]

||

= (
𝑁 − 2𝑆

𝑁
− 𝜆)

2

+ (
2√𝑆(𝑁 − 𝑆)

𝑁
)

2

= 𝜆2 −
2𝑁 − 4𝑆

𝑁
𝜆 + 1 = 0

The two eigenvalues are therefore (the complex value is due to the fact that 𝑁 ≤ 𝑆)

𝜆1 =
𝑁 − 2𝑆 + 2𝑖√𝑆(𝑁 − 𝑆)

𝑁

and

𝜆2 =
𝑁 − 2𝑆 − 2𝑖√𝑆(𝑁 − 𝑆)

𝑁

The corresponding eigenvectors are calculated as follows. For 𝜆1

[

 𝑁 − 2𝑆

𝑁
− 𝜆1 −

2√𝑆(𝑁 − 𝑆)

𝑁

2√𝑆(𝑁 − 𝑆)

𝑁

𝑁 − 2𝑆

𝑁
− 𝜆1]

|𝜓1⟩ =

[

 −

2𝑖√𝑆(𝑁 − 𝑆)

𝑁
−

2√𝑆(𝑁 − 𝑆)

𝑁

2√𝑆(𝑁 − 𝑆)

𝑁
−

2𝑖√𝑆(𝑁 − 𝑆)

𝑁]

[
𝜓1,1

𝜓1,2
] = 0

and hence 𝜓1,1 = 𝑖𝜓1,2. Therefore the eigenvector is
1

√2
[
𝑖
1
]. For 𝜆2

29

[

 𝑁 − 2𝑆

𝑁
− 𝜆2 −

2√𝑆(𝑁 − 𝑆)

𝑁

2√𝑆(𝑁 − 𝑆)

𝑁

𝑁 − 2𝑆

𝑁
− 𝜆2]

|𝜓1⟩ =

[

 2𝑖√𝑆(𝑁 − 𝑆)

𝑁
−

2√𝑆(𝑁 − 𝑆)

𝑁

2√𝑆(𝑁 − 𝑆)

𝑁

2𝑖√𝑆(𝑁 − 𝑆)

𝑁]

[
𝜓1,1

𝜓1,2
] = 0

and hence 𝜓1,1 =
1

𝑖
𝜓1,2. This corresponds to the eigenvector

1

√2
[
−𝑖
1

].

