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Biomolecular and quantum 
algorithms for the dominating set 
problem in arbitrary networks
Renata Wong 1*, Weng‑Long Chang 2*, Wen‑Yu Chung 2* & Athanasios V. Vasilakos 3*

A dominating set of a graph G = (V , E) is a subset U of its vertices V, such that any vertex of G is either 
in U, or has a neighbor in U. The dominating‑set problem is to find a minimum dominating set in G. 
Dominating sets are of critical importance for various types of networks/graphs, and find therefore 
potential applications in many fields. Particularly, in the area of communication, dominating sets are 
prominently used in the efficient organization of large‑scale wireless ad hoc and sensor networks. 
However, the dominating set problem is also a hard optimization problem and thus currently is not 
efficiently solvable on classical computers. Here, we propose a biomolecular and a quantum algorithm 
for this problem, where the quantum algorithm provides a quadratic speedup over any classical 
algorithm. We show that the dominating set problem can be solved in O(2n/2) queries by our proposed 
quantum algorithm, where n is the number of vertices in G. We also demonstrate that our quantum 
algorithm is the best known procedure to date for this problem. We confirm the correctness of our 
algorithm by executing it on IBM Quantum’s qasm simulator and the Brooklyn superconducting 
quantum device. And lastly, we show that molecular solutions obtained from solving the dominating 
set problem are represented in terms of a unit vector in a finite‑dimensional Hilbert space.

For a function H : a|0 ≤ a ≤ 2n − 1 → b|0 ≤ b ≤ 2m − 1 , the r-element distinctness problem is to find r-distinct 
elements a1, a2, . . . , ar ∈ {a|0 ≤ a ≤ 2n − 1} such that H(a1) = H(a2) = · · · = H(ar)

1. The r-element distinct-
ness problem was later extended by Childs and  Eisenberg2 to solve the much more general problem of finding a 
subset of size r that satisfies any given property. The dominating set problem can be regarded as the problem of 
finding a subset U of vertices of size r that satisfies U to be a minimum-size dominating set in G.

In 2007,  Ambainis3 proposed an O(22n/3)-query quantum walk algorithm for 2-element distinctness, and, 
more generally, an O(2nr/(r+1))-query quantum walk algorithm for finding r equal numbers. The lower bound 
of any quantum algorithm for solving any NP-complete problem is �(2n/2) , where n is the input size (number 
of bits) of that  problem4. This implies that a quantum algorithm for solving any NP-complete problem is optimal 
if its upper bound is O(2n/2).

In this work, we propose a quantum algorithm that provides a quadratic speedup over any classical algorithm. 
While solving NP-complete problems such as the dominating set problem classically, one often employs heuris-
tics. Heuristics are known for finding approximate or even optimal solutions given certain restrictive assumptions 
about the structure of the problem. This is for instance the case with a greedy leaf removal-based  procedure5, 
which can achieve optimal solution if the underlying graph is sufficiently small or sparse. Such algorithms can 
achieve even linear asymptotic running times, e.g. Chebolu et al.6, do so however for a narrow subset of the given 
problem, such as sparse graphs only. A logarithmic running time O(log d) can be obtained for graphs of maximum 
degree d by the greedy approximation  algorithm7. There exist also exact classical algorithms for the problem 
that run in exponential time albeit slightly less than O(n2n) , such as O(1.5048n) time algorithm discovered by 
van Rooij et al.8. Our claim of quadratic speedup over classical algorithms does not apply to classical heuristics. 
For more details the reader is advised to consult e.g.9. Our quantum algorithm is designed to give a quadratic 
speedup for any kind of graph structure without restrictions.

In this work, we also improve on the algorithm in Chang and  Guo10 by proposing a new solution space con-
struction and extending it to accommodate various methods of bit encoding using DNA. And lastly, we show 
that the proposed quantum algorithm is the best known to date.

OPEN

1Physics Division, National Center for Theoretical Sciences, National Taiwan University, Taipei 10617, 
Taiwan. 2Department of Computer Science and Information Engineering, National Kaohsiung University of Science 
and Technology, Kaohsiung 807618, Taiwan. 3Center for AI Research (CAIR), University of Agder (UiA), Grimstad, 
Norway. *email: renata.wong@phys.ncts.ntu.edu.tw; changwl@cc.kuas.edu.tw; wychung@nkust.edu.tw; 
thanos.vasilakos@uia.no

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-30600-4&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2023) 13:4205  | https://doi.org/10.1038/s41598-023-30600-4

www.nature.com/scientificreports/

Let a network be represented by a graph G = (V ,E) where V is the set of vertices with |V | = n and E is the 
set of edges with |E| = z . A dominating set of G is a subset U ⊆ V  such that for all v ∈ V − U  there exists a 
u ∈ U  such that (v, u) ∈ E . The dominating-set problem is to find a minimum-size dominating set in G. It is is 
a NP-complete problem. Figure 1 shows a graph with V = {v1, v2, v3} and E = {(v1, v2), (v1, v3)} . The minimum 
dominating set for this graph is {v1}.

Dominating sets are prominently used in the efficient organization of large-scale wireless ad hoc and sensor 
networks. Large networks usually require a certain structural organization in order for them to operate efficiently. 
The most prominent of such structures are based on dominating and independent  sets11. An example of efficient 
allocation of resources in a network are cluster-based control structures. This type of structures allows one to 
view the network hierarchically, which reduces the complexity of the network. Clustering involves grouping 
nodes into units that are controlled by one designated node. In many approaches, these control nodes form 
an independent set. On the other hand, dominating sets play a crucial role in alleviating the broadcast storm 
 problem12. In wireless sensor networks, dominating sets help to achieve energy conservation in sensors thereby 
prolonging the lifetime of such networks. An important way in energy conservation is the application of the so-
called sleep-wake scheduling, where data gathering and sensing tasks are allocated to a dominating set of awake 
sensors while the other nodes are in a sleep  mode13.

In general, dominating sets are crucial in efficient control, tracking, or detection of the behavior of the con-
stituent nodes of a  network14. The present paper focuses on the issue of dominating sets and how to find them, 
including the minimum dominating sets, in arbitrary graphs/networks. For a quantum algorithm solving the 
independent set problem in networking, the reader is referred to Chang et al.15

The rest of the article is organized as follows: in the next section we provide the motivation for the pre-
sent manuscript and summarize our main results. Then, we introduce the relevant biomolecular and quantum 
operations. After that, we derive our biomolecular algorithm and our quantum algorithm for the dominating set 
problem and show how the quantum algorithm relates to the biomolecular algorithm. Complexity assessment 
and experimental validation of the quantum algorithm are provided in the subsequent sections.

Motivation and main results
As stated in the Introduction, Bennett et al.4 have shown that the quantum lower bound for solving any NP-
complete problem is �(2n/2) , where n is the input size. This implies that a quantum algorithm for solving any 
NP-complete problem is optimal if its upper bound is O(2n/2) . The motivation for the present work was to design 
an optimal quantum algorithm for solving an instance of the dominating-set problem in a graph G.

Our main contributions in this paper are as follows:

• We show that the dominating-set problem for a graph G with n vertices and z edges can be solved in O(2n/2) 
queries.

• We demonstrate that the proposed quantum algorithm is optimal.
• We validate the proposed algorithm for the case of a graph with three vertices and two edges by executing it 

on the IBM qasm simulator and the Brooklyn backend (a 65-qubit system).
• We show that molecular solutions obtained from solving the dominating set problem are represented in terms 

of a unit vector in a finite-dimensional Hilbert space.

Introduction to biomolecular and quantum operations
Biomolecular operations. In this section we introduce the biomolecular and quantum operations that are 
relevant for understanding our biomolecular and quantum algorithms. The biomolecular operations employed 
in this paper are introduced  in10,16–18, utilized in e.g.15,19–21 , and briefly presented below. In the following it is 
assumed that tubes X = {xnxn−1 . . . x1|xd ∈ {0, 1}, 1 ≤ d ≤ n} , and that a superscript of 0 or 1 indicates that the 
superscripted bit holds the value 0 or 1, respectively. 

Def. 1 Given a tube X and a DNA strand xj , the operation Append-Tail appends xj onto the end of every ele-
ment in X. Formally: AppendTail(X, xj) = {xnxn−1 . . . x1xj} . This is achieved by means of denaturation and 
annealing.

Def. 2 Given m  tubes  X1, . . . ,Xm  ,  the  Merge  operat ion unif ies  their  content ,  i .e . , 
Merge(X1, . . . ,Xm) = X1 ∪ . . . ∪ Xm . This is achieved by pouring the contents of the tubes into a single tube.

Def. 3 Given a tube X, the operation Amplify(X, {Xi}) generates a number of identical copies Xi of X and then 
discards X. This is achieved by polymerase chain reaction.

Def. 4 Given a tube X and a strand xj , if xj = 1 (this can be indicated with x1j  ) then the Extract operation 
creates two new tubes +(X,X1

j ) = {xn . . . x1j . . . x1} and −(X,X1
j ) = {xn . . . x0j . . . x1} . This is achieved by 

affinity chromatography.

Figure 1.  Example graph with V = {v1, v2, v3} and E = {(v1, v2), (v1, v3)} . The minimum dominating set is {v1}
.
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Def. 5 The operation Discard(X) is achieved by pouring out the content of X.
Def. 6 Given a tube X, the operation Detect(X) returns a True if X  = ∅ , i.e., the tube is not empty. Otherwise, 

it returns a False.
Def. 7 Given a tube X, the bio-molecular operation Read(X) describes any element in X. Even if X includes 

many different elements, this operation can give an explicit description of exactly one of them.

Quantum operations. A qubit |β� = l1|0� + l2|1� =
[

l1 l2
]T is defined as a linear combination of two 

computational basis vectors |0� and |1� of the two-dimensional complex Hilbert space, where |0� =
[

1 0
]T 

and |1� =
[

0 1
]T , and the weighted factors l1 and l2 ∈ C are the so-called probability amplitudes that satisfy 

|l1|2 + |l2|2 = 1 . A collection of n qubits is called a quantum register of size n. The state of a quantum register 
|ψ� is mathematically represented by the tensor product |ψ� =

⊗1
d=n |γd� . The time evolution of a quantum 

state is modeled by unitary operators, which are often referred to as quantum gates. A quantum gate can thus 
be regarded as an elementary quantum-computing device that completes a fixed unitary operation on selected 
qubits during a fixed period of time.

A quantum algorithm is a process consisting in the following steps: 

a. Initialize the quantum system in a desired state |ψ�
b. Sequentially apply quantum gates to the entire system or a subsystem thereof to compute a desired problem
c. Measure the resulting quantum state of the system or a subsystem thereof in order to obtain a desired out-

come with a certain, specified probability

Quantum gates can be understood in analogy to classical logic gates. Some quantum gates have in fact their cor-
responding classical gates. However, as quantum computing is grounded in the principles of quantum mechanics, 
certain quantum gates, such as the Hadamard-Walsh gate, which sets a given quantum state into a superposition, 
do not have their classical counterparts.

For the purpose of this work, we introduce the following quantum gates:

• The NOT gate, often referred to as X gate, flips the value of a qubit from 0 to 1 and vice versa. It can therefore 
be understood as the operation of negation.

• The above mentioned Hadamard-Walsh gate, usually abbreviated as H
• The CNOT (controlled-NOT) gate is a two-qubit gate that flips the second qubit (target qubit) if and only if 

the first qubit (control qubit) is equal to 1.
• The Toffoli gate, often referred to as CCNOT, as an abbreviation for controlled-controlled NOT gate. This 

gate has two control qubits and a single target qubit. If both control qubits are in the state 1, the bit value of 
the target qubit will be flipped.

Figure 2 shows the conventional graphical representation for these three gates, which often are also referred to 
as X, CX, and CCX.

Quantum entanglement is achieved for quantum systems of two or more qubits. The simplest example of 
this is a two-qubit system with a Hadamard and a CNOT gate. The matrix elements of the Hadamard gate H are 
H1,1 = 1/

√
2,H1,2 = 1/

√
2,H2,1 = 1/

√
2 and H2,2 = −1/

√
2 . For a general input |β� , it produces the following 

quantum state vector

It follows that H|0� = (|0� + |1�)/
√
2 = |+� and H|1� = (|0� − |1�)/

√
2 = |−� . Applied to a quantum register 

of n qubits initialized to |0� the gate gives

For more details on quantum gates the reader is referred  to22.

|φ� = H|β� =
l1 + l2√

2
|0� +

l1 − l2√
2

|1�

|δ� = H⊗n|0⊗n� =
l√
2

2n−1
∑

i=0

|i�

Figure 2.  (a) NOT , (b) CNOT, (c) CCNOT. A bar indicates negation. A ⊕ indicates the exclusive logic OR 
operation.
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Solving the dominating set problem
In this section, we describe, step by step, our biomolecular algorithm for the dominating set problem. After each 
step we show how the corresponding part can be implemented using quantum circuits.

Generating dominating set candidate space. In the first step of the algorithm, the dominating set 
candidate space is created which consists of 2n candidate dominating sets, where n is the size of the problem, i.e. 
the number of vertices in graph G. The dominating set space consists of all possible sets of vertices, which may 
or may not be dominating sets.

A binary string xn, xn−1, . . . , x1 of n bits is used to represent each possible dominating set in G, where 
xi ∈ {0, 1} and 1 ≤ i ≤ n . xi encodes the i-th vertex in G. Suppose that U is a dominating set in G. If the i-th 
vertex is in U, then xi is set to 1. Otherwise, it is set to 0. By doing this, all of the possible dominating sets in G 
are transformed into an ensemble of all binary numbers of n bits.

Given that the graph in Fig. 1 contains three vertices, a binary number of three bits in length will encode 
each of the 23 dominating set candidates. Namely x03x

0
2x

0
1(000) , x

0
3x

0
2x

1
1(001) through x13x

1
2x

1
1(111) , encode the 

8 candidates: ∅ , {v1} , {v2} , {v2, v1} , {v3} , {v3, v1} , {v3, v2} and {v3, v2, v1} . Not every of those candidates however 
corresponds to a legal dominating-set.

A biomolecular procedure that constructs such a space is shown in Fig. 3. A lab setting for this procedure 
involves three empty tubes T0 , T1 and T2 . Operation Append_Tail appends a segment encoding bit xn with value 
either 1 or 0 onto the end of all strands in tubes T1 and T2 , respectively. Operation Merge then combines the 
contents of T1 and T2 into a new tube T0 . Next, in each step for d = n− 1 down to 1, two copies T1 and T2 of T0 
are generated, and T0 = ∅ . Then, upon each execution of amplification, a strand encoding x1d ( x0d ) is appended 
to the end of all strands in T1 ( T2 ). These two tubes are then emptied after being merged into T0 . The procedure 
terminates with T0 = {xn . . . x2x1|xd ∈ {0, 1}, 1 ≤ d ≤ n.

For the quantum case, let the initial quantum state vector be |θ0� = |1� ⊗ (
⊗1

i=n |x0i �) . The solution space with 
2n elements is generated by applying the Hadamard-Welsh gate to the n qubits in the state 

⊗1
i=n |x0i � , as shown in 

(1). The first qubit |1� will be used for amplitude amplification in later stages of the algorithm. The Hadamard gate 
acting on this qubit gives H|ket1 = |−� , which is used to mark the answers among 2n states in Grover’s oracle.

In the quantum state vector |θ1� , state |0� is used to encode a dominating set candidate with no vertices, state |1� 
is used to encode a candidate with only the vertex v1 , state |2� encodes a candidate with the vertex v2 , and so on 
with state |2n − 1� encoding a possible dominating set with n vertices.

Finding legal dominating sets. The next step in the dominating set problem is to find all valid dominat-
ing sets among all the 2n candidates. If a subset U ⊆ V  of vertices is an element of the 2n-large candidate space 
and at the same time U also satisfies that for all v ∈ V − U there is a u ∈ U for which (u, v) ∈ E , then this sub-
set is a legal dominating set. Otherwise, it is not a legal dominating set. The dominating set problem consists 
in finding a legal dominating set with the minimum number of vertices. To that end, suppose that the k-th 
edge, ek = (vi , vj) ∈ G where 1 ≤ k ≤ z and that bits xi and xj are used to encode vertices vi and vj , respectively. 
Assume further that the number of vertices adjacent to vi is yi where 1 ≤ i, yi ≤ n . Let vj(1 ≤ j ≤ n) be one of 
the adjacent vertices of vi . By logic convention, we use ∨ to represent the logic OR operation. Then, a legal domi-
nating set for any graph G can be regarded as a candidate among the 2n possible candidates that satisfies each 
formula of the form vi ∨ vj where vj are vertices adjacent to vi.

The biomolecular procedure is given in Fig. 5. The Extract operation preserves legal dominating sets while 
removing illegal ones. In each step, tube T0 will contain all of the strands with xi = 1 , while tube R will contain all 
of the strands with xi = 0 . Hence, from the definition of a dominating set, T0 encodes U where vertex vi ∈ U and 
vi /∈ V − U  , while R encodes U where vi /∈ U  and vi ∈ V − U  . If there are no other vertices adjacent to vj , then 
the Discard operation will remove the content of R, i.e. the illegal dominating sets in R. At the time the Extract 
operation is called on S and R, tube S consists of all the strands with vi = 0 and vj = 1 , while tube R consists of 

(1)|θ1� = H
⊗

H
⊗

n|1�
1

⊗

i=n

|x0i � =
1√
2n

2n−1
∑

x=0

|−�|x�

Figure 3.  Biomolecular procedure for constructing the dominating set candidate space.
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all of the strands with vi = vj = 0 . Therefore, S contains the strands that encode legal dominating sets. Next, the 
content of S is poured into T0 . After executing the inner loop for all adjacent vertices vj , T0 contains the strands 
that satisfy (vi , vj) ∈ E , where vi ∈ U  and vj ∈ V − U  , and R contains the strands that do not satisfy (vi , vj) ∈ E . 
At the end of the procedure, the remaining strands in T0 encode legal dominating sets.

In the quantum case, the operations with which all legal dominating sets can be found are as given in (2) and 
(3). I is the identity matrix, |ri,j� are n auxiliary quantum registers with ith register being of length yi + 1 , where 
yi the degree of a vertex vi , while |c� is an auxiliary quantum register of n+ 1 qubits. The auxiliary registers |ri,j� 
store the result of application of a logic OR operation to compute each clause of the form xi ∨ xj , where xi ( xj ) 
corresponds to vertex vi ( vj ). The auxiliary register |c� stores the result of computing logic AND on those dis-
junctive clauses. Logic OR and AND can be implemented using the Toffoli operator as shown in Fig. 4. Despite 
having a rather complex look, formulas (2) and (3) are quite simple in nature and can be readily followed on the 
example circuit given in Fig. 5.

Finding minimum dominating sets. The biomolecular procedure for finding the minimum dominating 
sets from the set of legal dominating sets is given in Fig. 6. The procedure considers each vertex in a given graph 
(outer loop). At iteration (0, 0) the influence of vertex v1 , encoded as x1 , on the number of 1s in tubes T0 and T1 
is computed. The Extract operation forms two different tubes, TON

1  and T0 from T0 . Hence, TON
1  has x1 = 1 with 

vertex v1 , while T0 has x1 = 0 without vertex v1 . In short, in iteration (0,0) a single 1 is recorded in TON
1  and no 

(2)|θ2� =
1

⊗

i=n+1

I

1
⊗

i=n

(

1
⊗

j=yi

OR)
⊗

I[|θ1�
1

⊗

i=n

1
⊗

j=yi

|r1i,j�|r0i,0�] =
2n−1
∑

x=0

|−�|x�
1

⊗

i=n

1
⊗

j=yi

|ri,j�|r0i,0�

(3)

|θ3� =
1

⊗

i=n+1

I

1
⊗

i=n

(

1
⊗

j=yi

I)
⊗

I

1
⊗

i=n

AND
⊗

I[|θ2�
1

⊗

i=n

|c0i �|c01�]

=
2n−1
∑

x=0

|−�|x�
1

⊗

i=n

1
⊗

j=yi

|ri,j�|r0i,0�
1

⊗

i=n

|ci�|c10�

Figure 4.  OR (a) and AND (b) operations of two Boolean variables.

Figure 5.  Biomolecular procedure for finding legal dominating sets.



6

Vol:.(1234567890)

Scientific Reports |         (2023) 13:4205  | https://doi.org/10.1038/s41598-023-30600-4

www.nature.com/scientificreports/

1s are recorded in T0 . Next, in the Merge operation the content of TON
1  is poured into T1 . With this, the influ-

ence of vertex v1 on the number of 1s equals a single 1 in T1 . Along these lines, the influence of all other vertices 
is calculated with each result i stored in tube Ti . Therefore, the procedure classifies each legal dominating set 
according to the number of 1s.

The quantum case requires further auxiliary qubits to implement the Extract and Merge operations in the 
biomolecular procedure that determines minimum dominating sets. These are qubits |zi+1,j� and |zi+1,j+1� for 
each 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ i . Each qubit |zi+1,j� and |zi+1,j+1� is initially prepared in state |0� . Following 
closely the biomolecular procedure, the first iteration, (0,0), will require a different treatment from all the other 
iterations. In the first iteration i and j are both set to zero and the implemented logic formulas are |x1� ∧ |cn� and 
|x1� ∧ |cn� , where ∧ stands for the logic AND operation. These two operations are implemented together by the 
gate sequence: CCNOT with |x1� and |cn� as controls and |z1,1� as target; NOT on |x1� ; CCNOT with qubits |x1� and 
|cn� as controls and |z1,0� as target; NOT on |x1� . With this, |z1,0� will store the information that the number of 1s is 
0, while |z1,1� will store the information that the number of 1s is 1. All other iterations except the (0,0) are executed 
on |x� and |z� registers only. The general formula for iteration (i, j), i.e. for the computation of |xi+1� ∧ |zi,j� and 
|xi+1� ∧ |zi,j� is: CCNOT with |xi+1� and |zi,j� as controls and |zi+1,j+1� as target; NOT on |xi+1� ; CCNOT with 
controls |xi+1� and |zi,j� and target |zi+1,j� ; NOT on |xi+1� . After the contribution of vertex vi+1 encoded by xi+1 to 
the number of 1s is computed in the loop iteration (i, j) in the biomolecular procedure, |zi+1,j+1� will record the 
information as to whether Ti+1 has (j + 1) 1s, and |zi+1,j� will record the information as to whether a tube Tj has 
j 1s. After completing the procedure the quantum state is given in (4).

As the described procedure is quite complex, we provide a proof of its correctness in the following Lemma.

Lemma 0.1 The Boolean circuit generated from calculating TON
j+1 , Tj and Tj+1 at the iteration (0, 0) in the molecular 

algorithm for finding minimum sized dominating sets is |cn� ∧ |x1� and |cn� ∧ |x1� . It can be implemented by the 
quantum circuit CFFV in Fig. 7. The Boolean circuit generated from the same calculations at the iteration (i, j) is 
|xi+1� ∧ |zi,j� and |xi+1� ∧ |zi,j� and it can be implemented by the quantum circuit CMO in Fig. 8.

Proof This proof is by induction. The Boolean circuit generated by implementing TON
j+1 , Tj and Tj+1 at the itera-

tion (0, 0) in the algorithm for finding minimum sized dominating sets consists of solutions (legal dominating 
sets) in tube T1 including the first vertex satisfying |cn� ∧ |x1� and the solutions in tube T0 not including the first 
vertex satisfying |cn� ∧ |x1� . After the influence of vertex v1 encoded by x1 on the number of 1s is determined in 
the iteration (0, 0), |z1,1� will record the status of tube (set) T1 that has one 1 and |z1,0� will record the status of 
tube (set) T0 that has zero 1s.

Therefore, one CCNOT gate |z01,1 ⊕ cn · x1� is applied to implement |cn� ∧ |x1� and one NOT gate is used on x1 
(x1) and another CCNOT gate |z01,0 ⊕ cn · x1� is used to implement |cn� ∧ |x1� . Next, another NOT gate is applied 
to x1 (|x1�) to restore x1 in |xn · · · x1� to its superposition state. This is to say that if |z1,1� = |1� , then |z11,1� is applied 

(4)|θ4� = |θ3�
1

⊗

i=n

0
⊗

j=1

|zi,j�

Figure 6.  Biomolecular procedure for finding minimum dominating sets.

Figure 7.  Quantum circuit for the CFFV routine.
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to indicate that the legal dominating sets in tube T1 include the first vertex and have one 1, and if |z1,0� = |1� , 
then |z11,0� is used to indicate that the legal dominating sets in tube T0 do not contain the first vertex and have no 
1s. Therefore, the quantum circuit CFFV calculates |cn� ∧ |x1� and |cn� ∧ |x1�.

The Boolean circuit generated by implementing TON
j+1 , Tj and Tj+1 at the iteration (1, 1) includes legal dominat-

ing sets in tube T2 consisting of the second vertex satisfying |x2� ∧ |z1,1� and legal dominating sets in tube T1 not 
containing the second vertex satisfying |x2� ∧ |z1,1� . After the influence of x2 on the number of 1s is determined 
at the iteration (1, 1), |z2,2� records the status of tube T2 that has two 1s and |z2,1� records the status of tube T1 that 
has one 1. Therefore, a CCNOT gate |z02,2 ⊕ x2 · z1,1� implements |x2� ∧ |z1,1� and a NOT gate on x2 ( |x2� ) and a 
CCNOT gate |z02,1 ⊕ x2 · z1,1� are applied to implement |x2� ∧ |z1,1� . Next, another NOT gate restores x2 (|x2�) in 
|xn · · · x1� to its superposition state. This indicates that if |z2,2� = |1� , then |z12,2� indicates that the legal dominating 
sets in tube T2 include the second vertex and have two 1s, and if |z2,1� = |1� , then |z12,1� indicates that the legal 
dominating sets in tube T1 do not consist of the second vertex and have one 1.

Next, when i = j = t the Boolean circuit obtained by implementing TON
j+1 , Tj and Tj+1 at the iteration (t, 

t) is |xt+1� ∧ |zt,t� and |xt+1� ∧ |zt,t� . It can be implemented by two CCNOT gates |z0t+1,t+1 ⊕ xt+1 · zt,t� and 
|z0t+1,t ⊕ xt+1 · zt,t� . Next, when i = t and j = t − 1 , the circuit generated from calculating TON

j+1 , Tj and Tj+1 
at the iteration (t, t-1) contains legal dominating sets in tube T(t−1)+1 containing the (t + 1)-th vertex satis-
fying |xt+1� ∧ |zt,t−1� and the legal dominating sets in tube Tt−1 not including the (t + 1)-th vertex satisfy-
ing |xt+1� ∧ |zt,t−1� . After the influence of xt+1 on the number of ones is established at the iteration (t, t-1), 
|zt+1,(t−1)+1� records the status of tube T(t−1)+1 that has t 1s and |zt+1,t−1� records the status of tube Tt−1 that has 
t − 1 1s. Hence, a CCNOT gate |z0t+1,(t−1)+1 ⊕ xt+1 · zt,t−1� is used to implement |xt+1� ∧ |zt,t−1� and a NOT 
gate on xt+1 (|xt+1�) and a CCNOT gate |z0t+1,t−1 ⊕ xt+1 · zt,t−1� are used to implement |xt+1� ∧ |zt,t−1� . Next, 
another NOT gate is applied to xt+1 (|xt+1�) to restore xt+1 in |xn · · · x1� to its superposition state. This is to say 
that if |zt+1,(t−1)+1� = |1� , then |z1t+1,(t−1)+1� will indicate that the legal dominating sets in tube T(t−1)+1 contain 
the (t + 1)-th vertex and have t 1s, and if |zt+1,t−1� = |1� , then |z1t+1,t−1� indicates that the legal dominating sets in 
tube Tt−1 do not contain the (t + 1)-th vertex and have t − 1 1s. Therefore, the quantum circuit CMO calculates 
|xi+1� ∧ |zi,j� and |xi+1� ∧ |zi,j�.

With the above, it is at once inferred that the Boolean circuit generated for implementing TON
j+1 , Tj and Tj+1 at 

the iteration (0, 0) calculates |cm� ∧ |x1� and |cm� ∧ |x1� and it can be implemented by the quantum circuit CFFV. 
Likewise, the circuit obtained for implementing TON

j+1 , Tj and Tj+1 at the iteration (i, j) calculates |xi+1� ∧ |zi,j� and 
|xi+1� ∧ |zi,j� and it can be implemented by the quantum circuit CMO.   �

Reading out minimum dominating sets. Having found all the minimum dominating sets for a given 
graph, they need to be output. After completing the procedure that finds minimum dominating sets, the molecu-
lar solutions that contain the corresponding strands are located in tubes T0,T1, . . . ,Tn , respectively. The detec-
tion of answers is straight forward and involves introduction of DNA material that will bind with the solutions. 
This corresponds to the following procedure:

Procedure 0.2 Procedure readout(T0, . . . ,Tn, n)
For k = 1 to n:
      If (Detect ( Tk ) == “yes”) then
            Read ( Tk ) and terminate the algorithm.
      EndIf
EndFor
EndProcedure

In quantum terms, the process is more involved. At this point, the minimum dominating sets are marked as 
such but performing a measurement may not give the desired outcome. This is because these sets are marked by 
changing global phases but the probability of measuring them may be exponentially small at 1/2n . In order to 
improve the probability of obtaining the right answer, we employ the routine of amplitude amplification. This 
routine constitutes an integral part of Grover’s algorithm and the reader is advised to consult Grover’s  work23. The 
probability of success in measuring the minimum dominating set using amplitude amplification is at least 0.5.

Summary of the algorithm. Figure 9 shows the schematic of the quantum circuit for the entire algorithm. 
Except for the initial superposition state |θ1� obtained through the Hadamard gates on the ancilla and the input 

Figure 8.  Quantum circuit for the CMO routine.
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qubits, the algorithm can be seen in terms of Grover’s search routine consisting of an oracle and a diffusion 
operation. The OR block consists of OR gates applied to the input state with ancillary qubit register |r� storing the 
outcome of each OR evaluation. Next, the AND block consists of AND gates applied to the |r� register and the |c� 
register in order to determine which subsets of a given graph are valid dominating sets. After the OR and AND 
blocks, the quantum system is in the state |θ3� . The block named COUNTING sums up the number of vertices for 
each dominating set in |θ3� and stores the result in the auxiliary register |z� . Then, the CNOT gate flips the phase 
of the ancillary qubit |−� for the dominating sets with the lowest number of vertices. After that, the three blocks 
of the oracle are run in reverse order to bring the system back to its superposition state. And lastly, the diffusion 
operator is applied to amplify the amplitude of those dominating sets selected by the oracle.

In order to establish the minimum number of vertices in a dominating set, the oracle has to be prepared to 
match the number of vertices and the algorithm is run for each oracle matrix until the minimum number of 
vertices is found. This overhead is linear in the input size n, which is the number of vertices of graph G.

Mathematical representation of molecular solutions
In Chang and  Guo10, a sticker (which is a specific DNA sequence) was used to encode each bit. The sticker-based 
model of computation was first proposed by Roweis et al.24 as an enhancement of the Adleman–Lipton  model16. 
In our paper, we allow for the dominating set candidate space to be constructed in arbitrary way, without being 
restricted to the sticker-based encoding.

The following lemma is used to demonstrate how molecular solutions can be represented in terms of a unit 
vector in a finite-dimensional Hilbert space.

Lemma 0.3 For solving the dominating set problem for any graph G with z edges and n vertices, molecular solutions 
can be represented in terms of a unit vector in a finite-dimensional Hilbert space.

Proof From the biomolecular procedure in Fig. 3 for constructing the dominating set candidate space, the 2n 
candidates encoded by 2n DNA sequences are generated, and are encoded using n Hadamard gates operating on n 
initial quantum bits that produces the new quantum state vector |θ1� in Eq. (1). This implies that the 2n candidates 
encoded by 2n DNA sequences are represented in terms of a unit vector in a finite-dimensional Hilbert space.

Next, the biomolecular procedure in Fig. 5 uses biological operations to implement logic OR and AND gates 
for deciding legal and illegal dominating sets among the 2n dominating set candidates. Because logic OR and 
AND gates can be implemented by the Toffoli operator as shown in Fig. 4, the same task is also realised by uni-
tary operators in Eqs. (2) and (3). The new quantum state vector |θ3� in Eq. (3) stores the result of determining 
legal and illegal dominating sets. This indicates that both the legal and the illegal dominating sets among the 2n 
candidates are still expressed as a unit vector in a finite-dimensional Hilbert space.

Next, the biomolecular procedure for finding the minimum dominating sets in Fig. 6 classifies the legal 
dominating sets among the 2n candidates according to the number of vertices. In light of the proof procedure 
of Lemma 0.1, each operation in every iteration in the biomolecular procedure in Fig. 6 can be implemented by 
the quantum circuit CFFV in Fig. 7 and the quantum circuit CMO in Fig. 8. The new quantum state vector |θ4� 
in Eq. (4) stores the result to classify legal choices according to the number of vertices. This implies that the legal 
dominating sets are represented in terms of a unit vector in a finite-dimensional Hilbert space.

Next, the biomolecular procedure readout(T0, . . . ,Tn, n) reads out the answer encoded by DNA strands with 
the minimum number of vertices and the answer is also read out by a measurement after the Grover operator is 
used to increase the amplitude of the answer in the quantum case. Hence, the answer encoded by DNA sequences 
is also represented by a unit vector in a finite-dimensional Hilbert space. Therefore, it is at once derived that 
for solving the dominating set problem for any graph G with z edges and n vertices, molecular solutions are 
represented in terms of a unit vector in a finite-dimensional Hilbert space.   �

Figure 9.  Circuit schematic for the entire quantum algorithm.
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Complexity assessment
The time complexity of the proposed quantum algorithm that solves the dominating set problem is O(2n/2) 
quantum gates and one measurement in the best case. In the worst case it is O(2n/2) quantum gates and n meas-
urements. The space complexity for the best and the worst case is O(n2) qubits. These results are readily obtained 
from circuit analysis.

Experimental implementation
We implement the proposed quantum algorithm for a graph with three vertices and two edges and execute it on 
the IBM qasm simulator and the Brooklyn (a 65-qubit system) backend. Figure 10 shows a circuit for the graph, 
which is also given in Fig. 1. The graph in Fig. 1 has the following dominating sets: {v1}, {v1, v2}, {v1, v3}, {v1, v2, v3} , 
where only {v1} is minimal. The proposed algorithm finds this minimum set.

Figure 10 shows the output of an execution of the circuit on the qasm simulator and the Brooklyn backend. 
The dominating set v3 = 0, v2 = 0, v1 = 1 , is obtained with a high probability of 0.939 on the simulator. This is 
consistent with the theoretical probability of observing a single marked state after the amplitude amplification 
routine as described  in23. On the other hand, the output from the backend shows a superposition state over all 
dominating set candidates. This result is expected and can be explained by considering the cumulative error 
caused by CNOT gates, which constitutes a major impact on circuit performance. The Brooklyn backend consists 
of 65 qubits and is based on IBM’s Hummingbird r2 processor. The average CNOT error rate for this backend is 
1.255e− 2 (as of March 1, 2022). Given that the circuit in Fig. 10 had to be decomposed into the native gate set 
for the backend in order to make it executable on the backend, at the point of execution it contained at least 182 
CNOT gates. (Decomposition methods may vary depending on the processor and other factors. This is a theo-
retical number based on the fact that the currently most performance-effective decomposition of the Toffoli gate 
requires 6 CNOT  gates25.) With this, the probability of obtaining the state 001 is only (1 − 0.01255)182 ≈ 1% . 
In this calculation we omitted all other possible sources of error, such as the error from single gates, the readout 
error and qubit decoherence times.

Despite quite strong limitations to what is possible to execute currently on state-of-the-art quantum devices, 
the number of available qubits and the fidelity of qubits keep increasing year by year. For instance, in November 
2022, IBM released its newest 433-qubit quantum chip Osprey, thereby improving on its previously released 
Eagle chip of 127 qubits in 2021. By 2025, IBM hopes to release their 4158+ large quantum chip Kookaburra. 
With these improvements, the feasibility of executing our quantum algorithm on actual quantum devices also 
increases. We hope to be able to demonstrate our algorithm on real world examples in the not so distant future.

Figure 10.  Above: Quantum circuit for a graph with three vertices and two edges in Fig. 1. The oracle and the 
diffusion operator are executed interchangeably two times in a row for optimal measurement output. Below: 
Result of executing the circuit on the IBM qasm simulator (left), and the Brooklyn backend (right).
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Conclusion
Dominating sets are indispensable in any large-scale network organization and scheduling. Among their many 
applications, dominating sets play an important role in efficient allocation of resources and preserving the life-
time of sensor networks. In the present article, we have shown that the dominating-set problem for an arbitrary 
quantum network represented as a graph G with n vertices and z edges can be solved with O(2n/2 ) queries and 
O(n2 ) qubits using our proposed quantum algorithm. We have furthermore demonstrated that this quantum 
algorithm is the best known to date for the dominating-set problem, thereby confirming the theoretical results 
given  in4. The correctness of the proposed quantum algorithm was confirmed by testing it on the example graph 
instance in Fig. 1 using IBM Quantum’s simulator and the Brooklyn backend, which is one of the largest state-of-
the-art systems available today. This result makes a step forward for an efficient implementation of dominating 
sets in the near-term and future quantum communications and networking architectures.

Data availability
The datasets and code used and analysed during the current study are available from the corresponding author 
on reasonable request.
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