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Quantum Speedup for Inferring the Value of
Each Bit of a Solution State in Unsorted

Databases Using a Bio-Molecular Algorithm
on IBM Quantum’s Computers

Weng-Long Chang , Wen-Yu Chung, Chun-Yuan Hsiao, Renata Wong ,
Ju-Chin Chen, Mang Feng, and Athanasios V. Vasilakos

Abstract— In this paper, we propose a bio-molecular
algorithm with O(n2) biological operations, O(2n−1) DNA
strands, O(n) tubes and the longest DNA strand, O(n), for
inferring the value of a bit from the only output satisfying
any given condition in an unsorted database with 2n items
of n bits. We show that the value of each bit of the outcome
is determined by executing our bio-molecular algorithm n
times. Then, we show how to view a bio-molecular solution
space with 2n-1 DNA strands as an eigenvector and how to
find the corresponding unitary operator and eigenvalues for
inferring the value of a bit in the output. We also show that
using an extension of the quantum phase estimation and
quantum counting algorithms computes its unitary operator
and eigenvaluesfrom bio-molecularsolution space with 2n-1

DNA strands. Next, we demonstrate that the value of each bit
of the output solution can be determined by executing the
proposed extended quantum algorithms n times. To verify
our theorem, we find the maximum-sized clique to a graph
with two vertices and one edge and the solution b that
satisfies b2 ≡ 1 (mod 15) and 1 < b < (15/2) using IBM
Quantum’s backend.
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I. MOLECULAR ALGORITHMS FOR FINDING THE SINGLE

SOLUTION AMONG 2n UNSORTED ITEMS

ACLAUSE is a formula that is of the form x1 θ1x2 . . .
xn−1θn−1 xn , where each bit xd for 1 ≢ d ≢ n is a

Boolean variable or its negation and θk ∈ {∨, ∧, ∨̄, ∧̄} for 1
≢ k ≢ n− 1. Elements in {∨, ∧, ∨̄, ∧̄} are subsequently
the logic OR, AND, NOR and NAND operations. A search
problem from [1]–[6] is to that from {x1x2 …xn−1xn|∀ xd ∈
{0, 1} for 1 ≢ d ≢ n} just an item satisfies any given condition
and we would like to find the only item (answer). A common
formulation of the search problem is to that any given oracular
function (any given condition) is

O f (x1, x2, . . . , xn−1, xn) = C1β1C2 . . . Cm−1βm−1Cm , (1)

where each C j for 1 ≢ j ≢ m is a clause or its negation
and βy ∈ {∨, ∧, ∨̄, ∧̄} for 1 ≢ y ≢ m − 1. Its domain is
{x1x2 …xn−1xn|∀xd ∈ {0, 1} for 1 ≢ d ≢ n} and its range
is {0, 1}. The search problem is to find a unique answer λ of
n bits from its domain that satisfies the condition O f (λ) = 1,
whereas for all other inputs of n bits from the same domain,
ω, for 0 ≢ ω ≢ 2n − 1 and ω �= λ, O f (ω) = 0.

A. Binary Search Trees for Representing
Problem’s Domain

We use a binary search tree in Fig. 1 to represent the
structure of the domain. In the tree, a node stands for a bit of
one element in the domain. The root of the tree is x1. The value
of the left branch of each node indicates that the value of the
corresponding bit is 0 while the value of the right branch of
each node indicates that the value of the corresponding bit is 1.
The binary search tree in Fig. 1 contains 2n subtrees and each
subtree encodes one element in the domain. For example, the
first subtree (x1)--0--(x2)--0-- …(xn−1)--0--(xn)--0-- encodes
the first element x0

1 x0
2 … x0

n−1 x0
n . The second subtree

(x1)--0--(x2)--0-- …(xn−1)--0--(xn)--1-- encodes the second
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Fig. 1. A binary search tree encodes the domain of any given oracular
function Of (x1, x2, . . . , xn−1, xn) in (1).

Fig. 2. Logical flowchart for finding the output state λ of length n bits
and satisfying Of(λ) = 1.

element x0
1 x0

2 … x0
n−1 x1

n . The last subtree (x1)--1--
(x2)--1-- …(xn−1)--1--(xn)--1-- encodes the last element
x1

1 x1
2 … x1

n−1x1
n .

B. Architecture for Computing the Value of Each Bit of
the Output State in the Problem

Fig. 2 shows the architecture for finding the value of each
bit of the solution λ with n bits that satisfies O f (λ) = 1. The
first execution of the first statement is to set the initial value
of the loop index variable d to one. Each execution of the
second statement is to judge whether there exists a solution in
{x1 x2 …xd−1 x1

d xd+1 …xn−1xn| ∀xk ∈ {0, 1} for 1 ≢ k ≢ n
and k �= d}. If there exists a solution λ satisfying O f (λ) = 1,
then each execution of the third statement will indicate that
the value of the dth bit of λ is 1. Otherwise, each execution of
the fourth statement will indicate that the value of the dth bit
of λ is 0. Next, each execution of the fifth statement increases
the loop index variable d , while each execution of the sixth
statement checks the condition of the loop and each execution
of the seventh statement terminates the logical flowchart.

C. Introduction to Bio-Molecular Operations

We will use the following bio-molecular operations cited
in [7]–[9] to construct molecular solutions for inferring the

only answer in the search problem in (1). For implementations
of the operations see Supplemental Material.

Definition 1: Given set X = {xnxn−1 . . . x2x1| ∀xd ∈ {0, 1}
for 1 ≢ d ≢ n} and a bit x j , the bio-molecular operation,
“Append-Tail”, appends x j onto the end of every element in
set X . The formal representation is written as Append-Tail
(X , x j ) = {xnxn−1 . . . x2x1 x j |∀xd ∈ {0, 1} for 1 ≢ d ≢ n
and x j ∈ {0, 1}}.

Definition 2: Given set X = {xnxn−1 . . . x2x1| ∀xd ∈ {0, 1}
for 1 ≢ d ≢ n}, the bio-molecular operation “Discard(X)”
resets X to an empty set and can be represented as “X = ∅”.

Definition 3: Given set X = {xnxn−1 . . . x2x1| ∀xd ∈ {0, 1}
for 1 ≢ d ≢ n}, the bio-molecular operation “Amplify(X ,
{Xi })” creates a number of identical copies Xi of set X , and
then discards X with the help of “Discard(X)”.

Definition 4: Given set X = {xnxn−1 … x2x1| ∀xd ∈ {0, 1}
for 1 ≢ d ≢ n} and a bit x j , the bio-molecular extract opera-
tion has two kinds of representation. The first representation is
+(X , x1

j ) = {xnxn1 … x1
j … x2 x1|∀xd ∈ {0, 1} for 1 ≢ d �=

j ≢ n} and −(X , x1
j ) = {xn xn−1 … x0

j … x2 x1|∀xd ∈ {0, 1}
for 1 ≢ d �= j ≢ n} if the value of x j is equal to one. The
second representation is +(X , x0

j ) = {xnxn−1 … x0
j … x2

x1|∀xd ∈ {0, 1} for 1 ≢ d �= j ≢ n}and −(X , x0
j ) = {xn

xn−1 … x1
j … x2 x1|∀xd ∈ {0, 1} for 1 ≢ d �= j ≢ n} if the

value of x j is equal to zero.
Definition 5: Given m sets X1 … Xm , the bio-molecular

merge operation is ∪(X1, …, Xm) = X1 ∪ …∪Xm .
Definition 6: Given set X = {xnxn−1 … x2x1| ∀xd ∈ {0, 1}

for 1 ≢ d ≢ n}, the bio-molecular operation “Detect(X)”
returns true if X is not an empty tube. Otherwise, it returns
false.

D. Molecular Algorithms for Inferring the Value of Each
Bit of the Solution Among 2n Unsorted Items

From (1), two subsets are {x1x2 …xd−1 x1
d xd+1 …xn−1xn|

∀xk ∈ {0, 1} for 1 ≢ k ≢ n and k �= d} and {x1x2 … xd−1x0
d

xd+1 … xn−1xn|∀ xk ∈ {0, 1} for 1 ≢ k ≢ n and k �= d}
and their union constitutes the domain. If the only solution of
the search problem in (1) lies in the first subset, then its dth
bit is 1. Otherwise, its dth bit is 0. We propose the following
molecular algorithms to infer the value of each bit of the single
solution in the search problem in (1). The first parameter is
an empty tube (an empty set) Y0 that is regarded as the input
tube (set). The second parameter n represents the number
of bits in its domain and the third parameter m represents
the number of clauses (conditions). The fourth parameter θk

(1 ≢ k ≢ n− 1) represents logic operations of two operands in
each clause. The fifth parameter βy (1 ≢ y ≢ m− 1) represents
logic operations of two clauses. Each tube in the procedure
Infer-the-value-of-each-bit is an empty tube that is regarded
as an auxiliary storage.

Procedure Infer-the-value-of-each-bit(Y0, n, m, θk , βy)
(1) For d = 1 to n

(1a) Bio-Molecular-Solution(Y0, n, d).
(1b) Condition(Y0, n, m, θk , βy , d).
(1c) If (detect(Y0)) then

(1d) The value of the dth bit of the solution is 1.
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(1e) Else
(1f) The value of the dth bit of the solution

is 0.
(1g) Discard(Y0).

End For
EndProcedure
The procedure Infer-the-value-of-each-bit makes use of

the following subroutines:
Procedure Bio-Molecular-Solution(Y0, n, d)
(1) For k = 1 to n

(1a) Amplify(Y0, Y1, Y2).
(1b) If (the value of k is not equal to the value of d)

Then
(1c) Append-Tail(Y1, x1

k ). (1d) Append-Tail(Y2, x0
k ).

(1e) Else
(1f) Append-Tail(Y1, x1

k ). (1g) Discard(Y2).
EndIf
(1h) Y0 = ∪(Y1, Y2).

End For
EndProcedure
Procedure Condition(Y0, n, m, θk , βy , d)
(1) For j = 1 to m

(2) For k = 1 to n − 1
(2a) If (the value of k is equal to 1) Then

(2b) Gate(Y0, x1, x2, r j,k , θk , d).
(2c) Else

(2d) Gate(Y0, r j,k−1, xk+1, r j,k , θk , d).
EndIf

End For
End For
(3) For y = 1 to m − 1

(3a) If (the value of y is equal to 1) Then
(3b) Gate(Y0, r1,n−1, r2,n−1, sy , βy , d).

(3c) Else
(3d) Gate(Y0, sy−1, ry+1,n−1, sy , βy , d).

EndIf
EndFor
(4) T5 = +(Y0, s1

m−1) and T6 = −(Y0, s1
m−1).

(5) Y0 = ∪(Y0, T5).
(6) Discard(T6).
EndProcedure
Procedure Gate(Y0, p1, p2, re, op, d).
(1) T1 = +(Y0, p1

1) and T0 = −(Y0, p1
1).

(2) T1,1 = +(T1, p1
2) and T1,0 = −(T1, p1

2).
(3) T0,1 = +(T0, p1

2) and T0,0 = −(T0, p1
2).

(4) If(op is a logic OR operation) Then
(4a) OR(Y0, T1,1, T1,0, T0,1, T0,0, p1, p2, re).

(5) Else If(op is a logic AND operation) Then
(5a) AND(Y0, T1,1, T1,0, T0,1, T0,0, p1, p2, re).

(6) Else If(op is a logic NOR operation) Then
(6a) NOR(Y0, T1,1, T1,0, T0,1, T0,0, p1, p2, re).

(7) Else If(op is a logic NAND operation) Then
(7a) NAND(Y0, T1,1, T1,0, T0,1, T0,0, p1, p2, re).

EndProcedure
The logic OR, AND, NOR and NAND operations can be

implemented using the procedure Gate(Y0, p1, p2, re, op, d).
Details on the respective implementations are given in the
Supplemental Material.

Lemma 1: Logical flowchart for finding the value of
each bit in the solution of n bits in length and satisfying
O f (x1, x2, . . . , xn−1, xn) = 1 in Fig. 2 is implemented using
the procedure Infer-the-value-of-each-bit(Y0, n, m, θk , βy),
where O f (x1, x2, . . . , xn−1, xn) is any given condition of
a search problem in (1-1) and O f : {x1x2 … xn−1xn|∀xd ∈
{0, 1} for 1 ≢ d ≢ n} → {0, 1}.

Proof : Step (1) is the main loop and the value of its
index variable d is from 1 through n. On the pth execution
of Step (1) for 2 ≢ p ≢ n, the value of d is equal to
p. Next, on the pth execution of Step (1a), the procedure
Bio-Molecular-Solution (Y0, n, d) is called to construct
{x1x2 … x p−1x1

p x p+1 … xn−1xn|∀ xk ∈ {0, 1} for k �= p
and 1 ≢ k ≢ n} that is encoded by 2n−1 DNA strands in
tube Y0. On the pth execution of Step (1b), the procedure
Condition (Y0, n, m, θk , βy , d) is called to implement
O f (x1x2 … x p−1x1

p x p+1 … xn−1xn) so that its evaluated
result with O f (x1x2 … x p−1x1

p x p+1 … xn−1xn) = 1 is stored
in tube Y0 and other evaluated results with O f (x1x2 … x p−1x1

p
x p+1 … xn−1xn) = 0 are discarded. Next, on the pth execution
of Step (1c), if a true is returned from the Detect operation,
then the value of the pth bit of the solution is 1 from the pth
execution of Step (1d). Otherwise, the value of the pth bit of
the solution is 0 from the pth execution of Step (1f). Next,
on the pth execution of Step (1g), the Discard operation is
used to reset Y0 to an empty tube. From the statements above,
it is at once inferred that the logical flowchart for finding the
value of each bit in the solution with the n bits satisfying
O f (x1, x2, …, xn−1, xn) = 1 in Fig. 2 is implemented by
using the procedure Infer-the-value-of-each-bit (Y0, n, m,
θk , βy). �
II. EXTENSION OF PHASE ESTIMATION AND QUANTUM

COUNTING TO INFER THE VALUE OF EACH

BIT OF A SOLUTION

The proposed molecular algorithm Infer-the-value-of-
each-bit (Y0, n, m, θk , βy) infers the value of each bit of
the output state that satisfies an arbitrary oracular function
O f (x1, x2, . . . , xn−1, xn) with m conditions. In this section
we demonstrate how to, step by step, implement the proposed
molecular algorithm Infer-the-value-of-each-bit (Y0, n, m,
θk , βy) for labelling solution(s) and non-solution(s) using
quantum circuits, and how to view bio-molecular solution
space with 2n−1 DNA strands as an eigenvector. We also
describe how an extension of the quantum phase estimation
algorithm and the quantum counting algorithm finds the cor-
responding unitary operator and eigenvalues. Finally, we give
a complexity assessment of the extension of phase estimation
and quantum counting routines.

A. Quantum Circuits for Implementing Molecular Circuits
for Labelling Solutions Among 2n−1 Subtrees

We use a unique computational basis vector with
2n-tuples of binary numbers to represent each element in
{x1x2 … xn−1xn|∀ xd ∈ {0, 1}, 1 ≢ d ≢ n}. The cor-
responding vector for the first element x0

1 x0
2 …x0

n−1x0
n is

(
[

1 0 · · · 0
]T

1×2n ) and so on with the corresponding vector

for the last element x1
1 x1

2 … x1
n−1x1

n being (
[

0 0 · · · 1
]T

1×2n ).
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We assume that the initial state vector (|φ0� ) is
(⊗d−1

k=1

∣∣ x0
k

〉
)⊗ (

∣∣ x1
d

〉
)⊗ (⊗n

k=d+1

∣∣ x0
k

〉
). After applying a uni-

tary operator (⊗d−1
k=1 H ) ⊗ (I2×2) ⊗ (⊗n

k=d+1 H ), in which
H is a two-dimensional Hadamard gate and I2×2 is a
two-dimensional identify operator, to the initial state vector
(|φ0� ), the following new state vector is obtained

|φ1� = 1√
2n−1

(⊗d−1
k=1 (

∣∣∣x0
k

〉

+
∣∣∣x1

k

〉
)) ⊗ (

∣∣∣ x1
d

〉
) ⊗ (⊗n

k=d+1(
∣∣∣ x0

k

〉
+

∣∣∣ x1
k

〉
)) (2)

|φ1� encodes {x1x2 … xd−1x1
d xd+1 … xn−1 xn|∀xk ∈ {0,

1} for 1 ≢ k ≢ n and k �= d} and the amplitude of each subtree
is ( 1√

2
n−1 ). Based on the molecular algorithm Bio-Molecular-

Solution (Y0, n, d), since 2n−1 DNA strands in tube Y0 encode
{x1x2 … xd−1x1

d xd+1 … xn−1xn|∀ xk ∈ {0, 1} for 1 ≢ k ≢ n
and k �= d} that correspond to the 2n−1 subtrees in the binary
search tree in Fig. 1-1, they are encoded by |φ1� .

Based on Lemma 1 through Lemma 9 (see Supplemental
Material for details), the molecular algorithm Infer-the-value-
of-each-bit uses biological operations to implement each
condition of any given oracular function O f (x1, x2, …, xn−1,
xn). We use auxiliary quantum bits |r j,k > (1 ≢ j ≢ m, 1
≢ k ≢ n− 1) to store the outcome of executing the kth logic
operation in the j th clause. We also apply auxiliary quantum
bits |sy > (1 ≢ y ≢ m− 1) to store the outcome of executing
the yth logic operation between the yth clause and the (y+
1)th clause. We assume that an auxiliary state vector |a > is
(⊗1

y=m−1|sy >)⊗ (⊗1
j=m⊗1

k=n−1 |r j,k >).
Since the state vector |φ1� encodes {x1x2 … xd−1x1

d
xd+1 … xn−1xn|∀ xk ∈ {0, 1}, 1 ≢ k ≢ n, k �= d}, items
that are solutions in |φ1� are referred to as marked states
and those that are not solutions are referred to as unmarked
states. A special gate (quantum circuit), the so-called Oracle,
is applied to label the marked and unmarked states. The Oracle
O multiplies the probability amplitude of the solution(s) by
−1 and leaves any other amplitude unchanged:

O : |φ1� |a� → (−1)O f
(
x1···xd−1x1

d xd+1···xn
)
|φ1� |a� , (3)

If O f (x1x2 … xd−1x1
d xd+1 … xn−1xn) = 1, then the

probability amplitude of the solution(s) is multiplied by −1.
The probability amplitude of the non-solution(s) is multiplied
by 1. As the quantum circuit of the Oracle is made up of
CCNOT gates, NOT gates and a CNOT gate, the Oracle is a
unitary operator.

Let N = 2n−1 and let S be the number of solution(s) in
(|φ1� ). We create two superpositions comprising uniformly
distributed computational basis states that are made up of a
set of marked states and another set of unmarked states in
(|φ1� ), respectively

|ϕ� = 1√
N − S∑

O f
(
x1···xd−1x1

d xd+1···xn
)=0

∣∣∣ x1 · · · xd−1x1
d xd+1···xn

〉
.,

(4)

|λ� = 1√
S

∑
O f

(
x1···xd−1x1

d xd+1···xn
)=1

∣∣∣ x1 · · · xd−1x1
d xd+1···xn

〉
·

(5)

Since the inner product of |ϕ� and |λ� is 0 and |ϕ� and
|λ� are unit vectors, |ϕ� and |λ� form an orthonormal basis
of a two-dimensional Hilbert space. With |ϕ� and |λ� , we
rewrite (2)

|φ1� = (

√
N − S√

N
|ϕ� +

√
S√
N

|λ� ) (6)

This is to say that in an orthonormal basis of a
two-dimensional Hilbert space that is formed by (|ϕ� ) and
(|λ� ), the initial state (|φ1� ) in (6) is represented as a
two-dimensional unit vector. The state vector |φ2� = O |φ1�
obtained by applying the Oracle to (6) can then be expressed

as |φ2� = (
√

N−S√
N

|ϕ� +(−
√

S√
N

|λ� )). The angle between |φ2�
and |ϕ� is equal to θ/2. The Oracle O is hence equivalent to
a reflection about axis (|ϕ� ).

An operator U that amplifies the probability amplitudes
of marked states while decreasing any other amplitudes is
given as

U = 2 |φ1� �φ1| − I2n×2n . (7)

(2) indicates that the state vector (|φ1� ) = ((⊗d−1
k=1 H )⊗

(I2×2)⊗ (⊗n
k=d+1 H )) ((⊗d−1

k=1

∣∣ x0
k

〉
)⊗ (

∣∣ x1
d

〉
)⊗

(⊗n
k=d+1

∣∣ x0
k

〉
)). For convenience of presentation, we assume

that Q = ((⊗d−1
k=1 H ) ⊗ (I2×2) ⊗ (⊗n

k=d+1 H )) and

(|φ0� ) = ((⊗d−1
k=1

∣∣ x0
k

〉
)⊗ (

∣∣x1
d

〉
)⊗ (⊗n

k=d+1

∣∣ x0
k

〉
)). Therefore,

(7) can be further refined to

U =2Q |φ0� �φ0| Q−QI2n×2n Q = Q(2 |φ0��φ0| − I2n×2n )Q.

(8)

Equation (8) provides the key for the realization of the
operator U . We require two Q gates and a controlled phase
shift gate P . The transformational rule of P is quite simple: it
leaves all the probability amplitudes unchanged except that
of ((⊗d−1

k=1

∣∣ x0
k

〉
)⊗ (

∣∣x1
d

〉
) ⊗ (⊗n

k=d+1

∣∣ x0
k

〉
)) whose sign is

inverted. Because Q and P are both unitary operators, U is
also unitary.

B. Determining the Eigenvalue and the Corresponding
Eigenvector of the Extension of the Grover Operator in
a Two-Dimensional Hilbert Space Spanned by Sets of
Marked and Unmarked States Among 2n−1 Subtrees
Encoded by 2n−1 DNA Strands

Given an extension of the Grover operator as G = (U)
(O), we have that |φ3� = (U)(O) (|φ1� ) = (U) (|φ2� ) =
(G)(|φ1� ), i.e.

|φ3� = (

√
N − S√

N
× (

N − 4 × S

N
) |ϕ�

+
√

S√
N

× (
3 × N − 4 × S

N
) |λ� ) (9)

The angle between |φ3� and |φ1� is θ . Basic trigonometry
provides for the projection of |φ1 > onto the axes

cos(θ/2) =
√

N − S√
N

/1 =
√

N − S√
N

,

sin(θ/2) =
√

S√
N

/1 =
√

S√
N

(10)
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|φ1� and |φ3� can be expressed as |φ1� = (cos(θ /2),
sin(θ /2)) and |φ3� = (G |φ1� ) = (cos(θ + (θ /2)), sin(θ +
(θ /2))). With this we obtain the following unitary operator,
which is an extension of the Grover operator in the basis
{|ϕ� , |λ�}

G = (

[
cos (θ) − sin (θ)
sin (θ) cos (θ)

]
2×2

)· (11)

This indicates that G acts on an orthonormal basis of
a two-dimensional Hilbert space that is formed by (|ϕ� )
and (|λ� ).

We assume that a (2 × 2) matrix G+ is the conjugate
transpose of G. From G’s characteristic equation it follows
that the two solutions (eigenvalues) are cos(θ) + √−1×
sin(θ) = e

√−1×θ and cos(θ)+ (−√−1× sin(θ)) = e−√−1×θ .
We assume that the corresponding eigenvector of G in the

basis {|ϕ� , |λ�} is | V � = (

[
p
q

]
2×1

). Therefore, G | V � =
e±√−1×θ | V � . From this we have that p× cos(θ) − q×
sin(θ) = p× (cos(θ) ±√−1× sin(θ)) and p× sin(θ) +q×
cos(θ) = q× (cos(θ) ± √−1× sin(θ)). This leads to the two

equations with the solutions |V1� = ( e
√−1×γ√

2

[√−1
1

]
2×1

) and

| V2� = ( e
√−1×γ√

2

[−√−1
1

]
2×1

), where γ is a real number.

Therefore, both | V1� and | V2� are the corresponding eigen-
vectors of G in the basis {|ϕ� , |λ�}

C. Determining the Value of a Bit of the Only Solution
Among 2n−1 Subtrees Encoded by 2n−1 DNA Strands

The extension of quantum counting and phase estimation is
used to decide the number of solutions for {x1x2 … xd−1x1

d
xd+1 … xn−1xn|∀ xk ∈ {0, 1}, 1 ≢ k ≢ n, k �= d}. In Fig. 3,
the number of the quantum bits for the upper quantum register
is t = n + p where p is the number of auxiliary quantum bits
so that the probability of measuring the solution is at least
1 − ( 1

2(2p−2) ) [3]–[6]. The circuit in Fig. 3 aims to find phase
θ , which is equivalent to finding the phase ratio pr ∈ [0, 1)
: θ = 2 ×π × pr . If pr is an integer multiple of (1/2t) that
is equivalent to a binary expansion of t bits, then the state of
the first register is read out with probability 1 [3]–[6].

In Fig. 3, if an eigenvalue generated from controlled Grover
operations is e

√−1×θ , then we use controlled Grover opera-
tions followed by the IQFT to find the best approximation of t
bits to the real number θ . Otherwise, we use the QFT instead of
IQFT. Since both sin(θ /2) and N are known, by determining θ
we can also find S = N× (sin(θ /2))2. After Grover’s iteration,
the quantum state of the second register is not changed and
is still (|φ1� ) = 1√

2
n−1 (⊗d−1

k=1 (
∣∣ x0

k

〉 + ∣∣ x1
k

〉
)) ⊗ (

∣∣ x1
d

〉
)⊗

(⊗n
k=d+1(

∣∣ x0
k

〉 + ∣∣ x1
k

〉
)).

D. Complexity Assessment for the Extension of Phase
Estimation and Quantum Counting

Lemma 2: In determining the number of solutions in
{x1x2 … xd−1x1

d xd+1 … xn−1 xn|∀xk ∈ {0, 1}, 1 ≢ k
≢ n, k �= d}, the space complexity of the extension of

Fig. 3. Quantum circuit for finding the phase θ. The controlled G
operators are sequentially applied to the initial state of the lower register
(
∣∣φ1

〉
) = (

√
N−S√

N
|ϕ� +

√
S√
N

|λ� ).

phase estimation and quantum counting with the probability
of measuring the solution being at least 1 −( 1

2(2p−2) ) is
O(t + n) = O(n + p + n) quantum bits, where t = n + q
and q is the number of auxiliary quantum bits such that the
probability of measuring the solution is at least 1 −( 1

2(2p−2) ).

Proof: See Supplemental Material.
Lemma 3: For computing the number of solutions in

{x1 x2 … xd−1 x1
d xd+1 …xn−1xn| ∀xk ∈ {0, 1}, 1 ≢ k ≢ n,

k �= d}, the time complexity of the ideal case in the extension
of phase estimation and quantum counting with the probability
of measuring the solution being 1 is O(t2+ 2t+ (n− 1))
= O((n+ p)2+ 2(n + p)+ (n− 1)) quantum gates, where
t = n + p and p is the number of auxiliary quantum bits such
that the probability of measuring the solution is at least 1
−( 1

2(2p−2) ).
Proof: See Supplemental Material

Lemma 4: In determining the number of solutions in
{x1x2 … xd−1x1

d xd+1 … xn−1 xn|∀xk ∈ {0, 1}, 1 ≢ k
≢ n, k �= d}, for the extension of quantum phase estimation
and quantum counting with the probability of measuring the

solution being ( 1
22t

sin2 (
2π(2t θ−i)

2 )

sin2 (
2π

(
θ− i

2t

)
2 )

), the time complexity of the

practical case is O(t2+ 2t+ (n− 1)) = O((n+ p)2+ 2
(n + p)+ (n− 1)) quantum gates, where t = n + p and p is
the number of auxiliary quantum bits such that the probability
of measuring the solution is at least 1 −( 1

2(2p−2) ).
Proof: See Supplemental Material

III. EXPERIMENTALLY SOLVING THE CLIQUE PROBLEM

IN A GRAPH WITH TWO VERTICES AND ONE

EDGE ON IBM QUANTUM’S SIMULATOR

Mathematically, a clique for a graph G1 with n vertices
and m edges is a complete sub-graph of G1 [10]. The clique
problem [10] is to find a maximum-sized clique in G1 that is
a maximum-sized subset V 1 of vertices with size r . In Fig. 4,
the left-most picture is a graph with two vertices and one edge,
which is the simplest case of the clique problem. The graph
consists of two vertices {v1, v2} and one edge {(v1, v2)}. The
set of possible solutions consist of 22 elements. Every element
corresponds to a subset of vertices (a possible clique).
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Fig. 4. Architecture for solving the clique problem (simplest case).

Fig. 5. Deciding whether the first vertex (left)/the second vertex (right)
lies in the maximum-sized clique.

We assume that β = {x50 x51|∀x5d ∈ {0, 1}, 0 ≢ d ≢ 1}
is a set of 22 possible choices (elements). For the sake of
presentation, we further assume that x50

d denotes that x5d = 0
and x51

d denotes that x5d = 1. If an element x50x51 in β is
a legal clique and x5d = 1 for 0 ≢ d ≢ 1, then x51

d indicates
that the (d+ 1)th vertex is within the legal clique. If an element
x50x51 in β is a legal clique and x5d = 0 for 0 ≢ d ≢ 1,
then x50

d indicates that the (d+ 1)th vertex is not within the
legal clique.

The second picture from the left in Fig. 4 shows a binary
search tree representing {x50x51|x5k ∈{0, 1}, 1 ≢ k ≢ 2}.
The subtree (x50)--0--(x51)--0-- represents x50

0 x50
1 that

encodes the empty set clique. The subtree (x50)--0--
(x51)--1-- represents x50

0 x51
1 that encodes the clique {v2}. The

subtree (x50)--1--(x51)--0-- represents x51
0 x50

1 that encodes
the clique {v1}. The subtree (x50)--1--(x51)--1-- represents
x51

0 x51
1 encoding the clique {v1, v2}. The third picture on

the left is the binary search tree half that represents {x51
0 x51|

x51 ∈{0, 1}} and encodes two possible solutions {v1} and
{v1, v2}. The fourth picture is the other half of the binary
search tree that represents {x50 x51

1|x50 ∈{0, 1}} and encodes
two possible solutions {v2} and {v1, v2}.

We use the quantum circuits in Fig. 5 to decide whether the
first and the second vertex, respectively, lie in the maximum
clique. In both circuits, the first (upper) register contains five
quantum bits, initially in the state |0>. In Fig. 5 (left) the two
quantum bits of the second (lower) register are initially in the
state

∣∣ x51
0

〉 ⊗ ∣∣ x50
1

〉
. In Fig. 5 (right) the two quantum bits

of the second register are initially in the state
∣∣x50

0

〉 ⊗ ∣∣ x51
1

〉
.

In Fig. 5 (left) we apply the unitary operator (I ⊗H ) to the
second register. This indicates that it encodes the two subtrees
(x50)--1--(x51)--0-- and (x50)--1--(x51)--1--. In Fig. 5 (right)
we apply the unitary operator (H ⊗ I ) to the second register.
This implies that it encodes the other two subtrees (x50)--0--
(x51)--1-- and (x50)--1--(x51)--1--.

Next, we apply the unitary operator (H ⊗ H ⊗ H ⊗ H ⊗ H )
to the first register (|y50

0 > ⊗ |y50
1 > ⊗ |y50

2 > ⊗ |y50
3 > ⊗

|y50
4 >) in Fig. 5 (left), followed by controlled G operations

with G raised to successive powers of two to the second
register. We use e

√−1×θ with real θ as the eigenvalue of G in

Fig. 6. Measurement results for Fig. 5 (left) and (right), respectively.

Fig. 7. Deciding whether the first vertex lies in the maximum-sized clique
on the backend Manila.

Fig. 8. Inferring whether the second vertex lies in the maximum-sized
clique on the backend Manila.

Fig. 9. Measurement result for (a) Fig. 5 (left) and (b) Fig. 5 (right) on
the Manila backend.

Fig. 5 (left), and e−√−1×θ with real θ as another eigenvalue
of G in Fig. 5 (right). Next, we apply the inverse quantum
Fourier transform (IQFT) to the first register in Fig. 5 (left),
and the quantum Fourier transform (QFT) to the first register
in Fig. 5 (right). Finally, we measure the first register in both
figures in the computational basis.

We use the open quantum assembly language version 2.0 on
IBM’s simulator to implement the quantum circuits in Fig. 5.
Both programs are included in the Supplemental Material.
Fig. 6 shows the two experimental results. The two measured
states are 01000 with probability 1. Since phase ratios for the
phase θ in Fig. 5 are equal to 8/25, θ = ×2π8/25 = π/2 in
both cases. Since sin(θ /2) = sin(π/4) = 1/

√
2 in both figures,

the number of solution(s) S is equal to 2(1/
√

2)2 in both. This
indicates that there exists one solution in the two subtrees
(x50)--1--(x51)--0-- and (x50)--1--(x51)--1-- and one solution
in the other two subtrees (x50)--0--(x51)--1-- and (x50)--1--
(x51)--1--. This is to say that both the first vertex and the
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Fig. 10. The architecture for solving the example b2 ≡ 1 (mod 15). (a): Inferring the value of the second bit in the integer solution satisfying
b2 ≡ 1 (mod 15). (b): Deciding the value of the first bit in the integer solution satisfying b2 ≡ 1 (mod 15). (c): Determining the value of the third bit in
the integer solution satisfying b2 ≡ 1 (mod 15). (d): Computing the value of the fourth bit in the integer solution satisfying b2 ≡ 1 (mod 15).

Fig. 11. Quantum circuits for inferring the value of the second (a), the first (b), the third (c), and the fourth (d) bit in the integer solution satisfying
b2 ≡ 1 (mod 15).

second vertex lie in the maximum-sized clique. Therefore, the
maximum-sized clique is {v1, v2}.

IV. EXPERIMENTALLY SOLVING THE CLIQUE PROBLEM

IN A GRAPH WITH TWO VERTICES AND ONE

EDGE ON THE BACKEND MANILA

The backend Manila of IBM is a new quantum processor
with five quantum bits. We wrote the third program and the
fourth program to execute subsequently Fig. 5 on the backend
Manila. Fig. 7 shows the quantum circuit implementation of
Fig. 5 (left), while Fig. 8 shows the quantum circuit imple-
mentation of Fig. 5 (right). In Fig. 7 and Fig. 8, the P(λ) gate
is a phase gate with a real parameter λ. The corresponding

matrix of this gate is

(
1 0

0 e
√−1×λ

)
. The gate leaves |0>

unchanged and modifies |1> to (e
√−1×λ) |1>.

See Supplemental Material for the programs for
Fig. 5 (left) and 7, and for Fig. 5 (right) and 8, respectively.
In Fig. 9(a) and Fig. 9(b), respectively, the state of the first
register of Fig. 5 are read out. The two states are 01000 with
probability 0.319 and 0.373, respectively. Since the phase
ratios of the phase θ in Fig. 7 and 8 are equal to 8/25,
θ = (×2π8/25) = π/2 in both figures.

As both figures, sin(θ /2)=sin(π/4) = 1/
√

2 , therefore,
the number of solution(s) S = 2 × (1/

√
2)2in both Fig. 7

and 8. Hence, there exists one solution in the two subtrees
(x50)--1--(x51)--0-- and (x50)--1--(x51)--1-- and one solution
in the other two subtrees (x50)--0--(x51)--1-- and (x50)--1--
(x51)--1--. Therefore, both the first and the second vertex lie
in the maximum-sized clique {v1, v2}.

V. EXPERIMENTALLY FINDING SOLUTION B SATISFYING

B2 ≡ 1 (MOD 15) AND 1 < B < (15/2)
ON QASM SIMULATOR

Let a natural number P be of length n bits and let a function
O f (x1, x2, …, xn−1, xn) be defined as {x1x2 … xn−1xn|

0 ≢ x1 x2 … xn−1 xn ≢ P} → {(x1x2 … xn−1xn)
2 (mod P)}.

Four integer solutions that satisfy O f (x1, x2, …, xn−1, xn) =
(x1x2 … xn−1xn)

2 ≡ 1 (mod P) are, respectively, b, P − b,
1 and P− 1, where 1 < b < (P/2) and (P/2) < P−b < P−1.
This is a special case of quadratic congruence (mod P) and it
is still a NP-complete problem [10]. Solving this problem is
equivalent to finding the only integer solution x1x2 … xn−1xn

for 1 < x1x2 … xn−1xn < (P/2) that satisfies O f (x1,
x2, . . . , xn−1, xn) = (x1x2 … xn−1xn)

2 ≡ 1 (mod P). Con-
sider the example where in {x50x51 x52x53|∀x5d ∈ {0, 1}
for 0 ≢ d ≢ 3}, only the element x50

0x51
1 x50

2x50
3 satisfies

42 ≡ 1 (mod 15) and 1 < 4 < (15/2). The example is a
simple case of quadratic congruence (mod P), where P = 15.

Fig. 10 shows a binary search tree encoding all possible
input states. In Fig. 10(a), {x50 x51

1x52x53| ∀x5d ∈ {0, 1}
for 0 ≢ d ≢ 3 and d �= 1} is encoded, while in Fig. 10(b),
{x51

0x51x52 x53|∀x5d ∈ {0, 1} for 1 ≢ d ≢ 3}. Fig. 10(c)
encodes {x50x51x51

2 x53|∀x5d ∈ {0, 1} for 0 ≢ d ≢ 3 and
d �= 2}, and Fig. 10(d) encodes {x50x51x52 x51

3|∀x5d ∈
{0, 1} for 0 ≢ d ≢ 2}.

The four quantum circuits in Fig. 11 compute the values of
the second, the first, the third and the fourth bit of the solution
state. In all the figures, the first register consists of 9 quantum
bits, initially in the state |0>, and the 4 quantum bits of the
second register are initially

∣∣ x50
0

〉 ⊗ ∣∣ x51
1

〉⊗ ∣∣ x50
2

〉 ⊗ ∣∣ x50
3

〉
,∣∣ x51

0

〉 ⊗ ∣∣ x50
1

〉 ⊗ ∣∣ x50
2

〉 ⊗ ∣∣ x50
3

〉
,

∣∣ x50
0

〉 ⊗ ∣∣ x50
1

〉 ⊗ ∣∣ x51
2

〉 ⊗∣∣ x50
3

〉
and

∣∣ x50
0

〉 ⊗ ∣∣x50
1

〉⊗ ∣∣ x50
2

〉 ⊗ ∣∣ x51
3

〉
, respectively. For

encoding each subtree from Fig. 10(a) through Fig. 10(d),
we respectively use the unitary operators (H ⊗ I ⊗ H ⊗ H ),
(I ⊗H ⊗ H ⊗ H ), (H ⊗ H ⊗ I ⊗H ) and (H ⊗ H ⊗ H ⊗ I )
on the second register in Fig. 11.

Next, the unitary operator H ⊗9 is applied to the first register
in Fig. 11. After that follow the controlled G operations
with G raised to successive powers of two applied on the
second register. The respective eigenvalues of G are e

√−1×θ
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Fig. 12. The measurement outcome for the circuit in (a) Fig. 11(a),
(b) Fig. 11(b), (c) Fig. 11(c), (d) Fig. 11(d).

in Fig. 11(a), e−√−1×θ in Fig. 11(b), e−√−1×θ in Fig. 11(c)
and e

√−1×θ in Fig. 11(d), with θ a real number. Next, the
IQFT and the QFT are applied respectively on nine quantum
bits on the first register in Fig. 11. Finally, the first register is
measured in the computational basis.

We wrote four programs (see Supplemental Material) to
implement the four quantum circuits in Fig. 11 on the
IBM simulator. The respective measurement results appear in
Fig. 12(a) through Fig. 12(d).

In Fig. 12(a), the state 000111011 is measured with prob-
ability 0.964. In Fig. 12(b) through 12(d), the measured out-
come is 000000000 with probability 1. Thus, for computing
the value of the second bit of the solution, the approximate
value of the phase rate is (59/ 29) and the approximate value
of its phase θ is ×2π59/29. Since sin(θ /2) = sin(×π59/29) =
0.3541635252, therefore also 0.3541635252 = √

S/
√

8 . With
this we obtain S = 1.00345442. As S is the number of solu-
tions in {x50x51

1x52 x53|∀x5d ∈ {0, 1}, 0 ≢ d ≢ 3, d �= 1},
the approximate value for S is equal to 1. This indicates that
the number of solutions is 1 and the value of the second bit
x51 in the solution is 1.

Similarly, for computing the value of the first, third and
fourth bit of the solution, the approximate value of the
phase rate is (0/29) and the approximate value of θ is
(2π × 0/29) = 0. Since sin(θ /2) = sin(0) = 0 = √

S/
√

8 , the
approximate value of S is equal to zero. This implies that there
is no solution in {x51

0x51 x52x53|∀x5d ∈ {0, 1}, 1 ≢ d ≢ 3},
{x50 x51x51

2x53| ∀x5d ∈ {0, 1}, 0 ≢ d ≢ 3, d �= 2} and
{x50x51 x52x51

3|∀ x5d ∈ {0, 1}, 0 ≢ d ≢ 2}. Thus, the
solution is x50

0 x51
1x50

2 x50
3.

VI. CONCLUSION

Based on Lemma 1S through Lemma 9S (see Supplemental
Material for details), we can infer the value of each bit in the
solution state of a search problem using O(n2+n2× m+m×n)
biological operations, O(2n−1) DNA strands, O(1) tubes and
the longest DNA strand, O(n + n × m). From Fig. 3 and from
Lemma 2 through Lemma 4 we have that the approximation
of the phase θ can be determined with a very high probability
of success. Since N is known and θ can be determined,
we can find the number of solution(s) S = (N× (sin(θ /2))2).
Therefore, if the number of solution(s) is not equal to zero,
then the answer lies in {x1x2 … xd−1x1

d xd+1 … xn−1xn|
∀xk ∈ {0, 1}, 1 ≢ k ≢ n, k �= d} and the dth bit of the
solution must be a 1. Otherwise, the dth bit of the solution
must be a 0. This indicates that for solving the same problem
the molecular algorithm Infer-the-value-of-each-bit can be
implemented by using an extension of the quantum phase
estimation algorithm and the quantum counting algorithm.
An interesting open question is whether the proposed bio-
quantum algorithm can be extended to solve a problem with
r solutions, where r > 2.
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