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In its unfolded form, a protein is a linear sequence of amino acids. Protein structure prediction 
attempts to find the native conformation for a given protein, which has potential applications in 
drug and vaccine development. Classically, protein structure prediction is an NP-complete, unsolved 
computational problem. Quantum computing however promises to improve upon the performance of 
classical algorithms. Here we develop a quantum algorithm in hydrophobic-hydrophilic model on two-
dimensional square lattice to solve the problem for any sequence of length N amino acids with a 
quadratic speedup over its classical counterpart. This speedup is achieved using Grover’s quantum search 
algorithm. The algorithm can be used for amino acid sequences of arbitrary length. It consists of three 
stages: (1) preparation of a superposition state that encodes all possible 22(N−1) conformations, (2) 
calculation of coordinates and energy for each possible conformation in parallel, and (3) finding the 
conformation with the minimal energy. The asymptotic complexity with regard to space is O (N3), while 
the obtained speedup is quadratic compared to the classical counterpart. We have successfully simulated 
the algorithm on the IBM Quantum’s qasm simulator using Qiskit SDK. Also, we have further confirmed 
the correctness of the results by calculating theoretical probability of finding the right conformation.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

Proteins are linear sequences consisting usually of between 
50 and 2000 amino acids [4] that play key roles in most phys-
iological processes of living organisms. The variety of functions 
essential to sustaining life that proteins perform include, among 
others, metabolism, immune responses, signal transduction, cell 
cycle, production of hormones and enzymes. All these functions 
are made possible by proteins taking on a well-defined structure 
in the process of folding. This structure is called that protein’s 
native conformation. But proteins can misfold, in which case, the 

✩ In this work we demonstrate a quantum algorithm for predicting the ter-
tiary structure of proteins in the hydrophobic-hydrophilic model, which makes use, 
among others, of superposition, which enables one to process data in parallel. We 
show that it offers a quadratic improvement in time compared to the classical al-
gorithm and that it requires only polynomial space with respect to the number of 
amino acids. Furthermore, we also test the correctness of the algorithm on IBM 
qasm simulator using the Qiskit SDK.
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misfolding is the root of most endogenous diseases. Understanding 
the algorithm that makes proteins fold into their native structures 
is therefore a significant undertaking. Trial-and-error, i.e., testing 
large numbers of often random compounds for their ability to in-
terfere with a protein’s function, is a standard procedure adopted 
in new drug development; its success rate however is low, and re-
sults must be assessed in lengthy clinical trials in later stages [56]. 
This procedure could be improved if drug tests were performed on 
in silico protein systems before clinical trials take place. For that, 
an accurate understanding of the folding principles is necessary.

Based on an amino acid sequence, protein structure predic-
tion (PSP) attempts to foresee how the native conformation would 
look like when folded. By utilizing quantum mechanical proper-
ties such as quantum superposition, interference and entangle-
ment, quantum computers promise to solve certain hard problems 
more efficiently than classical computers. Some of the significant 
advances in quantum algorithms solving hard problems include 
Shor’s algorithm for integer factorization and discrete logarithms 
[51], Grover’s algorithm for unsorted search [28], quantum algo-
rithm for solving the maximal clique problem [16] or quantum 
algorithms for linear systems of equations [30,54].

The choice of going quantum is also partly because of the 
recent successful implementations of quantum algorithms includ-
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ing Shor’s factoring algorithm by various techniques [36,43,40], 
Grover’s search algorithm [50,25], as well as boson sampling [2,
53,37], among others.

Here we solve the PSP problem for the hydrophobic-hydrophilic 
model (HP) [21] in two dimensions on a square lattice, which is 
one of the most widely studied methods for PSP [57,60,41]. PSP 
in the HP model falls within the complexity class of NP-complete 
problems [19].

In principle, NP-complete problems can be solved by oracular 
search algorithms. Such algorithms incorporate an oracle, which 
is also often referred to as a black-box. The first such search al-
gorithm was developed by Grover [29]. Some improvements then 
followed (e.g., [49]). It has been proven that oracular quantum 
algorithms can provide up to a quadratic speedup over classical 
algorithms for the same problem [28,11]. Therefore, an optimal 
oracular quantum algorithm for any NP-complete problem, includ-
ing any model of PSP, should work in asymptotic time O (

√
2N ), 

where N is the length of amino acid sequence. By using Grover’s 
algorithm to find the conformation with the minimal energy, our 
algorithm achieves in the worst case O (N3

√
2N ) for time complex-

ity and is therefore optimal. The worst-case time performance of a 
classical algorithm for the problem is not known as it is not pos-
sible to uniquely represent all the possible conformations on any 
state-of-the-art classical supercomputer (these store currently an 
order of 200 PB). Consider a smallest protein of 50 amino acids 
in length. It has 298 possible conformations on a square lattice. As 
largest classical memories provide only several hundred PB, clearly, 
this number cannot be stored classically. On the other hand, quan-
tum computers would only require polynomial space (O (N3)) for 
the task.

The currently available quantum computational devices offer 
mostly 14-15 qubits, while devices of up to 79 qubits are under 
intensive development [18]. Representing all conformations of a 
smallest protein of 50 amino acids in length would require 98 
qubits. Even if this number of qubits were available, additional 
qubits would be needed to calculate the lattice coordinates and 
energies for each conformation, and to find the conformation with 
the lowest energy. Therefore, it is not possible presently to simu-
late our algorithm on any real proteins. The largest sequence that 
can be simulated has length N = 3.

Besides the limited availability of qubits, one also has to con-
sider the fact that the currently existing quantum devices are not 
fault-tolerant due to decoherence of physical systems. Increasing 
the number of qubits and gates in a circuit makes the computation 
intractable [18], effectively rendering any larger circuits impossible 
to provide a desired outcome upon measurement. As an interme-
diate solution, quantum simulators facilitate a reliable testing in an 
idealized quantum environment. For example, IBM qasm simulator 
allows for simulations of up to 32 qubits. Executing an instance of 
our algorithm for sequence length N = 3 on this simulator requires 
25 qubits at minimum and the algorithm has to be tailored to this 
length. As outlined in Section 5, a general case of experimental 
validation for N = 3 would involve 16N3 − 24N2 − 12N + 63 = 243
qubits. Due to resource restrictions, our validation had to be sim-
plified to such an extent that the number of qubits did not exceed 
32. Such a simplification was not possible for N ≥ 4.

A qubit count of 50 and above is considered transcending the 
classical realm and would imply “quantum supremacy” [12]. Sim-
ulations of quantum systems of 50 qubits and above take around 
16 PB of RAM [17] on a supercomputer and are limited in cir-
cuit depth. Google and IBM proposed efficient methods to simulate 
low-depth circuits of above 49 qubits. IBM successfully simulated 
a depth of 27 in 2017 on the Vulcan supercomputer at Lawrence 
Livermore National Laboratory [42]. Google [13] found that circuits 
with 7 × 7 qubits and depth 40 remain out of reach. Some ex-
tensions of simulation techniques have been presented that are to 
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allow for simulation of quantum circuits with greater depth. For 
example, 7 × 7 circuits can in principle be fully simulated with 
all amplitudes calculated to arbitrary depth in less than a day for a 
depth-83 circuit by leveraging secondary storage [42]. These exten-
sions are theoretical and yet to be tested computationally [42]. For 
the case of N = 3, our algorithm requires between 3, 272 − 3, 296
(Table 2), which corresponds closely to the depth of the circuits. 
Due to this depth, it is currently impossible to test our algorithm 
for more than N = 3.

In order to execute these circuits on a quantum device, they 
must be transpiled first. In general, transpilation involves a de-
composition of a circuit into single-qubit gates and CNOT gates 
only. For the case of N = 3, the required number of non-transpiled 
gates is between 3, 272 − 3, 296 (Table 2). To the best of our 
knowledge, the currently most resource efficient Clifford+T de-
composition method for the Toffoli gate involves its decomposi-
tion into 6 CNOTS, 7 T gates and 2 Hadamard gates [58]. Under 
this decomposition, the depth of our circuits will range between 
13, 296 − 13, 348. Assuming a CNOT gate fidelity of 99.77% [35], 
the probability of success in measuring the correct outcome will be 
0.99774296 = 0.005%, where the exponent is the number of CNOT 
gates in the transpiled circuit. Clearly, an execution on a quantum 
device, even if such were available, would be inconclusive due to 
the cumulative error effect. With the rapid development in the 
fidelity of quantum devices though, we hope that the algorithm 
could be executed on real proteins in not-so-distant future.

This paper is an interdisciplinary study between quantum com-
puting and bioinformatics, and is organized as follows. Section 2
discusses other quantum approaches to protein structure pre-
diction. Section 3 introduces the widely studied hydrophobic-
hydrophilic model for protein structure prediction. The proposed 
quantum algorithm, which is set in the hydrophobic-hydrophilic 
model, is then described in detail in Section 4. Section 5 gives the 
complexity assessment for the algorithm. Section 6 presents the 
two experiments we have conducted on the IBM quantum simula-
tor. Section 7 lists the resources used in the simulations. Section 8
informs on source code availability, while Section 9 concludes. Ap-
pendix A provides additional corroboration of the experimental 
results obtained in Section 6 by calculating the theoretical prob-
ability of finding the solution.

Parallelization in quantum computing In analogy to classical parallel 
computation, quantum computing can be seen as a type of paral-
lelization. A qubit is a two-level system of the form:

|φ〉 = α |0〉 + β |1〉 (1)

where the coefficients α and β are referred to as probability am-
plitudes, which are complex numbers. The states |0〉 and |1〉 stand 
for the two possible values that the state |φ〉 attains upon mea-
surement. A qubit is the smallest quantum state. A quantum state 
is probabilistic with the modulus squared of each probability am-
plitude indicating the probability of the component state being 
observed upon measurement. The probabilities of all component 
states must therefore add to 1.

Parallelization in quantum computing is achieved through 
quantum superposition, in which a total of 2k unique paths are 
generated for k qubits:

|ψ〉 =
2k−1∑
i=0

αi |i〉 (2)

Here, αi is the probability amplitude of each path |i〉. Initially, the 
probability amplitude of each path in a superposition is usually 
equal. After initialization, quantum state is operated on by apply-
ing various quantum gates, which operation can be described in 
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terms of unitary operators acting on vectors. The purpose of this is 
to reduce as much as possible the state components in superposi-
tion. This is achieved by constructive and destructive interference. 
Both types of interference manipulate the probability amplitudes 
of component basis states in a quantum state, where the complex 
amplitudes can be either positive or negative.

Despite the quantum state remaining in a superposition for 
the entire computation time, upon measurement, the output of 
a quantum computation is a single state (path). This is described 
by the measurement postulate of quantum mechanics, which also 
states that the output of a measurement is inherently probabilistic. 
The particular output state (path |i〉) is observed with probability 
given by the modulus squared of the respective probability ampli-
tude.

Highlights and significance of this work The following are the main 
contributions of the paper:

• In this work, we show how to implement our algorithm for 
amino acid sequences of arbitrary length down to single quan-
tum gates. As such it can be readily put into a desired archi-
tecture and tested.

• Consisting of only the eigenstates |0〉 and |1〉 of Pauli-Z oper-
ator, all the input states of our algorithm can thus be readily 
physically encoded into qubits, which is not always possible in 
quantum algorithms.

• With the PSP problem being NP-complete even for the sim-
plest classical models, our quantum algorithm provides a 
quadratic speedup over its classical counterparts. The space 
complexity is reduced to mere N3 thanks to the use of quan-
tum superposition, while classically it is exponential for the 
model.

• It is a known problem in quantum computing that an oracle 
is often very difficult to specify and to physically encode into 
qubits. Our quantum algorithm achieves both. Namely, we pro-
vide a clear instruction for the structure of the oracle to be 
used in this algorithm and the oracle is straightforward to im-
plement as it consists of only the eigenstates of the Pauli-Z 
operator.

• We experimentally verify the correctness of the algorithm by 
executing it on IBM’s quantum simulator. The number of the 
quantum gates used in the verification is some of the largest 
tested up to date.

• We confirm the correctness of the verification results by calcu-
lating the theoretical probability of success. With this, we have 
confirmed that the algorithm will indeed provide the solution 
to the PSP problem as defined within the confines of the HP 
model.

2. Related works

In recent years, there have been developments in experimental 
protein structure prediction using quantum mechanical principles, 
many of them using quantum adiabatic computation (or a related 
concept of quantum annealing), a model different from the circuit 
model used in the present work. Here, we briefly summarize some 
of the results.

Quantum adiabatic computation [23] designs its calculations 
based on the adiabatic theorem [14]. It has been demonstrated to 
be polynomially equivalent to quantum circuit model [3]. Quantum 
adiabatic computation model assumes the qubits to be coherent. 
Quantum annealing is a version of quantum adiabatic optimiza-
tion in which the qubits are strongly coupled to their environment 
throughout, but still maintain some quantum coherence [1]. This 
is in contrast to quantum circuit model where high qubit coher-
ence and good isolation from environment are basic assumptions 
180
that affect gate fidelity and computational error rates. As pointed 
out in Section 1, these error rates limit the performance of present 
day quantum algorithms. The lack of strong coherence requirement 
also implies that quantum annealing methods can avail themselves 
with a relatively large amount of qubits as they do not have to 
uphold coherence constraints. The currently largest number factor-
ized using Shor’s quantum integer factorization algorithm [52] is 
21 and was achieved in 2012 [38]. Due to accumulation of errors 
it was not possible to factorize the number 35, attempted in 2019 
[6]. Much larger numbers have however been factored using quan-
tum annealing. For example, Jiang et al. [34] factorized 15, 143, 
59989, and 376289 using 4, 12, 59, and 94 logical qubits respec-
tively.

Quantum annealing is at heart in the experiments conducted 
by Perdomo-Ortiz et al. [45] which looked for low-energy con-
formations in lattice models. 8 different experiments of up to 81 
superconducting bits were carried out in the study. Instead of the 
hydrophobic-hydrophobic interactions used in our algorithm, the 
authors considered a more complex Miyazawa-Jernigan [39] inter-
actions among amino acids in an amino acid sequence of length 
6. Among the reported results, an 8-qubit experiment predicted 
the probability of measuring the ground state as 80.7%. Yet, as 
the authors point out, the odds of measuring the ground state 
are not necessarily high, as exemplified on an 81 qubit experiment 
in the same study in which only 13 out of 10,000 measurements 
yielded the desired solution. Another work using quantum anneal-
ing is that of Babej and Ing [9], involving an implementation of 
Chignolin, a sequence of 10 amino acids, on a planar lattice and 
of Trp-Cage (8 amino acids) on a cubic lattice using the D-Wave 
2000Q quantum processing unit with 2048 superconducting qubits. 
Out of the 102,400,000 samples collected from the QPU in the 10-
amino acid experiment, 24,950 samples were found to be the cor-
rect ground state. This implies a success probability of 0.000244. 
For the Trp-Cage fragment a total of 204,800,000 samples were col-
lected and 4,957 of them were the correct lattice fold. This gives a 
success probability of 2.42 × 10−5. Babbush et al. [8] give a good 
overview of how to construct energy functions for protein struc-
ture prediction for the quantum annealing regime.

Regarding models other than quantum annealing, we describe 
briefly three works. Perdomo-Ortiz et al. [44] implemented an 
algorithm for protein structure prediction using a 2-dimensional 
square lattice in the hydrophobic-hydrophilic model in the quan-
tum adiabatic regime. The authors were able to solve in detail 
the four amino acid sequence HPPH. Fingerhuth et al. [26] used 
quantum variational algorithm to tackle the lattice protein fold-
ing problem using Quantum Approximate Optimization Algorithm 
(QAOA) [24]. The work considered a 4 amino acid sequence PSVK 
on both planar and cubic lattices. QAOA is a hybrid approach 
where the computation is done iteratively consisting of an eval-
uation of the output of a quantum circuit by classical optimizers 
and a subsequent execution of the quantum circuit with the opti-
mized values. For the planar lattice, the probability of ground state 
varied depending on circuit depth and used mixer Hamiltonian. 
The median ground state probabilities ranged between 0.055 for 
the XYsimple mixer Hamiltonian and 0.019 for the X Zoverlap Hamil-
tonian. The highest value reported was 0.477 (XYsimple). Robert 
et al. [48] used a combination of variational quantum algorithms 
specifically adapted to classical cost functions and evolutionary 
strategies to simulate the folding of the 10 amino acid Angiotensin 
on 22 qubits using the Miyazawa-Jernigan interaction model. Op-
timization was done using CVaR-VQE [10], a variation of Varia-
tional Quantum Eigensolver [46] called Conditional Value-at-Risk 
(CVaR). As 22 qubits are too large for encoding in state-of-the-art 
quantum hardware, simulations were carried out using a realis-
tic parametrization of the noise and the results were obtained 
using 128 and 1024 measurements. The total probabilities of find-
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Fig. 1. A possible conformation embedded into a square lattice with hydrophobic (•) 
and hydrophilic (◦) amino acids and hydrophobic lattice contacts (dotted) indicated. 
|x1〉 |y1〉 and |xN 〉 |yN 〉 are the respective coordinates of the first and the last amino 
acid in the sequence.

ing low-energy conformations (energy below 0) added up to 89.5%
(small sampling) and 100% (large sampling). The study also imple-
mented a 7 amino acid sequence on a quantum hardware using 
9 qubits. The averaged ground state probability for this sequence 
was above 20% with the best probability being 33%.

3. The hydrophobic-hydrophilic model

Let a = a1a2 . . .aN denote a sequence consisting of N amino 
acids that encode a protein. Each ae denotes the amino acid 
located at a position 1 ≤ e ≤ N in the sequence. Under the 
hydrophobic-hydrophilic (HP) model for protein structure predic-
tion, each amino acid is classified either as hydrophobic (H) or 
hydrophilic (P). This classification is based on experimentally ob-
tained parameters [59]. The information of whether an amino acid 
is hydrophobic or hydrophilic can be stored in a single qubit. One 
of the simplest encodings would be |1〉 for a hydrophobic amino 
acid and |0〉 for a hydrophilic amino acid.

Under the two-dimensional HP-model, the amino acid sequence 
is mapped into a square lattice. An example mapping is shown in 
Fig. 1. Finding the native conformation for a protein is usually sub-
divided into three steps. In the first step, the number of all possible 
conformations is determined. In the second step, the energy values 
for each possible conformation are calculated based on a scoring 
function that is particular to the given PSP model. And in the last 
step, the conformation with the lowest free energy is selected.

Under the HP model, a major contribution to free energy is due 
to interactions between hydrophobic amino acids, which form a 
core within the protein. Each conformation is given a score ac-
cording to the scoring function

V = −∣∣{(|ai〉 ,
∣∣a j

〉
)}∣∣ (3)

where ai , a j (1 ≤ i, j ≤ N) are hydrophobic amino acids that are 
adjacent in the lattice while at the same time not adjacent in the 
amino acid sequence. Hence, function V corresponds to the mag-
nitude of the set containing all pairs of hydrophobic amino acids 
that are adjacent in the lattice but not in the sequence. This gives 
the number of all contacts between ai and a j in the lattice for 
a conformation. The minus sign signifies that the highest num-
ber of such contacts corresponds to the lowest energy value. Three 
of such contacts are shown in Fig. 1, represented by dotted lines. 
These contacts are often referred to as loose contacts. The num-
ber of loose contacts is inversely proportional to the amount of 
free energy for a conformation, i.e., the higher the number of loose 
contacts the lower the free energy.

On the choice of lattice Square and cubic lattices are the most 
widely studied lattice types for the planar and 3D HP model re-
spectively. However, other types of shapes have been proposed 
with various reasons in mind. One of those reasons is the par-
ity problem, which affects both square and cubic lattices, and in 
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which residues of the same parity cannot make hydrophobic con-
tact [22]. To counteract this problem, it was suggested to use 
triangular lattices or square lattices with diagonals. As triangular 
lattices may introduce sharp turns in adjacent amino acids, hexag-
onal lattices were proposed to mitigate this issue [33]. Another 
reason for choosing a particular lattice type could be for example 
to better account for the plausibility of angles, which made Robert 
et al. [48] choose the tetrahedral lattice for their study. Besides 
the square lattice being one of the most widely used lattice shape 
for the HP model to study protein folding [8], another reason for 
choosing the square lattice for our study was the availability of 
resources. In order to guarantee that the algorithm could be im-
plemented experimentally so as to prove its correctness we were 
bound to make the implementation as simple as possible yet as ac-
curate as possible. The square lattice seemed to combine the two 
aspects well.

4. The algorithm

In order to implement a mapping from a sequence into a lattice, 
the structure of the lattice has to be accounted for. In this paper, 
we consider the square lattice, which is the standard lattice used 
with the two-dimensional HP model. It has four possible direc-
tional transitions out of a node. To represent transitions from one 
amino acid to another in this lattice, absolute directions are used: 
N (northward), W (westward), S (southward), and E (eastward). 
The transitions are defined in terms of the usual Cartesian coor-
dinates: N(x, y) = (x, y + 1), E(x, y) = (x + 1, y), S(x, y) = (x, y −
1), W (x, y) = (x − 1, y). For example, the expression N(x, y) =
(x, y +1) indicates that a transition northwards from the given po-
sition will involve increasing the y coordinate by 1 to reflect the 
fact that the new coordinate is that of an amino acid (or lattice 
site) located north of the given coordinate.

In the following subsections, we describe each of the algorith-
m’s steps.

4.1. Initialization

Superscripts are used throughout to indicate a specific binary 
value of a state, if any. For a sequence |a〉 = |a1a2 · · ·aN 〉 of amino 
acids, 

∣∣a1
e

〉
indicates that the corresponding amino acid ae is hy-

drophobic (value 1), while 
∣∣a0

e

〉
indicates that it is hydrophilic 

(value 0). The sequence |a〉 is stored in a quantum register of 
length N:

|a〉 =
⊗

e

|ae〉 , 1 ≤ e ≤ N (4)

where ⊗ is the tensor product.
Each amino acid on a lattice is identified by its x and y coordi-

nates:

|x〉 =
⊗

e

∣∣∣x0
e

〉
, |y〉 =

⊗
e

∣∣∣y0
e

〉
(5)

We assume that the coordinates of the first amino acid a1 are 
fixed at the origin (0, 0) of the lattice. With this, for a sequence 
of length N representing all conformations will require a total of 
2N − 1 values for x and the same amount for y. The conforma-
tions will be generated in superposition. These are: the value 0, the 
four positive values 1, 2, . . . , N − 1, and the four negative values 
−1, −2, . . . , −(N − 1). Based on this number (2N − 1), the num-
ber of qubits necessary to uniquely represent each coordinate in 
binary is t = 	log2(2N − 1)
.

Two binary variables 
∣∣wd,p=1

〉
and 

∣∣wd,p=2
〉

are used to indicate 
the transition direction in the lattice from (d − 1)-th site to d-th 
site for 2 ≤ d ≤ N . As the first amino acid in a conformation can 
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Table 1
Transition directions between adjacent amino acids.∣∣wd,2

〉 ∣∣wd,1
〉

from (d − 1)-th site to d-th site

0 0 northward (N)
0 1 eastward (E)
1 0 southward (S)
1 1 westward (W)

be assumed to have a fixed position, there are N −1 transitions for 
each conformation. Therefore, N − 1 quantum registers of length 2 
are needed to encode these two variables for the entire amino acid 
sequence. Their initial states are all set to 0:

|w〉 =
⊗

d

⊗
p

∣∣∣w0
d,p

〉
(6)

where 2 ≤ d ≤ N and 1 ≤ p ≤ 2. The four possible transition direc-
tions are encoded as provided by Table 1.

Coordinate transitions will require both addition and subtrac-
tion. In order to simplify this operation, we adopt the two’s com-
plement notation. This notation encodes the information that a 
number is negative in the number itself, thereby not differenti-
ating between subtraction and addition. This way, only quantum 
addition, but not subtraction must be implemented for coordinate 
transitions. The two’s complement of 1 is

|α〉 = |0〉⊗t−1 |1〉 (7)

while the two’s complement of −1 is

∣∣α∗〉 = |1〉⊗t (8)

where t is the number of qubits necessary to represent a coordi-
nate.

After the system has been initialized, we proceed by setting 
it into a superposition state over vector |w〉. This vector uniquely 
identifies each of the 22(N−1) possible conformations of a sequence 
of length N . The superposition state:

1√
22(N−1)

22(N−1)−1∑
w=0

|w〉 (9)

is obtained by applying 2(N −1) Hadamard gates to the vector |w〉. 
We have omitted here all other quantum registers, which are not 
affected by this operation. With this, the conformational space of 
a protein can be calculated. This space encompasses all candidates 
for a native conformation.

4.2. Constructing conformational space

Let |xd〉 and |yd〉 denote the coordinates of the d-th amino acid 
in a sequence for 2 ≤ d ≤ N (the first amino acid has fixed co-
ordinates and can be omitted here). The conformational space is 
constructed in two steps as shown in the algorithm in Fig. 2.

First, in rows 2-3 of the algorithm, CNOT gates are applied. The 
gates are indicated by the symbol ⊕ and correspond to addition 
modulo 2. Each of the gates copies coordinates 

∣∣xd−1
〉

and 
∣∣yd−1

〉
of the (d − 1)-th amino acid to |xd〉 and |yd〉 of the d-th amino 
acid, respectively, for 2 ≤ d ≤ N . Then, the coordinates of the next 
neighbor 

∣∣ad+1
〉

for each amino acid |ad〉 in a conformation are 
calculated in rows 4 through 11 depending on the value of vec-
tor 

∣∣wd,2 wd,1
〉
. Adding a 1 (|α〉) increases the coordinate value by 

1, while adding the two’s complement of 1 (|α∗〉) decreases the 
value by 1. For example, if 

∣∣wd,2 wd,1
〉 = |00〉, the coordinates of 

the site 
∣∣ad+1

〉
north of |ad〉 are calculated by adding |α〉 to the 
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Fig. 2. Algorithm for constructing conformational space.

|y〉 coordinate of |ad〉. These coordinates are stored in the |y〉 co-
ordinate for site 

∣∣ad+1
〉
. If 

∣∣wd,2 wd,1
〉 = |10〉, the coordinates of the 

southern neighbor are calculated by adding |α∗〉 to |yd〉, and we 
obtain 

∣∣yd+1
〉
. This step employs a quantum adder. In our case, we 

make use of the quantum ripple-carry adder [20] by amending it 
with two control qubits that control which operations, depending 
on the value 

∣∣wd,2 wd,1
〉
, take place.

Upon completing the operations in Fig. 2, each conformation 
has its unique set of x and y coordinates, corresponding to each 
amino acid in that conformation, stored in the superposition state.

4.3. Energy calculation

The energy depends on the number of loose contacts that a 
given conformation possesses. Therefore, the energy can be calcu-
lated from the coordinates of amino acids. For each loose contact 
present, a value |1〉 will be stored in the following vector:

|�〉 =
⊗

k

⊗
j

⊗
p

∣∣∣�0
k, j,p

〉
(10)

where 1 ≤ k, j ≤ N , and 0 ≤ p ≤ 3. The combination of the three 
indices provides the information about the presence (|1〉) or ab-
sence (|0〉) of a loose contact. For example, 

∣∣�2,5,1
〉 = |1〉 indicates 

that amino acid k = 2 is hydrophobic and forms a loose contact 
with amino acid j = 5, which is also hydrophobic. Furthermore, j
is the eastern neighbor of k in the lattice. This last information 
is specified by index p, which we define as p = wd,2 wd,1 (see Ta-
ble 1). In this case, p = 1, or 01 in binary, which corresponds to the 
eastern neighbor in Table 1. If, on the other hand, 

∣∣�2,5,1
〉 = |0〉, 

then at least one of these conditions is not fulfilled, e.g., (1) amino 
acid k = 2 is not hydrophobic, or (2) amino acid j = 5 is not hy-
drophobic, or (3) j and k are not adjacent in the lattice. Hence, no 
loose contact is present for this combination of the three indices.

Vector |�〉 is calculated by the algorithm in Fig. 3. The al-
gorithm makes use of auxiliary quantum registers. 8N2 registers, 
contained in the states |x∗〉 or |y∗〉, will encode the x and y co-
ordinates of each k’s four neighbor sites. Each register is of size t
qubits. As before, 1 ≤ k, j ≤ N , 0 ≤ p ≤ 3:

∣∣x∗〉 = ⊗
k

⊗
j

⊗
p

∣∣∣x∗0
k, j,p

〉
(11)

∣∣y∗〉 = ⊗
k

⊗
j

⊗
p

∣∣∣y∗0
k, j,p

〉
(12)

All coordinates are initialized to 0.
Further, a state |R〉 will store the result of comparing coordi-

nates of the k-th amino acid with those of the j-th amino acid:
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Fig. 3. Algorithm for calculating energy.

|R〉 =
⊗

k

⊗
j

⊗
p

⊗
h

∣∣∣R0
k, j,p,h

〉
⊗

∣∣∣R1
k, j,p,0

〉
(13)

where 1 ≤ k, j ≤ N , 0 ≤ p ≤ 3, and 1 ≤ h ≤ 2t . And finally, the state

|δ〉 =
⊗

k

⊗
j

⊗
p

⊗
u

∣∣∣δ0
k, j,p,u

〉
(14)

is used to store the intermediate result of checking whether the 
k-th amino acid |ak〉 and the j-th amino acid 

∣∣a j
〉

are adjacent in 
a given conformation. The indices range as follows: 1 ≤ k, j ≤ N , 
0 ≤ p ≤ 3, and 1 ≤ u ≤ 2.

To find the energy values associated with each conformation, 
the coordinates of every amino acid k must be compared with the 
coordinates of neighboring lattice sites j to check whether the two 
neighbors are both hydrophobic and are adjacent in the lattice but 
not in the sequence. To that end, the coordinates of every amino 
acid are compared with the coordinates of all other amino acids 
in a conformation with the exception of the second and the third 
relative to the considered amino acid. Since the second amino acid 
(in relative terms) is directly connected to the first in the sequence, 
their comparison can be omitted as they will never fulfill the con-
dition of not being adjacent in the sequence. Furthermore, due to 
the structure of the square lattice, the third amino acid (in rela-
tive terms) cannot be adjacent to the first in the lattice. Therefore, 
the comparison will start from the fourth amino acid (in relative 
terms). This reduces the number of comparisons of sites k and j
to 1 ≤ k ≤ N − 3 and k + 3 ≤ j ≤ N as specified in the algorithm 
in Fig. 3. Parameter 0 ≤ p ≤ 3 indicates the respective neighbor j
of k as specified in Table 1. p = 0 indicates the northern neighbor, 
p = 1 the eastern neighbor, p = 2 the southern neighbor, while 
p = 3 indicates the western neighbor.
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Finding the energy for each conformation comprises four steps. 
In the first step, operations in rows 4-5 of the algorithm are ex-
ecuted. These operations correspond to copying coordinates |xk〉
and |yk〉 of the k-th amino acid to all the coordinates 

∣∣∣x∗
k, j,p

〉

and 
∣∣∣y∗

k, j,p

〉
, respectively. In the second step, as shown in rows 6 

through 9 of the algorithm, the coordinates 
∣∣∣x∗

k, j,p

〉
and 

∣∣∣y∗
k, j,p

〉
are 

adjusted to store the respective potential neighbors of k depending 
on the value of p. This step constructs all four possible neighbors 
j for every amino acid k in a conformation. In the third step in 
rows 11-12 of the algorithm, the CNOT gate checks whether amino 
acid j is one of the four neighbors of k. This information is stored 
in 

∣∣∣x∗
k, j,p

〉
and 

∣∣∣y∗
k, j,p

〉
. j is an actual neighbor of k only when the 

CNOT gate results in 
∣∣∣x∗

k, j,p

〉
= |0〉⊗t and 

∣∣∣y∗
k, j,p

〉
= |0〉⊗t . CNOT cor-

responds to the exclusive OR operation. It compares the state 
∣∣x j

〉
with 

∣∣∣x∗
k, j,p

〉
, and 

∣∣y j
〉

with 
∣∣∣y∗

k, j,p

〉
. A 0 is output only when the 

two strings are identical.
In the fourth step, operations in rows 13 through 22 are ex-

ecuted. Together, these operations determine whether k and j
are both hydrophobic and are adjacent in the lattice but not in 
the sequence. As 

∣∣Rk, j,p,0
〉 = |1〉 always, as long as both coordi-

nates |x∗〉 and |y∗〉 are of the form |0〉⊗t |0〉⊗t after executing the 
third step, the value 1 will be propagated all the way down from 
row 13 through 19. Then, in rows 20 and 21, the hydrophobic-
ity status of both the k-th amino acid |ak〉 and the j-th amino 
acid 

∣∣a j
〉

is checked. If |ak〉 is hydrophobic, then |ak〉 = |1〉 and 
therefore 

∣∣δk, j,p,1
〉 = |1〉 if and only if 

∣∣Rk, j,p,2t
〉 = |1〉. If 

∣∣a j
〉

is hy-
drophobic, then 

∣∣a j
〉 = |1〉 and therefore 

∣∣δk, j,p,2
〉 = |1〉, given that ∣∣δk, j,p,1

〉 = |1〉.
The final result is recorded in the vector 

∣∣�k, j,p
〉

in row 22. ∣∣�k, j,p
〉 = |1〉 if and only if all three conditions are fulfilled, that is 

if both |ak〉 and 
∣∣a j

〉
are hydrophobic and are adjacent in the lattice 

while being not adjacent in the sequence. Otherwise, 
∣∣�k, j,p

〉 = |0〉. 
As an example, 

∣∣�1,4,2
〉 = |1〉 indicates that k = 1-st amino acid in 

the sequence has j = 4-th amino acid in the sequence as its south-
ern neighbor (p = 2) and that both |ak〉 and 

∣∣a j
〉

are hydrophobic.

4.4. Summing up energies

After completing the operations in the previous section, the ad-
jacency information is stored in the state |�〉. These piecemeal 
values must be added up for each conformation in order to ob-
tain a string encoding their sum. The state that contains all such 
strings in superposition is
⊗

k

⊗
p

⊗
j

∣∣zk,p, j
〉

(15)

where 1 ≤ k ≤ N − 3, 0 ≤ p ≤ 3, and 0 ≤ j ≤ 4(k − 1) + p.
In order to calculate this sum, auxiliary qubits 

∣∣zk,p, j
〉

and ∣∣zk,p, j+1
〉

are needed, as shown in the algorithm in Fig. 4. The 
number of values of parameter j is n = 4(k − 1) + p + 1. By sub-
stituting the highest value of k and p into n, one can see that 
n = 4(N − 4) + 4. With this, the total number of additional qubits 
is calculated to be the partial sum

n∑
m=1

m = n(n + 1)

2
= (4N − 12)(4N − 11)

2
(16)

All the 
∣∣zk,p, j

〉
and 

∣∣zk,p, j+1
〉

states in the algorithm are initialized 
to 0 with the exception of 

∣∣z0,3,0
〉
, which is initialized to 1. For 
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Fig. 4. Algorithm for summing up energy.

each conformation, the algorithm extracts the values from vector 
|�〉 and stores their sum in the state

|z〉 =
0⊗

j=4(N−4)+3

∣∣zN−3,3, j
〉

(17)

The algorithm starts with the first amino acid (k = 1) in a se-
quence. It checks whether the amino acid has any neighbors in the 
lattice (

∣∣�1,i,p
〉 = |1〉 for at least one i). Starting from the northern 

neighbor (p = 0), if such a neighbor exists, 
∣∣z1,0,1

〉
will be equal to 

|1〉. On the other hand, if for example the first amino acid has a 
western neighbor (p = 3), 

∣∣z1,3,1
〉

will be equal to |1〉. If the first 
amino acid has both neighbors however, this fact will be indicated 
by the state 

∣∣z1,3,2
〉 = |1〉, with the last index j = 2 standing for 

the number of neighbors. The presence of any other neighbors for 
the first and the consecutive amino acids will be indicated by the 
single digit 1 located at the position j in the final string 

∣∣zN−3,3, j
〉
.

Every such string |z〉 contains exactly one digit 1 with all the 
remaining digits being 0. To illustrate the principle on an example: 
a conformation having four hydrophobic lattice contacts ( j = 4) 
will have the digit 1 placed on the 5th position counting from 
the right (|0 · · ·010000〉). The closer to the left the digit 1 is lo-
cated, the higher the number of hydrophobic lattice contacts. In 
accordance with the free energy scoring function (V = −|(ai, a j)|), 
conformations with the digit 1 located closest to the left have the 
lowest free energy.

The algorithm in Fig. 4 makes use of quantum gates for logi-
cal conjunction (AND) and disjunction (OR), which are based on 
the Toffoli gate [55]. For the implementation of logical conjunction 
and disjunction operations see Fig. 5(a). Each conjunction and each 
disjunction require one auxiliary qubit, either in the |0〉 or the |1〉
state. As shown in Fig. 5(b), a total of N − 2 such auxiliary qubits 
|r〉 are needed to compute each disjunctive clause. Then a further 
2 qubits, as indicated in Fig. 5(c), must be used to carry out the 
remaining operations in the algorithm in Fig. 4. Both the |r〉 qubits 
as well as the other 2 auxiliary qubits can be reset to their original 
state after the state 

∣∣zk,p, j
〉

has been calculated.

4.5. Identifying conformations with minimal energy

Having found the energy values for each conformation, the con-
formation(s) for which the free energy is the lowest must be found. 
This can be done e.g. with Grover’s search algorithm [28]. To that 
end, the amplitudes of vector |z〉 in (17) must subsequently be 
amplified in order to find a conformation with the highest num-
ber of hydrophobic lattice contacts. Grover’s algorithm performs 
optimally when run π √

n/m iterations, where m is the number 
4
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of solutions and n = 22(N−1) is the number of conformations. If 
necessary, the number of solutions m can be determined with the 
quantum counting algorithm [15]. Both the search algorithm and 
the counting algorithm require O (

√
n/m) calls to Grover iteration 

and thus O (
√

n/m) oracle calls. Upon measurement, the circuit 
outputs a single conformation that is a solution for the particular 
amino acid sequence. Multiple runs of the algorithm are needed in 
order to output all solutions.

The oracle for our algorithm involves finding the maximal el-
ement among states 

∣∣zN−3,3, j
〉
. In order to do that, we propose a 

checking function in the form of a string |s〉 of the same length 
as the elements 

∣∣zN−3,3, j
〉
, i.e., 4(N − 3). The oracle would com-

pare |s〉 with all 
∣∣zN−3,3, j

〉
entries by means of bit-wise exclusive 

disjunction operation to determine whether a given 
∣∣zN−3,3, j

〉
is a 

maximal element:

⊗
j

∣∣s j
〉 = ⊗

j

∣∣zN−3,3, j ⊕ s j
〉

(18)

where 0 ≤ j ≤ 4(N −4) +3. This operation requires only linear time 
as the comparisons are carried out in superposition. Subsequently, 
by applying logical disjunction on vector |s〉 and then negating the 
result

|s〉 = ¬
⎛
⎝∨⎛

⎝⊗
j

∣∣s j
〉⎞⎠

⎞
⎠ (19)

the output is |s〉 = |1〉 if and only if the compared strings match. 
A vector in |z〉 is maximal if and only if the operation in (18)
results in 

⊗
j

∣∣s j
〉 = |0〉⊗4(N−3) . Since the oracle has to be in a su-

perposition state, |s〉 must be integrated into the state vector prior 
to computation (at the time of initializing the system). String |s〉
might need to be decremented and the computation runs again
till a conformation with minimal free energy is found. In the worst 
case, decrementing a total of 4(N − 3) times is needed, which con-
tributes a linear factor to the complexity.

5. Complexity assessment

The assessment of both the temporal and the spatial complexity 
is straightforward. Given an amino acid sequence of length N , the 
required number of qubits, including those considered as auxiliary, 
is 16N3 − 24N2 − 12N + 63, implying a spatial asymptotic com-
plexity O (N3), which is a polynomial increment with N . As stated 
previously in our Introduction, the conformational space cannot be 
created classically due to lack of classical computational resources.

With regards to the temporal complexity, the construction of 
conformational space takes (N − 1) iterations with 2θ − 4 NOT, 
7θ − 3 CNOT, and 2θ − 1 Toffoli gates in each iteration, but the 
number of time steps is only (N − 1)(2θ + 4). Finding free ener-
gies takes 4(N − 3)2 iterations. Each iteration implements 5θ + 2
NOT, 11θ + 1 CNOT, and 5θ − 3 Toffoli gates. Summing up energies 
takes 8(N − 3)2 + 2(N − 3) iterations with 4(N − 3) + 1 NOT, N − 1
CNOT and 2 Toffoli gates. The above operations together have the 
asymptotic complexity of O (N3).

In the case that Grover’s algorithm is used to identify solu-
tions, which are the conformations with the minimal free energy, 
the complexity is O (N3

√
22(N−1)) which reduces to the asymptotic 

complexity O (N3
√

2N ).
Given the above, protein structure prediction in two-dimensio-

nal hydrophobic-hydrophilic model on a square lattice can be 
solved by our quantum algorithm with a quadratic speedup in 
comparison with what a classical algorithm can currently achieve.
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Fig. 5. (a) Quantum circuit for a disjunctive (left) and conjunctive (right) clauses. (b) Quantum circuit for the OR clause in rows 5 and 8 in Fig. 4. This is essentially also the 
implementation of the OR clauses in rows 6 and 9, with the difference that these two clauses require a negation as well, which can be implemented with a Pauli-X gate. (c) 
Quantum circuit for the remaining operations in Fig. 4.
6. Experimental validation of the algorithm

An exact implementation of the quantum algorithm for protein 
structure prediction in two-dimensional hydrophobic-hydrophilic 
model requires around 200 logical qubits, an amount that is cur-
rently not available on any kind of quantum devices. For that rea-
son, we validate a simplified instance of the algorithm and test 
it on IBM qasm simulator which allows for testing of circuits of 
up to 32 qubits. Our instance aims to test the performance of the 
algorithm on amino acid sequences of length L = 3 and involves 
25 qubits (instances for amino acid sequences of length L ≥ 4
would exceed the limit of 32 qubits). The number of bits to rep-
resent the coordinates in two’s complement notation is therefore 
t = 	log2(2N − 1)
 = 3. The qubits are allocated as follows (here 
we also include information on states omitted from the exact de-
scription of our algorithm for PSP):

• The sequence is not encoded, instead it is implicitly assumed 
to be |101〉, where |1〉 stands for a hydrophobic and |0〉 stands 
for a hydrophilic amino acid. The first and the last amino acids 
in the sequence are hence hydrophobic while the amino acid 
in the middle is hydrophilic.

• As the length is N = 3, two qubits encode the directional tran-
sition from the first to the second amino acid, and a further 
two qubits encode the transition from the second to the third 
amino acid. These four qubits correspond to vector |w〉.

• The coordinates |x1〉 and |y1〉 of the first amino acid are as-
sumed to be |000〉. They are not encoded in the circuit.

• Three qubits are needed to encode the four coordinates: the 
|x2〉 coordinate of amino acid 2, the |y2〉 coordinate of amino 
acid 2, the |x3〉 coordinate of amino acid 3, and the |y3〉 coor-
dinate of amino acid 3. This gives a total of 12 qubits.

• Three qubits encode the decimal 1 |α〉 = |001〉. The two’s com-
plement of 1 (-1) is not encoded. It will be generated from |α〉
when necessary by negating the first two qubits.

• One qubit encodes the carry qubit |c〉 for our implementation 
of doubly-controlled quantum adder.

• One ancillary qubit |g〉 encodes the intermediate value needed 
in the Grover’s diffusion operator.

• One qubit |e〉 encodes the energy value for each conformation.
• Three ancillary qubits |anc〉 are used whenever necessary in 

the quantum adder circuit, in Grover’s oracle, and in the diffu-
sion operator.

With this, the quantum state of the simplified instance is:

|w〉 |x〉 |y〉 |α〉 |c〉 |g〉 |e〉 |anc〉 (20)

This state is then subdivided as follows:
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|w1 w2〉 |x2x3〉 |y2 y3〉 |α〉 |c〉 |g〉 |e〉 |anc〉 (21)

where |w1〉 encodes the transition direction from the first amino 
acid to the second amino acid in a sequence, while |w2〉 encodes 
the transition direction from the second to the third amino acid 
in the sequence. |x2〉 stands for the x coordinate of the second 
amino acid, |x3〉 stands for the x coordinate of the third amino 
acid, |y2〉 stands for the y coordinate of the second amino acid, 
and |y3〉 stands for the y coordinate of the third amino acid. The 
coordinates are encoded in two’s complement notation to facilitate 
straightforward addition and subtraction.

There are four transition directions for a square lattice as given 
below, where i = 1, 2:

• |wi〉 = |00〉 stands for the transition northward and it entails 
an increase by 1 of the y coordinate of the (i + 1)st amino 
acid: |yi+1〉 = |yi〉 + |001〉

• |wi〉 = |01〉 stands for the transition eastward and it entails an 
increase by 1 of the x coordinate of the (i + 1)st amino acid: 
|xi+1〉 = |xi〉 + |001〉

• |wi〉 = |10〉 stands for the transition southward and it entails a 
decrease by 1 of the y coordinate of the (i + 1)st amino acid: 
|yi+1〉 = |yi〉+|111〉. Here |111〉 = −1 is the two’s complement 
of 1.

• |wi〉 = |11〉 stands for the transition westward and it entails a 
decrease by 1 of the x coordinate of the (i + 1)st amino acid: 
|xi+1〉 = |xi〉+ |111〉. Here |111〉 = −1 is the two’s complement 
of 1.

The square lattice requires a sequence of at least four amino 
acids in order to make an adjacent hydrophobic-hydrophobic con-
tact in the lattice but not in the sequence. As the available quan-
tum resources do not allow for an implementation of our algo-
rithm on sequences of length four and above (encoding for such 
sequences exceeds the limit of 32 qubits), we conduct two simula-
tions on a simplified form of our algorithm.

In each of the two simulations we assume that the length of 
the sequence is L = 3. The difference between them is only in 
the selected conformation (solution): |w〉 = |1010〉 or |1100〉. The 
solutions are selected arbitrarily and can be changed arbitrarily 
without affecting the performance of our algorithm.

In the following we will assume that the algorithm makes use 
of Grover’s quantum search algorithm. Grover’s algorithm finds a 
solution to a given problem with a high probability and is optimal 
for the problem. The structure of the PSP algorithm is given in 
Fig. 6.

Each of the simplified instances of the algorithm consists of the 
following steps:
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Fig. 6. Circuit schematic for PSP algorithm using Grover’s amplitude amplification routine. N is the length of the amino acid sequence, while t stands for the length of a 
single coordinate in bits. Inside the operation boxes we indicate which parameters (out of w , x, y, e and g) participate in the given operation. A value 0 indicates that the 
respective state is reset to 0. A letter indicates that the respective parameter is in its calculated form.
1. Register initialization, including setting the system into a su-
perposition over vectors |w〉 and |g〉.

2. Calculation of the two-dimensional Cartesian coordinates |x〉
and |y〉 for each conformation.

3. Calculation of the energy values for each conformation. The 
energy value is stored in quantum register |e〉. |e〉 = |1〉 if and 
only if the respective conformation is a solution. Otherwise, 
|e〉 = |0〉.

4. Inverting the phase of the solution. This is done by flipping the 
phase of each state |g〉 = |1〉 whenever |e〉 = |1〉. For |e〉 = |0〉, 
no phase inversion takes place.

5. Resetting the energies of each conformation. This step is re-
quired for the proper functioning of Grover’s diffusion operator 
in step 7.

6. Resetting the coordinates of all conformations by executing the 
coordinate calculation step in reverse. This step results in all 
coordinates being reset to all-zero values and it is required for 
the correct performance of Grover’s algorithm in step 7.

7. Application of Grover’s diffusion operator to registers |w〉 and 
|g〉.

Steps 2 through 7 are iterated over as many times as the Grover 
algorithm requires for a given number of solutions and candi-
date conformations. The required number of iterations is calculated 
from the formula

π

4

√
n

m
(22)

where n = 32 is 2× the number of all candidate conformations 
and m = 1 is the number of solutions. The number of candidate 
conformations for length L = 3 is n

2 = 16. Factor 2 comes from the 
fact that vector |g〉 is also in superposition.

The schematic in Fig. 6 shows these seven steps as elements of 
a quantum circuit.

6.1. Setting the state into a superposition

Step 1 is straightforward. The quantum system is set into a uni-
form superposition by applying Hadamard gates to the four qubits 
in register |w〉 and the single qubit in register |g〉. Omitting all 
other quantum registers for the sake of clarity, the resulting state 
is

1√
22(N−1)

22(N−1)−1∑
|w〉 ⊗ 1√

2

1∑
|g〉 (23)
w=0 g=0
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indicating that for sequences of length L = 3, the total number of 
conformations is 22(L−1) = 16, as |g〉 is not part of a conformation. 
The candidate conformations for a native conformation are |w〉 =
|0000〉, |0001〉, |0010〉, . . . , through |1111〉. Each of these states 
is to be understood as composed of two values. The first two bits 
represent the directional transition from the first amino acid to the 
second. The last two bits represent the directional transition from 
the second amino acid to the third. For instance, |0001〉 consists of 
|00〉 corresponding to the transition northwards from the first to 
the second amino acid, and of |01〉 corresponding to the transition 
to the eastwards from the second to the third amino acid.

6.2. Coordinate calculation

In step 2 the respective coordinates for each conformation are 
calculated depending on the value of vector |w〉. The coordinates 
are stored in two’s complement notation which facilitates straight-
forward addition and subtraction. Our calculation of coordinates 
relies on a doubly controlled quantum adder that we adapted from 
[20] by incorporating two control qubits into it.

6.3. Energy calculation and oracle

In step 3 of this simplified experimental validation the energy 
value for each conformation is calculated simultaneously in su-
perposition. We arbitrarily choose two different conformations to 
be treated as solutions: |1010〉 and |1100〉. The conformations are 
chosen arbitrarily because for N = 3 no actual solution exists. The 
structure of the square lattice dictates that a solution exists only 
for sequences of length N ≥ 4. For N = 4 some conformations will 
have a single loose contact, for N < 4 no loose contact will ever be 
present.

Below we describe the energy calculation operation and the or-
acles for the two solutions.

A. Identifying conformation |w〉 = |1010〉 The conformation |1010〉
is shown in Fig. 7(a). As |w1〉 = |10〉 and |w2〉 = |10〉, this con-
formation is generated by taking two steps southwards, which af-
fects only the y coordinates of the second and the third amino 
acids. The energy calculation and the oracle that selects this con-
formation is given in Fig. 7(b). The coordinates for this con-
formation are |x1〉 |x2〉 |x3〉 = |000〉 |000〉 |000〉 and |y1〉 |y2〉 |y3〉 =
|000〉 |111〉 |110〉. We note that |111〉 = −1 and |110〉 = −2 in 
two’s complement notation. As it was not possible to implement 
the full code of the algorithm, certain simplifications had to be 
made, which however do not affect the general functionality of 
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Fig. 7. Experimental outputs for the conformation |w〉 = |1010〉. Histograms are to be read from top to bottom. (a) Conformation |w〉 = |1010〉. (b) The oracle for selecting the 
conformation |1010〉. The gates before the barrier are for calculating the energy and inverting the phase, while the gates behind the barrier are for uncomputing the energy. 
(c) The result of calculating coordinates and energy. Bits 1 through 4 represent the conformation |w〉. Bits 5 through 7 represent the |x2〉 coordinate, bits 8 through 10 the 
|x3〉 coordinate, bits 11 through 13 the |y2〉 coordinate, and bits 14 though 16 the |y3〉 coordinate. The last bit stands for the energy |e〉. (d) The probability of observing the 
conformation |w〉 = |1010〉 upon measurement is 0.9998.

Fig. 8. Experimental outputs for the conformation |w〉 = |1100〉. Histograms are to be read from top to bottom. (a) Conformation |w〉 = |1100〉. (b) The oracle for selecting the 
conformation |1100〉. The gates before the barrier are for calculating the energy and inverting the phase, while the gates behind the barrier are for uncomputing the energy. 
(c) The result of calculating coordinates and energy. Bits 1 through 4 represent the conformation |w〉. Bits 5 through 7 represent the |x2〉 coordinate, bits 8 through 10 the 
|x3〉 coordinate, bits 11 through 13 the |y2〉 coordinate, and bits 14 though 16 the |y3〉 coordinate. The last bit stands for the energy |e〉. (d) The probability of observing the 
conformation |w〉 = |1100〉 upon measurement is 1.000.
the algorithm. Upon analysis, we observe that this conformation is 
uniquely identified by the |y2〉 |y3〉 component. Namely, by check-
ing that the first and the third bit in both |y2〉 and |y3〉 are, 
respectively, |y0〉 = |1〉 , |y2〉 = |1〉 , |y3〉 = |1〉 , |y5〉 = |0〉, we can 
determine whether this is the conformation we are looking for. 
In Fig. 7(b), the energy is stored in qubit |e〉. If, upon coordi-
nate checking, it is found that it is the desired conformation, |e〉
changes its value to |1〉. Otherwise, it stays |0〉. Fig. 7(c) shows 
correctly calculated coordinates and energies.

B. Identifying conformation |w〉 = |1100〉 The conformation |1100〉
is shown in Fig. 8(a). As |w1〉 = |11〉 and |w2〉 = |00〉, this confor-
mation is generated by taking first one step westwards and then 
another step northwards. The energy calculation and the oracle 
that selects this conformation is given in Fig. 8(b). The coordi-
nates for this conformation are |x1〉 |x2〉 |x3〉 = |000〉 |111〉 |111〉 and 
|y1〉 |y2〉 |y3〉 = |000〉 |000〉 |001〉. As it was not possible to imple-
ment the full code of the algorithm, certain simplifications had to 
be made, which however do not affect the general functionality of 
the algorithm. Upon analysis, we observe that this conformation 
is uniquely identified by the |x3〉 and the |y2〉 |y3〉 components. 
Hence, we only need to check the first bit of |x3〉, as well as the 
first and the third bit in both |y2〉 and |y3〉. These five values are, 
respectively, |x3〉 = |1〉, |y0〉 = |0〉, |y2〉 = |0〉, |y3〉 = |0〉, |y5〉 = |1〉. 
In Fig. 8(b), the energy is stored in qubit |e〉. If, upon coordinate 
check, it is found that it is the desired conformation, |e〉 changes 
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its value to |1〉. Otherwise, it stays |0〉. Fig. 8(c) shows correctly 
calculated coordinates and energies.

Fig. 7(b) and Fig. 8(b) also show how the energy qubit |e〉 is 
reset by executing the energy calculation in reverse order. These 
reverse operations are indicated behind the barrier lines.

6.4. Resetting coordinates

Next, in step 6, the coordinates calculated in step 2 are uncom-
puted by executing the coordinate calculation protocol in reverse 
order. After this step, all coordinates of all conformations are reset 
to all-zero values. At this point, only |w〉 and |g〉 contain non-
constant values, while all other qubits are either set to |0〉 or |1〉
for each conformation. The quantum state for the conformations 
for which |e〉 = |1〉 is

1√
22(N−1)

22(N−1)−1∑
w=0∧e=1

|w〉 |−〉g |0〉e |0〉⊗9
x |0〉⊗9

y (24)

while for all other conformations, i.e. those for which |e〉 = |0〉 is

1√
22(N−1)

22(N−1)−1∑
w=0∧e=1

|w〉 |+〉g |0〉e |0〉⊗9
x |0〉⊗9

y (25)

where |−〉 =
( |0〉−|1〉√

)
, |+〉 =

( |0〉+|1〉√
)

.

2 2
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Fig. 9. The diffusion operator (the same for both simulations).

Table 2
Required quantum gates.

Gates (per iteration) |1010〉 |1100〉
Hadamard gates 15 15
Pauli-X gates 61 65
Controlled-X (CX) gates 24 24
Toffoli (CCX) gates 716 718
Controlled-Z (CZ) gates 2 2

TOTAL (4 iterations) 3,272 3,296

6.5. Applying diffusion operator

In the last step, i.e., step 7, the diffusion operator is applied to 
|w〉 and |g〉. This operator is the same for any amino acid sequence 
of length N = 3 and is shown in Fig. 9. It implements an inver-
sion about the quantum state. Our implementation of the operator 
makes use of three ancillary qubits to store intermediate results.

6.6. Measurement

The selected conformations |1010〉 or |1100〉 will be output 
upon measuring the |w〉 quantum register. As shown in Fig. 7(d), 
the probability of observing the conformation |1010〉 is 0.998. 
Fig. 8(d) shows the probability of observing the conformation 
|1100〉 to be 1.

7. Required quantum resources

The two experiments were coded in Python and carried out on 
IBM qasm simulator. The required number of basic quantum gates 
is as given in Table 2 for each of the two conformations tested.

8. Code availability

The Jupyter Notebook with the Python source code will be pro-
vided by the corresponding author upon request. The code uses 
IBM Quantum’s library QISKit [5] to render quantum circuits. The 
code can be executed directly in IBM Quantum’s Lab [32] or upon 
a local installation of Qiskit.

9. Conclusion

While it is impossible to solve the PSP problem in the HP model 
classically, it will be possible once quantum computers become 
fault-tolerant and large enough to allow for execution of large 
quantum circuits. As we show in this paper, a quantum counter-
part of the classical algorithm performs better with respect to both 
time and space. In order to store all possible conformations, calcu-
late their coordinates and energy, and finally select the minimum 
energy conformation, only a number of qubits that is polynomial 
(O (N3)) in the input size is required, where N is the number 
of amino acids in the input sequence. With respect to time, a 
quadratic speedup can be achieved compared to the classical al-
gorithm.
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In this paper, we use quantum computational principles of su-
perposition, entanglement and destructive/constructive amplitude 
interference to solve the problem of predicting the protein struc-
ture in the two-dimensional hydrophobic-hydrophilic model on a 
square lattice. The algorithm that we propose is, to our best knowl-
edge, the first quantum algorithm for PSP that is fully specified 
down to quantum gates. The algorithm correctly predicts the so-
lution, as defined under the HP model, and has a high probability 
of outputting the solution upon a measurement (see Fig. 7(b) and 
Fig. 7(d)). This high probability is corroborated by its theoretical 
estimation (see Appendix A).

Quantum computing is an emerging field. The presently avail-
able state-of-the-art quantum resources are limited. Most of the 
freely available quantum devices provide up to 14 qubits, some lab 
developments include up to 79 qubits [31,47,27,7]. Furthermore, 
the devices are not yet fault-tolerant to the extent of facilitating 
reliable, purposeful computation at low error rates. In fact, with 
more qubits added and with increasing circuit depth, the dynam-
ics of quantum devices becomes intractable [18]. Therefore, as an 
intermediate solution, IBM’s quantum simulator provides a plat-
form for reliable testing of quantum circuits of up to 32 qubits. 
The experimental evaluation of our algorithm was carried out on 
this simulator. Given the constraints on the qubit number, three 
amino acids were the maximal size that could be simulated and 
required 25 qubits. Our circuit depths reached 3,272 and 3,296 
quantum gates, respectively, for the two simulations. As such, these 
are some of the largest quantum circuits ever simulated.
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Appendix A. Theoretical probability of finding the minimum

The five qubits that are the inputs to Grover’s routine are |w〉
and |g〉. Let |k〉 stand for |w〉 |g〉. The initial state is

|ψ0〉 = 1√
32

∣∣k∗〉 + ∑
|k〉
=|k∗〉

1√
32

|k〉 (A.1)

where |k∗〉 is the single solution, i.e. the conformation that should 
be output after executing the PSP algorithm. The first application 
of the oracle negates the phase of the solution while leaving the 
phases of all other states intact:

|ψ1〉 = − 1√
32

∣∣k∗〉 + ∑
|k〉
=|k∗〉

1√
32

|k〉 (A.2)

The mean is given as

μ = 1

32

∑
αk (A.3)
k
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Its value in the first iteration of the algorithm is μ1 = 0.1657. The 
diffusion operator calculates

∑
k

(2μ − αk) |k〉 (A.4)

and results in the following state for the first iteration:

|ψ3〉 = 92

181

∣∣k∗〉 + ∑
|k〉
=|k∗〉

28

181
|k〉 (A.5)

This corresponds to the probability of outputting the solution upon 
measurement being 0.2583.

Following this procedure, at the end of the second iteration the 
probability of detecting the solution upon measurement is 0.6025. 
At the end of the third iteration, the probability of finding the so-
lution is 0.8971. At the end of the fourth iteration of the algorithm, 
the probability of seeing the solution is 0.9993. This value corre-
sponds closely to the one obtained by us in Fig. 7(d) and Fig. 8(d).
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