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Quantum Speedup for Protein
Structure Prediction
Renata Wong and Weng-Long Chang

Abstract— Proteinstructure prediction (PSP) predicts the
native conformation for a given protein sequence. Clas-
sically, the problem has been shown to belong to the
NP-complete complexity class. Its applications range from
physics, through bioinformatics to medicine and quantum
biology. It is possible however to speed it up with quan-
tum computational methods, as we show in this paper.
Here we develop a fast quantum algorithm for PSP in
three-dimensional hydrophobic-hydrophilicmodel on body-
centered cubic lattice with quadratic speedup over its clas-
sical counterparts. Given a protein sequence of n amino
acids, our algorithm reduces the temporal and spatial com-
plexities to, respectively,O(2

n
2 ) and O(n2 log n). With respect

to oracle-related quantum algorithms for the NP-complete
problems, we identify our algorithm as optimal. To justify the
feasibility of the proposed algorithm we successfully solve
the problem on IBM quantum simulator involving 21 and
25 qubits. We confirm the experimentally obtained high
probability of success in finding the desired conformation
by calculating the theoretical probability estimations.

Index Terms— Molecular algorithms, NP-complete prob-
lems, protein structure prediction, quantum algorithms,
quantum simulation, quantum speedup, quantum biology.

I. INTRODUCTION

PROTEIN structure prediction (PSP) is one of the unsolved
problems that in classical computation belong to the

NP-complete complexity class [1]. The purpose of PSP is to
predict the product of a protein’s folding process. A protein
(a linear sequence of amino acids) folds to assume its native
three-dimensional conformation.

The thermodynamic hypothesis [2], [3] states that the native
conformation of a protein is its thermodynamically most stable
conformation, and, with some rare exceptions, it does not
depend on whether the protein folds inside a cell or in a
test tube [4]. This fact, combined with established connec-
tions between the protein’s three-dimensional structure and its
functionality, has the potential to accelerate drug discovery
in medicine by enhancing the presently predominant trial-
and-error experiments with computer simulations to detect a
significant amount of drug issues in silico.

Manuscript received August 23, 2020; revised January 2, 2021;
accepted March 7, 2021. Date of publication March 10, 2021; date of
current version July 1, 2021. (Corresponding author: Renata Wong.)

Renata Wong is with the Department of Computer Science
and Technology, Nanjing University, Nanjing 210023, China (e-mail:
renata.wong@protonmail.com).

Weng-Long Chang is with the Department of Computer Sci-
ence and Information Engineering, National Kaohsiung University
of Science and Technology, Kaohsiung 80778, Taiwan (e-mail:
changwl@cc.kuas.edu.tw).

Digital Object Identifier 10.1109/TNB.2021.3065051

Though PSP remains intractable classically, quantum com-
putational methods can provide a significant speedup over their
classical counterparts by utilizing quantum mechanical proper-
ties such as superposition and entanglement. It has been shown
in [5] that the lower bound for quantum algorithms solving
NP-complete problems of input size n is �(2

n
2 ). This makes

Grover’s quantum search algorithm, which offers a quadratic
improvement in performance over classical search algorithms,
asymptotically the best achievable quantum speedup on hard,
classically intractable problems [5]–[7] such as PSP. Grover’s
algorithm has been successfully implemented on various quan-
tum computational devices and paradigms [8]–[11]. It is an
integral part of the quantum counting algorithm [12], which
has been tested experimentally as well [13]. It has also been
successfully used to solve the maximal clique problem with a
quadratic speedup [14]. It has been shown in [15] that finding
the solution using Grover’s algorithm can be made at zero
failure rate for any input size by replacing phase inversion with
phase rotation through a definite angle. The same holds for
multiple solutions [16]. Among the various modified Grover
algorithms (see e.g. in [17], [18]), the Grover-Long algorithm
[15] has been proven to be optimal [18]. In fact, as pointed
out in [19], Toyama et al. [18] have shown the Grover-
Long algorithm to be exactly optimal. The algorithm has been
experimentally demonstrated in a 3-qubit NMR system [20].

Some of the other remarkable advances in quantum algo-
rithms solving hard problems include Shor’s algorithm for
integer factorization [21]. Very small instances of this algo-
rithm have also been experimentally implemented on quantum
devices [22], [23], albeit, like in the case of all quantum
algorithms, the current number of commonly available quan-
tum bits is still very limited (up to around 14 qubits) and
doesn’t allow for testing on a scale necessary for real-world
applications. An insight into the capability of quantum com-
puters can however be deduced from experiments conducted
in 2019 using the Sycamore quantum processor. The experi-
ments have shown that the processor takes about 200 seconds
to sample one instance of a quantum circuit a million times,
while a state-of-the-art classical supercomputer would require
approximately 10,000 years for the same task [24]. Other
notable quantum experiments solving quantum information
problems, including that in quantum biology, have also been
reported [25]–[30].

Here we develop a quantum algorithm for PSP in three
dimensions under the HP model on a cubic lattice. The
algorithm incorporates Grover’s optimization algorithm to find
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the desired solution, which is the most stable conformation
for a given sequence of amino acids with respect to energy.
With n being the length of an amino acid sequence, our
algorithm achieves the asymptotic complexity O(2

n
2 ) for time

and O(n2 log n) for space. With respect to oracle-related
quantum algorithms for NP-complete problems, we identify
our algorithm as optimal.

A. Motivation

The hydrophobic-hydrophilic model considers all possible
conformations and selects the one with the lowest energy as the
native conformation. State-of-the-art classical supercomputers
do not provide enough memory even to store the conforma-
tional space of an arbitrary amino acid sequence. The IBM
OLCF-4 supercomputer for instance offers 250 petabytes (PB)
of storage, where 1P B = 250 bytes or 253 bits. While this
amount is enough to uniquely identify every conformation
in the conformational space of some of the smallest protein
sequences of ca. 50 amino acids in length, it is by far not
enough to do that for a larger protein. More importantly,
besides storing the conformational space, a large amount
of additional bits are needed to process the data, including
calculating the lattice coordinates, the energies and identifying
the native conformation. Besides not having sufficient memory
for the task, PSP has been shown to be NP-complete for
classical computers. It is therefore clear that no classical
supercomputer can solve the PSP problem in the HP model
for any real world protein.

B. Main Contributions and Novelty

While it is impossible to solve the PSP problem in the
HP model classically, quantum computers on the other
hand promise to offer a solution once quantum computing
becomes robust to errors and commercially feasible. As we
show in this paper, a quantum counterpart of the classical
algorithm performs better with respect to both time and
space. In order to store the conformational space and compute
all the necessary operations (such as coordinate and energy
calculation, Grover’s optimization) only a number of qubits
that is polynomial (O(n2 log n)) in the input size is required,
where the input is a sequence of n amino acids. With respect
to time, a quadratic speedup can be achieved compared to
the classical algorithm.

We use quantum computational principles of superposition,
entanglement and quantum phase interference to solve the
problem of predicting the protein structure. The proposed algo-
rithm is, to our best knowledge, the first quantum algorithm
for PSP that is fully specified down to single quantum gates.
The algorithm correctly predicts the solution, as defined under
the HP model, and has a high probability of observing the
solution upon a measurement (see IV). This experimentally
obtained probability is corroborated by its theoretical estima-
tion (see V). Our experimental implementation involves three
different tests. One test is carried out for the problem in three
dimensions, while the other two tests are for two dimensions.
The currently available state-of-the-art quantum resources are
limited, with most of them providing between a single qubit to

up to 14 qubits (some lab developments include up to 79 qubits
[24], [31]–[33]), and not yet fault-tolerant to the extent of
facilitating reliable, purposeful computation at low error rates.
In fact, with more qubits added and with increasing circuit
depth, the dynamics of quantum devices becomes intractable
[34]. Therefore, as an intermediate solution, IBM’s quantum
simulator provides a platform for reliable testing of quantum
circuits of up to 32 qubits. The experimental evaluation of our
algorithm was carried out on this simulator. Given the con-
straints on the qubit number, two amino acids are the maximal
size that can be simulated in three dimensions, while three
is the maximal size for two dimensions. Our circuit depths
ranged between 1,624-3,328 quantum gates (see Table II) and
were some of the largest quantum circuits ever simulated.

II. THE HP MODEL

We denote a protein sequence consisting of n amino
acids with a = a1 · · · an . Each ae denotes the amino acid
located at a position 1 ≤ e ≤ n in the sequence. The
hydrophobic-hydrophilic (HP) model for protein structure
prediction classified each amino acid either as hydrophobic
(H) or hydrophilic/polar (P) based on parameters obtained in
physical experiments [35]. The hydrophobicity status of an
amino acid can be stored in a single qubit, where |1� stands
for a hydrophobic and |0� stands for a hydrophilic amino acid.

Under the three-dimensional HP-model, the sequence is
mapped into a cubic lattice. We use the body-centered cubic
lattice (Fig. 1a) for the mapping. This choice of lattice is
not arbitrary. It has been shown [36] that the body-centered
cubic lattice performs best for the hydrophobic-hydrophobic
interactions, which constitute the key physical component of
the model. As such, this type of lattice is able to reproduce
correctly both helices and sheets [36], the two canonical
structures present in three-dimensional protein folds [37].

Finding the native conformation for a protein is usually
subdivided into three steps. In the first step, the number of all
possible conformations is determined. In the second step, the
energy values for each possible conformation are calculated
based on a scoring function that is particular to the given
PSP model. And in the last step, the conformation with the
lowest free energy is selected. For the HP model, evaluation
of conformations is performed by a scoring function

V = −|(|ai = 1�, |a j = 1�)| (1)

This function counts the number of all hydrophobic-
hydrophobic contacts between amino acids ai and a j that are
present in the lattice but not in the sequence (as represented
by the dotted line in Fig. 1b). These are often referred to as
loose contacts. Fig. 1b shows an example conformation of the
sequence

� |ai� for 1 ≤ i ≤ 4 with such a loose contact
present between the first and the last amino acid in the lattice.
The two amino acids are not adjacent in the sequence. Here,
in accordance with the usual convention,

�
stands for the

tensor product.

III. QUANTUM ALGORITHM

The solution to the PSP problem is obtained in four steps.
First, the quantum system is initialized to a superposition state
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Fig. 1. (a) Body-centered cubic lattice (bcc) with the eight coordinate
transitions and their encoding with regard to the coordinates x, y, and
z of each lattice point. The given encoding is used in our algorithm
and is reproduced in Table I with the difference that a −1 in the lattice
above corresponds to a 0 in Table I (−1, respectively) indicates that for
a transition to take place, a 1 has to be added to (subtracted from) the
existing coordinate value. The encoding of the transitions can be chosen
arbitrarily. (b) Example conformation of length n = 4 embedded in bcc
lattice with hydrophobic (•) and hydrophilic (◦) amino acids indicated.
Solid lines indicate direct contacts in the conformation, while dotted lines
indicate hydrophobic lattice contacts. |xi�|yi�|zi� for 1 ≤ i ≤ 4 are the
respective amino acid coordinates.

that uniquely identifies each conformation. Second, confor-
mations are mapped into a lattice and their coordinates are
calculated in superposition. Third, the energy is computed for
each conformation in superposition. The energy corresponds
to the number of loose contacts. And finally, the conformation
with the lowest energy (highest number of loose contacts) is
selected by iterating Grover’s algorithm. The following four
subsections in detail describe the four steps above.

A. Preparing a Uniform Superposition State

A quantum register of length n stores the given amino acid
sequence of length n. Each of the amino acids is denoted
as |ae� where 1 ≤ e ≤ n. Correspondingly, each qubit |ae�
is initialized to either |0� (if it is hydrophilic), or |1� (if it is
hydrophobic). Notation |β i � is assumed throughout to indicate
that a qubit |β� has a value |i� for i ∈ {0, 1}.

The Cartesian coordinates of e-th lattice site are: (xe, ye, ze),
where 1 ≤ e ≤ n. Binary variables wd,c with c ∈ {1, 2, 3}
(Table I) encode the eight possible transitions in a bcc lattice
from the (d − 1)-th to the d-th lattice site for 2 ≤ d ≤ n. The
location of the first amino acid is fixed at the value |x1� =
|y1� = |z1� = 0.

Representation of lattice coordinates x , y, and z requires
2(n − 1)+ 1 values for each: the number 0, n − 1 positive and
n−1 negative numbers. The smallest number of bits necessary
to represent each of the coordinate values is therefore t =
�log2(2(n − 1)+ 1)�. All three coordinates of e-th lattice site
are encoded as:

� |xe�,� |ye�,� |ze�, where 1 ≤ e ≤ n.
Three binary variables wd,1, wd,2, and wd,3 (Table I) encode
the eight possible transitions in a bcc lattice from the (d−1)-th
to d-th lattice site, where 2 ≤ d ≤ n.

The system is set into a superposition state of n + 1 qubits
involving the 23(n−1) possible conformations and an auxiliary
qubit |g� = |0� used in oracle:

|ψ1� = 1�
23(n−1)

23(n−1)−1�
w=0

|w�(|0� + |1�)√
2

|a�|xw�|yw�|zw� (2)

Here, |a� represents the encoded amino acid sequence,
while |xw�, |yw�, and |zw� represent the registers holding the

TABLE I
ENCODING FOR TRANSITION DIRECTIONS

x , y, and z coordinate, respectively, for each conformation
that is uniquely identified by the values of |w�. All the
coordinates have initially the default value of 0. For the sake of
clarity, we have omitted smaller auxiliary registers that will be
needed to store temporary values when conducting quantum
addition.

B. Calculating Coordinates

Coordinate calculation is carried out in two steps on each
of the amino acids in a conformation starting from amino acid
d = 2 and ending on d = n. In the first step the coordinates
xd−1, yd−1, and zd−1 of the (d − 1)-th amino acid are copied
to the coordinates xd , yd , and zd of the d-th amino acid.
This operation can be implemented by the controlled Pauli-X
gate: |td� = |td−1 ⊕ t0

d �, where t ∈ {x, y, z}, and td−1 is
the control qubit while t0

d is the target qubit. In the second
step, the respective coordinates of the d-th amino acid are
adjusted based on the value of |w� (Table I). The encoding of
directional transitions is arranged in such a way that the three
values in |wd,c� can be treated separately. Namely, c = 1, 2, 3
corresponds to the z, y, and x coordinate, respectively. When-
ever |wd,c� = |0� the respective coordinate td is decremented
by 1, while for |wd,c� = |1� td is incremented by 1.

After completing this operation, the coordinates of each
amino acid in each conformation have been mapped onto
their location in the lattice. With this, the |xw�, |yw�, and |zw�
registers in Equation 2 contain no longer all-zero values but
in fact the coordinates for each single conformation.

C. Finding Energy Values

The energy value for each conformation is stored in the state
|�k, j,p�, where 1 ≤ k, j ≤ n and 0 ≤ p ≤ 7. Every single
qubit |�k, j,p� stores a |1� if and only if the coordinates of
the k-th lattice site are adjacent to the coordinates of the j -th
lattice site in the bcc lattice and both k and j are hydrophobic.
Index p indicates which of the possible eight neighbors j is
with respect to k in accordance with Table I (here we assume
p = w3w2w1). For instance, |�k, j,6� = |1� indicates that the
neighbor j is in the upper front corner of k (UF ).

Finding adjacent lattice contacts entails comparisons of
coordinates. We assume that the x , y, and z coordinates of
the eight adjacent sites j of a site k are denoted by x∗, y∗
and z∗, respectively, and that they together form the state
|x∗

k, j,p�|y∗
k, j,p�|z∗

k, j,p�, where 1 ≤ k, j ≤ n, and 0 ≤ p ≤ 7.
The structure of bcc lattice prevents contacts between the

first three amino acids in a sequence. Therefore, the compar-
ison of amino acid k with other amino acids starts with the
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fourth amino acid relative to k. Hence, here 1 ≤ k ≤ n − 3
while k+3 ≤ j ≤ n. The operation of finding the energy value
for a conformation has three steps (1-3). For each ordered pair
(k, j) (1) eight copies of coordinates x , y, and z of site k
are stored in eight sets of states x∗, y∗, and z∗ of site j by
means of controlled Pauli-X gates. Each of the eight copies
is for a different relative position of j with respect to k. For
example, for k = 1 and j = 4, |x1�|y1�|z1� are copied to
|x∗

1,4,p�|y∗
1,4,p�|z∗

1,4,p�, respectively, where 0 ≤ p ≤ 7 refers
to each of the eight possible adjacent lattice sites. We note that
this copy operation does not violate the no-cloning theorem
[38] because each time the target bits x∗ = y∗ = z∗ = 0.
In the case of target bits being zero, the controlled NOT
operation is equivalent to copying values from control bits
to target bits. In the case of target bits not being zero, the
controlled Pauli-X gate will perform an exclusive disjunction
operation. (2) Depending on the value of p (p = w3w2w1,
Table I), the coordinates x∗, y∗, and z∗ of j are then modified
to fit the respective potential eight neighbors of each k by
either incrementing or decrementing them by 1. For example,
for p = 4, |x∗

1,4,p�|y∗
1,4,p�|z∗

1,4,p� = |001�|111�|111�. (3) A
controlled Pauli-X operation |x j ⊕ x∗

k, j,p� is carried out for
each combination of k, j, p where the starred coordinates are
the target bits. If both control and target bits are equal -
implying that j is a neighbor of k in the lattice but not in the
sequence - this operation will result in |x∗

k, j,p�|y∗
k, j,p�|z∗

k, j,p�
having zero-only values. If additionally both k and j are
hydrophobic, meaning that a loose contact has been found,
the corresponding state |�k, j,p� is set to |1�. Otherwise,
|�k, j,p� = |0�.

The energy values stored in |�k, j,p� must subsequently be
summed up for each conformation into a string of the form:

|sw� =
�

j

|sn−3,7, j �w (3)

where n−3 is the highest value of k, 7 is the highest value of p,
and j ranges therefore from 8(n−3) through 0. |sw� is a string
of 0’s with a single digit being a 1. Its computation process is
shown in the flow diagram in Fig. 2. The initial conditions are
listed in the top element. The output (string |sw�) is obtained
upon reaching the End element. ∧, ∨, and the bar are the
bitwise AND, OR, and negation operations, respectively. ⊕
stands for the controlled Pauli-X gate (addition modulo 2).

With the above, the quantum state of the system becomes:
|ψ2� = |ψ1�|x∗

w�|y∗
w�|z∗

w�|�w�|sw� (4)

where |x∗
w�, |y∗

w�, |z∗
w� are auxiliary registers used for deter-

mining adjacency, |�w� stores the information on loose con-
tacts, and |sw� stores the number of loose contacts for each
conformation.

D. Identifying the Conformation With the Minimal Energy

After obtaining the string |sw� containing information on the
number of hydrophobic lattice contacts for each conformation
in superposition, a search algorithm must be executed to find
the native conformation. Under the HP model, the native
conformation is the one with the highest number of loose

Fig. 2. The flow diagram for summing up the energy values into a single
string.

contacts. One of the widely used algorithms is the Grover
search algorithm [6] which amplifies the solution through
multiple calls to an oracle. We use the Grover algorithm
in our experimental validation of the PSP algorithm to find
the native conformation. It should be noted that each of the
8(n − 3) possible meaningful values of string |s� can be used
to implement an oracle that compares this string with its actual
value for each conformation in a superposition.

Grover’s algorithm takes the quantum superposition state in
Eq. 2 and amplifies the probability amplitude of the solution
state so that upon measuring the state |w�, the solution is found
with a high probability. The prescribed number of iterations is
π
4

�
23(n−1). We denote the solution as |w∗�. Applying oracle

to the state |ψ1� in Eq. 2 results in the phase inversion for the
solution:

|ψ3�= 1�
23(n−1)

⎛
⎝ �
w =w∗

|w�(|0� + |1�)√
2

+ |w∗�(|0� − |1�)√
2

⎞
⎠
(5)

Here, for the sake of neatness, we omit the registers
|a�, |xw�, |yw�, |zw�, |x∗

w�|y∗
w�|z∗

w�|�w�|sw�. Register |a� does
not change throughout computation, while for the remaining
registers the index will be either w = w∗ or w = w∗
depending on whether they are part of the solution (w = w∗)
or not (w = w∗).

After that, the diffusion operator carries out a reflection by
the |0� vector by calculating

Udi f f =
�
|w,g�

(2μ− α|w,g�)|w, g� (6)

where μ stands for the mean value of the amplitudes of all
conformations in superposition.

E. Complexity Assessment

Given that an amino acid sequence is of length n, as the first
main task, our algorithm not only encodes the sequence using
n qubits but also uses additional qubits to encode directional
transitions between amino acids, i.e. vector |w�. After the
encoding step, our algorithm then creates a superposition
over the vector |w�. This vector in superposition encodes all
possible directional transitions from one amino acid to another
in a sequence and constitutes therefore a unique identifier for
each possible conformation. The number of bits in |w� before
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Fig. 3. A circuit schematic for the PSP algorithm for sequence length
n = 2. Ucoord is the unitary operation of coordinate calculation with its
inverse being U†

coord. Uener is the unitary operation of energy calculation

with its inverse being U†
coord. Uf and Udiff represent, respectively, the ora-

cle and the diffusion operator of Grover’s optimization routine. Symbols
inside operation boxes indicate which quantum registers participate in
the operation and the values of these registers upon input/output (either
|0� or calculated (|g�, |w�, |e�, |x�, |y�, or |z�)).

superposition is 3 × (n − 1). For that reason, the number of
elements that are the inputs to our algorithm is N = 23×(n−1),
i.e. the magnitude of |w� after applying Hadamard gates
to create a superposition. The number of elements in |w�
in superposition is used to estimate the optimal number of
Grover’s iterations for labelling the answer(s) and completing
the amplification of the amplitude of the answer(s), as also
shown in Fig. 3. This gives us the asymptotic time complexity
of O(2n/2).

Next, as the second main task, our algorithm uses additional
quantum bits to encode all of the sequence’s possible coordi-
nates, i.e. the conformational space of an amino acid sequence.
Encoding of coordinates takes 3×n×log(2×(n−1)+1) qubits.
Next, as the third main task, our algorithm uses auxiliary
quantum bits to conduct adjacency determination between any
two amino acids. Encoding of the auxiliary quantum bits for
adjacency determination takes 7 × (n2 × log(2 × (n − 1)+ 1))
qubits. Other small number of quantum bits are negligible with
respect to asymptotic spatial complexity. Taken together, this
gives a spatial complexity of O(n2 ×log n). A simple example
is shown in the experimental implementation in Section IV.

IV. EXPERIMENTAL IMPLEMENTATION

A smallest instance of the PSP algorithm requires several
hundred logical qubits, which is more than are currently
available on any quantum device or simulator. Therefore,
we simulate a simplified version of the algorithm to confirm its
correctness. The simulations were executed on IBM simulator
which allows tests of quantum circuits of up to 32 qubits.
Given the presently available quantum computing resources,
n = 2 (requires 21 qubits) was the maximal length that
could be tested on the bcc lattice. Additionally, we also
include simulations conducted on a two-dimensional square
lattice for n = 3 (requires 25 qubits, maximal for this
dimensionality). Three computations were successfully carried
out: (A) identifying a single solution |w� = |110� for amino
acid sequence |11� in three dimensions, (B) identifying a single

Fig. 4. Four possible conformations with adjacent hydrophobic-
hydrophobic contacts for amino acid sequence |101� of length L = 3.
Each edge is of unit length. Arrows indicate the first amino acid and
the transition direction from the first amino acid to the second amino
acid. The sequences of transition directions are as follows. R stands
for transition rightwards, D downwards, L leftwards, and U upwards. (a)
|w� = |RD� = |0110�. (b) |w� = |LD� = |1110�. (c) |w� = |DL� = |1001�.
(d) |w� = |DR� = |1011�.

solution |w� = |1001� for amino acid sequence |101� (see
Fig. 4c), and (C) identifying four solutions |w� = |0110�,
|1110�, |1001�, and |1011� for amino acid sequence |101�
(see Fig. 4). The results of all three computations confirm the
validity of our algorithm and demonstrate a high probability
of finding the solution(s): 0.954 for (A) (Fig. 5b), 0.999
for (B) (Fig. 5d), and 0.222 − 0.263 for each of the four
solutions in (C) (Fig. 5f). All three experimentally obtained
values correspond closely to the theoretical estimations of
the probability of finding the correct conformation under the
respective model given in Fig. 5.

Length n = 2 required 21 qubits and was the maximal
length that could be simulated without exceeding the 32 qubit
limit. A sequence |a� = |11� was assumed implicitly, while
the arbitrarily chosen conformation was |w� = |110�.

With this in mind, each of the simplified instances of the
algorithm consists of the following steps:

1) Register initialization, including setting the system into
a superposition over vectors |w�, which encodes the
directional transitions for all candidate conformations,
and |g�, which is an ancillary qubit storing temporarily
information about the energy of each conformation.

2) Calculation of three-dimensional Cartesian coordinates
|x�, |y� and |z� (for (A) only) for each conformation.

3) Calculation of energy values for each conformation. The
energy value is stored in quantum register |e�. |e� = |1�
if and only if the respective conformation is a solution.

4) Transfer of the energy value from vector |e� to |g� and
flipping the sign of |g� whenever |g� = |1�. This step
fulfills a twofold function. On the one hand, it calculates
the energy of each conformation and, on the other
hand, it inverts the phase of the solution(s). The latter
corresponds in its function to the oracle in Grover’s
algorithm.

5) Uncomputing the energies of each conformation. This
step is required for the proper functioning of Grover’s
diffusion operator in step 7.

6) Uncomputing the coordinates of all conformations by
executing the coordinate calculation step in reverse. This
step results in all coordinates being reset to all-zero
values and is required for the correct performance of
Grover’s algorithm in the last step of our algorithm.

7) Application of Grover’s diffusion operator to registers
|w� and |g�.

Steps 2. through 7. are iterated over as many times as the
Grover algorithm requires for a given number of solutions and
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TABLE II
RESOURCES REQUIRED FOR EACH CASE

candidate conformations. The required number of iterations is

π

4



N

M
(7)

where N is the number of candidate conformations and M is
the number of solutions.

Fig. 3 shows the general schematic of a simplified instance
of the algorithm. Only the working qubits are shown. Ini-
tialization involves setting the system into a superposition
over |w� and |g�. Then each conformation has its coordinates
calculated in superposition depending on the value of |w� with
a controlled quantum adder. With the coordinates known, the
energy value for each conformation is calculated. The energy
|e� = |1� if and only if the conformation has the desired
contacts in the lattice. Otherwise, |e� = |0�. For the coordinate
and energy results see Fig. 5a. Next, qubit |g� is used in the
oracle to invert the phase of the conformation that has energy
value |e� = |1�, resulting in

|ψ �
3� = 1�

23(n−1)

23(n−1)−1�
w=0

|w�(|0� + (−1)e+1|1�)√
2

(8)

in accordance with the state |ψ3� in Eq. 5.
The energy values and the coordinates must then be un-

computed before the diffusion operator can be applied. The
measurement is carried out on the state |w�, which uniquely
identifies each conformation. The experimental results confirm
the validity of our algorithm and demonstrate a high probabil-
ity of finding the solution(s). The experimental results corre-
spond closely to the theoretical estimations of the probability
of finding the correct conformation calculated below.

A. Assessment of Resources

Case (A) required 21 qubits, while both (B) and (C)
required 25 qubits each. Table II lists the number of gates
used for each of the three cases.

B. Data Availability

The experimental validation was carried out on IBM’s qasm
simulator using the QISKit software development kit [39].
The Python source files are available on request from the
corresponding author.

V. THEORETICAL PROBABILITY OF IDENTIFYING THE

MINIMUM ENERGY CONFORMATION

We verify the experimental results obtained in the previous
section by estimating the theoretical probability of obtaining a
solution, which corresponds to the respective native conforma-
tion under the HP model. We show the detailed calculation for

Fig. 5. Outputs of the PSP algorithm, to be read from top to bottom.
(a) Calculation of coordinates and energies for (A). The first three bits
represent |w�, the next nine represent the coordinates x2, y2, and z2,
of the second amino acid (three bits for each coordinate). The coordinates
x1, y1, and z1 of the first amino acid are fixed at all-zero values. The last
bit represents the energy value e. Only the conformation |w� = |110�
correctly shows |e� = |1�. (b) Solution |w� = |110� is observed with
prob. 0.954 after three iterations. The result corresponds closely to
the theoretical estimation of 0.9613. (c) Calculation of coordinates and
energies for (B). The first four bits represent |w�, the next twelve represent
the coordinates x2, x3, y2 and y3, of the second and the third amino acid,
respectively (three bits for each coordinate). The coordinates x1 and y1
of the first amino acid are fixed at all-zero values. The last bit represents
the energy value e. Only the conformation |w� = |1001� correctly shows
|e� = |1�. (d) Solution |w� = |1001� is observed with prob. 0.999 after four
iterations. The result corresponds closely to the theoretical estimation of
0.9993. (e) Calculation of coordinates and energies for (C). The first four
bits represent |w�, the next twelve represent the coordinates x2, x3, y2
and y3, of the second and the third amino acid, respectively (three bits
for each coordinate). The coordinates x1 and y1 of the first amino acid
are fixed at all-zero values. The last bit represents the energy value e.
Only the four conformations |w� = |1001�, |0110�, |1110�, and |1011�
have |e� = |1�. (f) The four solutions are observed after one iteration
with probability between 0.222 − 0.263 each. This result corresponds
closely to the expected theoretical probability 0.2363 of finding each of
the solutions.

the case (A) only. For the cases (B) and (C), we provide only
the respective mean value and the probability of identifying
correctly the right conformation for each iteration. The number
of iterations is obtained from Formula 7.

For the case (A), the number of iterations is therefore π ≈ 3.
The four qubits that are the inputs to the diffusion operator
of the PSP algorithm are |w� and |g�. Let |k� denote |w�|g�.
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The state of these four qubits is initially

|φA,1� = 1

4
|k∗� +

�
|k�=|k∗�

1

4
|k� (9)

where |k∗� is the single solution, i.e. the conformation that
should be output after executing the PSP algorithm. The first
application of the oracle negates the phase of the solution:

|φA,2� = −1

4
|k∗� +

�
|k�=|k∗�

1

4
|k� (10)

The mean in the first iteration of the algorithm is μ1 = 0.2187.
The diffusion operator is

Udi f f =
�

k

(2μ− αk)|k� (11)

and its application results in the following state for the first
iteration:

|φA,3� = 11

16
|k∗� +

�
|k�=|k∗�

3

16
|k� (12)

This corresponds to the probability of outputting the solution
upon measurement being 0.4726.

In the second iteration, the oracle inverts the phase of the
solution resulting in the following state:

|φA,4� = −61

64
|k∗� +

�
|k�=|k∗�

5

64
|k� (13)

The mean is μ3 = 0.0136 for this iteration. And therefore
the diffusion operator amplifies the phase of the solution as
follows:

|φA,5� = 251

256
|k∗� −

�
|k�=|k∗�

293

256
|k� (14)

Hence, upon measuring the state after the third iteration of
the PSP algorithm, the probability of seeing the solution is
0.9613.

The probability calculations of finding the solution(s) for
the cases (B) and (C) can be carried out along the same lines.
In both cases, the five qubits that are the inputs to Grover’s
routine are |w� and |g�. Let |k� denote |w�|g�. For (B), the
number of iterations is

√
2π ≈ 4 and the state of these five

qubits is initially

|φB,1� = 1√
32

|k∗� +
�

|k�=|k∗�

1√
32

|k� (15)

where |k∗� is the single solution, i.e. the conformation that
should be output after executing the PSP algorithm. Table III
shows the mean value and the probability of observing the
desired solution upon a measurement after each of the four
iterations.

For the case (C), the number of iterations is
√

2
2 π ≈ 2. The

five qubits |w� and |g� are initially in the state

|φC,1� =
�
|k∗�

1√
32

|k∗� +
�

|k�=|k∗�

1√
32

|k� (16)

where |k∗� are the four solutions, i.e. the conformations that
should be output after executing the PSP algorithm. Table IV

TABLE III
THEORETICAL ESTIMATION OF PROBABILITY FOR CASE (B)

TABLE IV
THEORETICAL ESTIMATION OF PROBABILITY FOR CASE (C)

shows the mean value and the probability of observing each
of the four solutions after each iteration.

All three probability estimations presented in this section
correspond closely to the experimentally obtained probabilities
and corroborate thereby the correctness of our PSP algorithm.

VI. CONCLUSION

We have proposed a quantum algorithm for the problem of
protein structure prediction in three-dimensional hydrophobic-
hydrophilic model on body-centered cubic lattice that offers
a quadratic speedup over its classical counterparts and has
polynomial space requirements. We have also demonstrated
the correctness of our algorithm by conducting a simulation
on the IBM quantum simulator. We have further confirmed
the correctness of the experimental results by calculating the
theoretical estimation of finding the solution. Given the recent
progress in the development of quantum computing devices,
we hope that our algorithm could be implemented and tested
on real life proteins in foreseeable future.

We note that the database containing all possible conforma-
tions can be seen as a structured one, especially with respect
to the string |sw� which contains the energy value for each
conformation. However, in order to calculate this string, one
needs to apply Grover’s algorithm first. Therefore, since the
database becomes sorted only after Grover’s algorithm has
been applied to it, the search is effectively executed on an
unstructured database.

Despite being the best possible under Grover’s algorithm,
we note that a square root improvement over 2n still renders
the problem intractable. The quadratic advantage just pushes
the exponential wall along a bit. We also would like to stress
that with the quadratic advantage the improvement in the time
required to execute the algorithm is better for larger n, i.e. for
longer amino acid sequences than for shorter ones.
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