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 

Abstract— In this paper, we propose a bio-molecular 
algorithm with O(n2 + m) biological operations, O(2n) DNA 
strands, O(n) tubes and the longest DNA strand, O(n), for 
solving the independent-set problem for any graph G with 
m edges and n vertices. Next, we show that a new kind of 
the straightforward Boolean circuit yielded from the bio-

molecular solutions with m NAND gates, (m + n  (n +1)) 

AND gates and ((n  (n + 1)) / 2) NOT gates can find the 
maximal independent-set(s) to the independent-set 
problem for any graph G with m edges and n vertices. We 
show that a new kind of the proposed quantum-molecular 
algorithm can find the maximal independent set(s) with the 

lower bound (2n/2) queries and the upper bound (2n/2) 
queries. This work offers an obvious evidence that to solve 
the independent-set problem in any graph G with m edges 
and n vertices, bio-molecular computers are able to 
generate a new kind of the straightforward Boolean circuit 
such that by means of implementing it quantum computers 
can give a quadratic speed-up. This work also offers one 
obvious evidence that quantum computers can 
significantly accelerate the speed and enhance the 
scalability of bio-molecular computers. Furthermore, to 
justify the feasibility of the proposed quantum-molecular 
algorithm, we successfully solve a typical independent set 
problem for a graph G with three vertices and two edges by 
carrying out experiments on the backend ibmqx4 with five 
quantum bits and the backend simulator with 32 quantum 
bits on IBM’s quantum computer. 

 
Index Terms— data structures and algorithms, 

independent-set problem, molecular algorithms, molecular 
computing, quantum algorithms, quantum computing 
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I. MOLECULAR ALGORITHM FOR SOLVING THE INDEPENDENT 

SET PROBLEM 

A. Definition of the Independent Set Problem 

Let G be a graph and G = (V, E), where V is a set of vertices 

and E is a set of edges in G. An independent set of graph G is a 

subset V1  V of vertices such that for all va, vb  V1, the edge 

(va, vb) is not in E [1, 2]. 

Definition 1-1: The independent set problem of graph G with 

n vertices and m edges is to find a maximum-sized independent 

set in G. 

B. Biomolecular Operations 

Definition 1-2: Given set X = {xn xn  1  x2 x1  xd  {0, 1} 

for 1  d  n} and a bit xj, the bio-molecular operation “Append-

Head” appends xj onto the head of every element in set X. 

Formally, Append-Head(X, xj) = {xj xn xn  1  x2 x1  xd  {0, 

1} for 1  d  n and xj  {0, 1}}. 

Definition 1-3: Given set X = {xn xn  1  x2 x1  xd  {0, 1} 

for 1  d  n} and a bit xj, the bio-molecular operation “Append-

Tail” appends xj onto the end of every element in set X. 

Formally, Append-Tail(X, xj) = {xn xn  1  x2 x1 xj  xd  {0, 

1} for 1  d  n and xj  {0, 1}}. 

Definition 1-4: Given set X = {xn xn  1  x2 x1  xd  {0, 1} 

for 1  d  n}, the bio-molecular operation “Discard(X)” resets 

X to an empty set and can be represented as “X = ”. 

Definition 1-5: Given set X = {xn xn  1  x2 x1  xd  {0, 1} 
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for 1  d  n}, the bio-molecular operation “Amplify(X, {Xi})” 

creates a number of identical copies Xi of set X, and then 

discards X with the help of “Discard(X)”. 

Definition 1-6: Given set X = {xn xn  1  x2 x1  xd  {0, 1} 

for 1  d  n} and a bit xj, the bio-molecular extract operation 

has two kinds of representation. The first representation is +(X, 

xj
1) = {xn xn  1  xj

1  x2 x1  xd  {0, 1} for 1  d  j  n} 

and (X, xj
1) = {xn xn  1  xj

0  x2 x1  xd  {0, 1} for 1  d  

j  n} if the value of xj is equal to one. The second representation 

is +(X, xj
0) = {xn xn  1  xj

0  x2 x1  xd  {0, 1} for 1  d  j 

 n}and (X, xj
0) = {xn xn  1  xj

1  x2 x1  xd  {0, 1} for 1 

 d  j  n} if the value of xj is equal to zero. 

Definition 1-7: Given m sets X1  Xm, the bio-molecular 

merge operation is (X1, , Xm) = X1    Xm. 

Definition 1-8: Given set X = {xn xn  1  x2 x1  xd  {0, 1} 

for 1  d  n}, the bio-molecular operation “Detect(X)” returns 

true if X is not an empty tube. Otherwise, it returns false. 

Definition 1-9: Given set X = {xn xn  1  x2 x1  xd  {0, 1} 

for 1  d  n}, the bio-molecular operation “Read(X)” describes 

any element in X. If X contains many different elements, this 

operation gives an explicit description of exactly one of them. 

C. Molecular Algorithm for Solving the Independent Set 
Problem 

From Def. 1-1 we have that for any graph G with n vertices 

and m edges, all possible independent sets are the 2n possible 

choices. Each possible choice corresponds to a subset of 

vertices in G. Therefore, it is assumed that Y is a set of 2n 

possible choices, i.e., {yn yn  1  y2 y1  yd  {0, 1} for 1  d 

 n}. For the sake of presentation, we assume that yd
0 indicates 

that the value of yd is zero and yd
1 indicates that the value of yd 

is one. We propose the following molecular algorithm to solve 

the independent set problem for arbitrary graph G. Parameter Y0 

is an empty tube (set); n represents the number of vertices while 

m represents the number of edges. Each tube in the Procedure 

Solve-independent-set-problem is empty and regarded as an 

auxiliary storage. 
Procedure Solve-independent-set-problem(Y0, n, m) 

(0a) Append-Tail(X1, yn
1). (0b) Append-Tail(X2, yn

0). 

(0c) Y0 = (X1, X2). 

(1) For d = n  1 downto 1 

(1a) Amplify(Y0, X1, X2). (1b) Append-Tail(X1, yd
1). 

(1c) Append-Tail(X2, yd
0). (1d) Y0 = (X1, X2). 

End For 

(2) For each edge, ek = (vi, vj), in G where 1  k  m and bits yi and 

yj respectively represent vertices vi and vj. 

(2a) P1 = +(Y0, yi
1) and P3 = (Y0, yi

1).  

(2b) P2 = +(P1, yj
1) and P4 = (P1, yj

1). 

(2c) Y0 = (P3, P4). (2d) Discard(P2). 

End For 

(3) For i = 0 to n-1 

(4) For j = i down to 0 

(4a) Yj + 1
ON = +(Yj, yi+1

1) and Yj = (Y j, yi+1
1). 

(4b) Yj + 1 = (Yj + 1, Yj + 1
ON). 

End For 

End For 

(5) For c = n down to 1 

(5a) If (detect(Yc)) then 

(5b) Read(Yc) and terminate the algorithm. 

        EndIf 

EndFor 

EndProcedure 

  

Lemma 1-1: The independent set problem for a graph G with 

m edges and n vertices can be solved by the molecular algorithm 

Solve-independent-set-problem(Y0, n, m). 

Proof: Each execution of Steps (0a) and (0b), respectively, 

appends the value “1” for yn as the first bit of every element in 

a set X1 and the value “0” for yn as the first bit of every element 

in a set X2. Next, each execution of Step (0c) creates the set 

union for the two sets X1 = {yn
1} and X2 = {yn

0} so that Y0 = X1 

 X2 = {yn
1, yn

0}, X1 =  and X2 = . 

Next, each execution of Step (1a) creates two identical copies, 

X1 and X2, of set Y0, and Y0 = . Each execution of Step (1b) 

then appends the value “1” for yd onto the end of yn … yd + 1 for 

every element in X1. Similarly, each execution of Step (1c) also 

appends the value “0” for yd onto the end of yn … yd + 1 for every 

element in X2. Next, each execution of Step (1d) creates the set 

union for the two sets X1 and X2 so that Y0 = X1  X2, and X1 = 

 and X2 = . After repeatedly executing Steps (1a) through 

(1d), Y0 = {yn yn  1  y2 y1  yd  {0, 1} for 1  d  n} consists 

of 2n DNA strands that encode 2n possible choices. 

Next, Step (2) is a loop that evaluates each formula of the 

form (𝑦𝑖 Λ 𝑦𝑗) for the kth edge in G where 1  k  m. On each 

execution of Step (2a), DNA strands in tube P1 have yi = 1, 

DNA strands in tube P3 have yi = 0, and tube Y0  = . Next, on 

each execution of Step (2b), DNA strands in tube P2 have yi = 

1 and yj = 1, DNA strands in tube P4 have yi = 1 and yj = 0, and 

tube P1  = . This indicates that molecular solutions in tube P2 

contain two vertices in the kth edge and are illegal independent 

sets; molecular solutions in tube P4 only contain one vertex in 

the kth edge and are legal independent sets; and molecular 

solutions in tube P3 contain one vertex or no vertices in the kth 

edge and are legal independent sets. Then, on each execution of 

Step (2c), tube Y0 contains those DNA strands that encode legal 

independent sets, tube P3 = , and tube P4  = . Next, on each 

execution of Step (2d), illegal independent sets encoded by 

DNA strands in tube P2 are discarded. After repeatedly 

executing Steps (2a) through (2d), tube Y0 consists of those 

DNA strands that satisfy ∧𝑘=1
𝑚 (𝑦𝑖 ∧ 𝑦𝑗̅̅ ̅̅ ̅̅ ̅̅ ) that is the true value for 

the kth edge in G for 1  k  m. 

Each execution of Step (4a) at the iteration (i, j) is applied to 

compute the influence of yi + 1 on the number of ones in tubes 

(sets) Yj + 1 and Yj. This is to say that tube (set) Yj + 1
ON has yi + 1 

= 1 and tube (set) Yj has yi + 1 = 0. This indicates that at the 

iteration (i, j) in the two-level nested loop, the influence of yi + 1 

on the number of ones is to record single ones in tube (set) Yj + 

1
ON and also to record zero ones in tube (set) Yj. Next, upon each 

execution of Step (4b) at the iteration (i, j), the merge operation 

is applied to pour the content of tube (set) Yj + 1
ON into tube (set) 

Yj + 1. This indicates that at the iteration (i, j), the influence of yi 

+ 1 on the number of ones is to record single ones in tube (set) Yj 

+ 1. Next, from the iteration (i, j  1) through the iteration (n  

1, 0), similar processing is applied to compute the influence of 

yi + 1 through yn on the number of ones. Hence, after each 

operation is completed, those DNA strands in tube Yi for 0  i 

 n have i ones that contain i vertices. Next, on each execution 

of Step (5a), if there are DNA strands in tube Yc, a “true” is 

returned. Next, on each execution of Step (5b), the answer of a 
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maximum-sized independent set is read and the algorithm 

terminates.    

D. Time and Space Complexity of Molecular Algorithm 
for Solving the Independent Set Problem 

The following lemma describes the time complexity, the 

volume complexity of solution space, the number of tubes used 

and the longest library strand in solution space for the algorithm 

Solve-independent-set-problem(Y0, n, m). 

Lemma 1-2. The independent set problem for any graph G 

with n vertices and m edges can be solved with O(n2 + m) = 

O(n2)  biological operations, O(2n) DNA strands, O(n) tubes 

and the longest DNA strand, O(n). 

Proof: The above numbers follow directly from analysis of 

the algorithm Solve-independent-set-problem(Y0, n, m). 

E. The Straightforward Boolean Circuit for Determining 
Independent Sets from Bio-molecular Solutions 

After completing Steps (0a) through (1d) in the algorithm 

Solve-independent-set-problem(Y0, n, m), the 2n DNA strands 

in tube Y0 encode the possible choices. Bits yi and yj are its two 

inputs, and bit lk for 1  k  m is its output. If the value of bit lk 

for 1  k  m is equal to 1, then the corresponding subsets of 

vertices only contain one vertex or zero vertices in the kth edge 

(vi, vj) and are legal independent sets. Otherwise, the 

corresponding subsets of vertices contain two vertices in the kth 

edge (vi, vj) and are illegal independent sets. Therefore, after 

repeatedly executing Steps (2a) through (2d) from iteration one 

through iteration m, bio-molecular solutions in tube Y0 contain 

one or no vertices in each edge and do not contain two vertices 

of any one edge. This is to say that bio-molecular solutions in 

tube Y0 encode those subsets of vertices in which for all vertices 

vi and vj, the edge (vi, vj) is not in E which is the set of edges in 

graph G. This also implies that bio-molecular solutions in tube 

Y0 satisfy the fact that each NAND operation of two inputs yi 

and yj has a true value. Therefore, the straightforward Boolean 

circuit generated from Steps (2a) through (2d) at all m iterations 

implements the Boolean formula (∧𝑘=1
𝑚 (𝑦𝑖  ∧  𝑦𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅)) and finds 

which subsets of vertices satisfy this formula.  

Fig. 1-1 shows a flowchart for recognizing independent sets 

of the independent-set problem for a graph G with n vertices 

and m edges. In statement S1, variable k is set to one (1) and o0 

is set to one (1). Next, in statement S2, if the value of k is less 

than or equal to the value of m, then next executed instruction is 

statement S3. Otherwise, in statement S6, an End instruction is 

executed to terminate the task of recognizing independent sets. 

In statement S3, a NAND gate “lk  𝑦𝑖 ⋀ 𝑦𝑗
̅̅ ̅̅ ̅̅ ̅̅ ” is implemented. 

Bits (Boolean variables) yi and yj respectively encode vertex vi 

and vertex vj that are connected by the kth edge in a graph G 

with n vertices and m edges. Bit (Boolean variable) lk with 1  

k  m stores the result of implementing (𝑦𝑖 ⋀ 𝑦𝑗
̅̅ ̅̅ ̅̅ ̅̅ ) (the kth NAND 

gate). Next, in statement S4, a logical AND operation “ok  lk 

 ok  1” is executed that is the kth clause in (⋀ (𝑦𝑖 ⋀ 𝑦𝑗
̅̅ ̅̅ ̅̅ ̅̅ )𝑚

𝑘=1 ). Bit 

(Boolean variable) lk stores the result of implementing the kth 

NAND gate and is the first operand of the logical AND 

operation. Bit (Boolean variable) ok  1 with 1  k  m is the 

second operand of the logical AND operation and stores the 

result of the previous logical AND operation. Bit (Boolean 

variable) ok with 1  k  m stores the result of implementing lk 

 ok  1 (the kth clause that is the kth AND gate). Next, in 

statement S5, variable k is incremented.  

Repeat to execute statements S2 through S5 until in statement 

S2 the conditional judgement returns a false value. From Figure 

1-1 it follows that the total number of NAND gates is m. The 

total number of logical AND operations corresponds 

to m AND gates. Therefore, the cost of recognizing 

independent set(s) corresponds to m NAND gates and m AND 

gates. We use Lemma 1-3 to show that the straightforward 

Boolean circuit in Fig. 1-1 for recognizing independent sets of 

the independent set problem for a graph G is the best Boolean 

circuit known for the problem. 

 
Fig. 1-1: Recognizing independent-sets of the independent-set 

problem for a graph G with n vertices and m edges. 

 

Lemma 1-3: For the independent-set problem for any graph 

G with n vertices and m edges, in Fig. 1-1, the Boolean circuit 

with m NAND gates and m AND gates generated from Step (2a) 

through (2d) at all m iterations in the molecular algorithm 

Solve-independent-set-problem(Y0, n, m) is the best Boolean 

circuit known for recognizing independent-set(s) among 2n 

possible choices. 

Proof: Please refer to the content of this subsection.    

F. The Straightforward Boolean Circuit for Computing 
the Number of Vertices in Independent Sets from Bio-
molecular Solutions 

For computing the number of vertices, auxiliary Boolean 

variables wi+1, j and wi+1, j+1 with 0  i  n  1 and 0  j  i are 

set to the initial value 0 (zero). Boolean variable wi+1, j+1 stores 

the number of vertex in a solution after figuring out the 

influence of Boolean variable yi + 1 that encodes the (i + 1)th 

vertex in the number of ones (vertices). If the value of Boolean 

variable wi+1, j+1 is equal to 1 (one), then this indicates that there 

are (j + 1) ones (vertices) in the solution. Boolean variable wi+1, 

j stores the number of vertex in a solution after figuring out the 

influence of Boolean variable yi + 1 that encodes the (i + 1)th 

vertex on the number of ones (vertices). If the value of Boolean 

variable wi+1, j is equal to 1 (one), then this indicates that there 

are j ones (vertices) in the solution. 

In a solution (an independent-set) that has the value of bit om 

equal one, bit y1 encodes the first vertex v1. If the value of bit y1 

is equal to one (1), then the first vertex v1 appears in the solution 

and it increments the number of vertices (the number of ones) 

for the solution. Otherwise, the first vertex v1 does not appear 

in the solution and it preserves the number of vertices (the 

number of ones) for the solution. In the molecular algorithm 
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Solve-independent-set-problem(Y0, n, m), on the execution of 

Step (4a) in the iteration (i = 0, j = 0), the DNA strands in tube 

Y1
ON have y1 = 1 and contain vertex v1 and the DNA strands in 

tube Y0 have y1 = 0 and do not contain vertex v1. This is to say 

that the influence of y1 (the influence of vertex v1) on the 

number of ones (the number of vertices) is recorded as single 

ones in tube Y1
ON and to record zero ones in tube Y0. Next, on 

the execution of Step (4b) in the same iteration (i = 0, j = 0), the 

influence of y1 on the number of ones is recorded as single ones 

in tube (set) Y1. Therefore, for the influence of the first vertex 

v1, incrementing the number of vertices in each solution is to 

satisfy the formula (om  y1) and preserving the number of 

vertices is to satisfy the formula (om  𝑦1). 

Similarly, the influence of the (i + 1)th vertex with 1 ≤ i ≤ n 

– 1 is to decide whether in each solution the number of vertices 

(the number of ones) is incremented or is preserved. In order to 

increment the number of vertices (the number of ones) in each 

solution two conditions must be satisfied. The first condition is 

that the (i + 1)th vertex is within the solution and the second 

condition is that each solution currently has j vertices. In order 

to preserve the number of vertices (the number of ones) in each 

solution two conditions must be satisfied. The first condition is 

that the (i + 1)th vertex is not within the solution and the second 

condition is that each solution currently also has j vertices. Next, 

on each execution of Step (4a) in the iteration (i, j), the DNA 

strands in tube Yj + 1
ON encode each solution that has yi + 1 = 1 

and contains vertex vi + 1. The DNA strands in tube Yj on the 

other hand encode each solution that has yi + 1 = 0 and does not 

contain vertex vi + 1. This indicates that in the iteration (i, j), the 

influence of yi + 1 on the number of ones (the number of vertices) 

is recorded as (j + 1) ones in tube Yj + 1
ON and also as j ones in 

tube Yj. Next, on each execution of Step (4b) in the iteration (i, 

j), the influence of yi + 1 on the number of ones (the number of 

vertices) is recorded as having (j + 1) ones in tube Yj + 1. 

Therefore, for the influence of the (i + 1)th vertex for 1 ≤ i ≤ n 

– 1 in each solution, the two conditions for incrementing the 

number of vertices (the number of ones) in each solution are to 

satisfy the Boolean formula (yi + 1  wi, j). The two conditions 

for preserving the number of vertices in each solution are to 

satisfy the Boolean formula ((𝑦𝑖+1)  wi, j). 

Fig. 1-2 shows the logical flowchart for counting the number 

of vertices in each solution. In statement S1, a logical AND 

operation “w1,1  om  y1” is implemented. Boolean variable 

w1, 1 stores the result of implementing one AND gate (om  y1). 

Next, in statement S2, a logical AND operation “w1,0  om  𝑦1” 

is implemented. Boolean variable w1, 0 stores the result of 

implementing one AND gate (om  𝑦1).  

Next, in statement S3, variable i is set to one. Then, in 

statement S4, if the value of i is less than or equal to the value 

of (n 1), then next executed instruction is statement S5. 

Otherwise, in statement S11, an End instruction is executed to 

terminate the task of counting the number of vertices in each 

solution. In statement S5, variable j is set to the value of the 

variable i. Next, in statement S6, if the value of j is greater than 

or equal to zero, then the next executed instruction is statement 

S7. Otherwise, the next executed instruction is statement S10. 

In statement S7, a logical AND operation “wi+1, j+1  yi+1  

wi, j” is implemented. Boolean variable wi, j stores the number of 

vertex in a solution after determining the influence of Boolean 

variable yi that encodes the ith vertex on the number of ones 

(vertices). Boolean variable wi+1, j+1 stores the result of 

implementing the logical AND operation “wi+1, j+1  yi+1  wi, 

j”. This is to say that wi+1, j+1 stores the number of vertex in a 

solution after determining the influence of Boolean variable yi + 

1 that encodes the (i + 1)th vertex on the number of ones 

(vertices). 

 
Fig. 1-2: Flowchart for computing the number of vertices in 

each solution (independent set). 

Next, in statement S8, a logical AND operation “wi+1, j  𝑦𝑖+1̅̅ ̅̅ ̅ 

 wi, j” is implemented. For Boolean variable yi+1, its negation 

𝑦𝑖+1̅̅ ̅̅ ̅ is the first operand of the logical AND operation. Boolean 

variable wi+1, j stores the result of implementing the logical 

AND operation “wi+1, j  𝑦𝑖+1̅̅ ̅̅ ̅  wi, j”. This indicates that wi+1, j 

stores the number of vertex in a solution after determining the 

influence of Boolean variable yi + 1 that encodes the (i + 1)th 

vertex on the number of ones (vertices). 

Next, in statement S9, variable j is decremented. Repeat to 

execute statement S6 through statement S9 until in statement S6 

the conditional judgement attains a false value. Next, in 

statement S10, variable i is incremented. Repeat to execute 

statements S4 through S10 until in S4 the conditional judgement 

attains a false value. When this happens, the next executed 

statement is S11. In S11, an End instruction is executed to 

terminate the task of counting the number of vertices in each 

solution. The cost of each operation in Fig. 1-2 is (n  (n +1)) 

AND gates and (
𝑛×(𝑛+1)

2
) NOT gates. Therefore, the cost of 

counting the number of vertices for each solution is to 

implement (n  (n +1)) AND gates and (
𝑛×(𝑛+1)

2
) NOT gates. 

We use Lemma 1-4 to show that in Fig. 1-2 the straightforward 

Boolean circuit for counting the number of vertices in each 

solution is the best Boolean circuit known for the problem. 

Lemma 1-4: In Fig. 1-2, the Boolean circuit with (n  (n +1)) 

AND gates and (
𝑛×(𝑛+1)

2
) NOT gates generated from Steps (4a) 
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through (4b) in each iteration in the molecular algorithm Solve-

independent-set-problem(Y0, n, m) is the best Boolean circuit 

known for counting the number of vertices in each solution. 

Proof: Please refer to the content of this subsection.    

II. QUANTUM ALGORITHMS FOR IMPLEMENTING THE 

STRAIGHTFORWARD BOOLEAN CIRCUITS FROM MOLECULAR 

SOLUTIONS FOR SOLVING THE INDEPENDENT SET PROBLEM 

A. Computational State Space of Molecular Solutions for the 

Independent Set Problem 

We use a unique computational basis vector with 2n-tuples 

of binary numbers to represent each element in set (tube) Y0. 

The first corresponding computational basis vector for the first 

element yn
0 yn  1

0  y2
0 y1

0 is ([1 0 ⋯ 0]1×2𝑛
𝑇 ). And so on, 

with the last corresponding computational basis vector for the 

last element yn
1 yn  1

1  y2
1 y1

1 being ([0 0 ⋯ 1]1×2𝑛
𝑇 ). 

Therefore, the set of the corresponding computational basis 

vectors that span the space 𝐶2𝑛
 is D = 

{ [1 0 ⋯ 0]1×2𝑛
𝑇  , [0 1 ⋯ 0]1×2𝑛

𝑇 , , 

[0 0 ⋯ 1]1×2𝑛
𝑇 } and. This is to say it forms an 

orthonormal basis of a 2n dimensional Hilbert space. 

B. Quantum Circuits and Mathematical Solutions for 

Computational State Space of Molecular Solutions for the 

Independent Set Problem 

Each possible molecular solution corresponds to an element 

in an orthonormal basis of a Hilbert space (𝐶2𝑛
). A quantum 

register of n bits, (⨂𝑝=𝑛
1 |𝑦𝑝⟩), is set to (⨂𝑝=𝑛

1 |𝑦𝑝
0⟩). We assume 

that |𝜆0⟩ = (⨂𝑝=𝑛
1 |𝑦𝑝

0⟩) and the initial quantum state vector is 

( |𝜆0⟩ ). Using n Hadamard gates to operate on the initial 

quantum state vector (|𝜆0⟩), 2n possible molecular solutions are 

encoded by the following new state vector (|𝜆5−1⟩) 

|𝜆5−1⟩  = (Hn) |𝜆0⟩  = 
1

√2𝑛 ( ⊗𝑝=𝑛
1 (|𝑦𝑝

0⟩ + |𝑦𝑝
1⟩))  = 

1

√2𝑛 ( ∑ |𝑦⟩2𝑛−1
𝑦=0 ).                                                                     

(2-1) 

In the new state vector (|𝜆5−1⟩), state |yn
0 yn  1

0  y2
0 y1

0> 

with the amplitude (
1

√2𝑛) encodes the first element yn
0 yn  1

0  

y2
0 y1

0 of the molecular solution space that does not contain any 

vertices. And so on, with state |yn
1 yn  1

1  y2
1 y1

1> with the 

amplitude (
1

√2𝑛) encoding the last element yn
1 yn  1

1  y2
1 y1

1 of 

the molecular solution space containing n vertices {vn vn  1  

v2 v1}. Using one Hadamard gate on the state |1> gives the new 

quantum state vector (
1

√2
 (|0⟩  |1⟩)) that labels the amplitude 

of the answer(s) among the 2n states. 

C. Quantum Circuits and Mathematical Solutions for 

Implementing Molecular Solutions for legal Independent Sets 

among 2n Possible Choices 

The straightforward Boolean circuit for labelling legal 

independent sets among the 2n possible choices in Fig. 1-1 is 

(⋀𝑘=1
𝑚 (𝑦𝑖 ⋀ 𝑦𝑗

̅̅ ̅̅ ̅̅ ̅̅ )),                           (2-2) 

where bits yi and yj respectively represent vertices vi and vj in 

the kth edge, ek = (vi, vj), in G for 1  k  m. The Boolean 

formula (⋀𝑘=1
𝑚 (𝑦𝑖 ⋀ 𝑦𝑗

̅̅ ̅̅ ̅̅ ̅̅ )) consists of m NAND operations and m 

AND operations. The NAND operation and the AND operation 

are, respectively, implemented by quantum circuits in Figures 

2-1(a) and 2-1(b). The initial state for each quantum bit in the 

second quantum register |lm lm  1  l1> is prepared in state |1>. 

The kth quantum bit |lk> for 1  k  m stores the result of 

evaluating the kth NAND gate of the form (𝑦𝑖 ⋀ 𝑦𝑗
̅̅ ̅̅ ̅̅ ̅̅ ). The mth 

quantum bit |lm> stores the result of the evaluating computation 

for the last NAND operation. 

 
Fig. 2-1: (a) NAND operation of two Boolean variables, and (b) 

AND operation of two Boolean variables. 

 

Next, the first quantum bit |o0> in the third quantum register 

|om om  1  o1 o0> is initially prepared in state |1> and the other 

m bits are initially in state |0>.  The kth quantum bit |ok> for 1  

k  m stores the result of evaluating the AND operation of the 

previous clause (the (k  1)th clause) and the current clause (the 

kth clause). The (m + 1)th quantum bit |om> stores the result of 

evaluating the AND operation of the last two clauses. This 

indicates that the (m + 1)th quantum bit |om> stores the result of 

the evaluating computation for all of the clauses. We use the 

quantum circuit LIS in Fig. 2-2 with (2  m) CCNOT gates to 

implement the straightforward Boolean circuit (⋀𝑘=1
𝑚 (𝑦𝑖 ⋀ 𝑦𝑗

̅̅ ̅̅ ̅̅ ̅̅ )) 

in equation (2-2). 

 
Fig. 2-2: The quantum circuit, LIS, used to label legal 

independent sets among 2n possible choices. 

D. Quantum Circuits and Mathematical Solutions of 

Molecular Solutions to the Maximum-sized Independent Sets 

The straightforward Boolean circuits in Figure 1-2 for 

counting the number of vertices in each legal independent sets 

are 

(w1,1  om  y1) and (w1,0  om  𝑦1) and                           (2-3) 

(wi+1, j+1  yi+1  wi, j) and (wi+1, j  𝑦𝑖+1̅̅ ̅̅ ̅  wi, j) for 1  i  n  

1 and 0  j  i.                                                                      (2-4) 

For 0  i  n  1 and 0  j  i, each auxiliary quantum bit in 

|wi + 1, j> and |wi + 1, i+ 1> is initially prepared in state |0>. Quantum 
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bit |wi + 1, j+ 1> will record the status of tube (set) Yj + 1 that has (j 

+ 1) ones after the influence of yi + 1 on the number of ones. 

Quantum bit |wi + 1, j> will record the status of tube (set) Yj that 

has j ones after the influence of yi + 1 on the number of ones. We 

use the quantum circuit CFFV in Fig. 2-3 to implement the 

straightforward Boolean circuit (w1,1  om  y1) and (w1,0  om 

 𝑦1) in equation (2-3). We also use the quantum circuit CMO 

in Fig. 2-4 to implement the straightforward Boolean circuit 

(wi+1, j+1  yi+1  wi, j) and (wi+1, j  𝑦𝑖+1̅̅ ̅̅ ̅  wi, j) for 1  i  n  

1 and 0  j  i in equation (2-4). 

 
Fig. 2-3: Implementation of the first and the second conditions 

of equation (2-3) using the quantum circuit CFFV. 

 

 
Fig. 2-4: Implementation of the first and the second conditions 

of (2-4) using the quantum circuit CMO. 

E. Quantum Circuits and Mathematical Solutions from 

Reading Molecular Solutions for the Maximum-sized 

Independent Sets 

The 2n possible molecular solutions that are created by Steps 

(0a) through (1d) in the algorithm Solve-independent-set-

problem are initialized in the distribution: (
1

√2𝑛 
1

√2𝑛 
1

√2𝑛  
1

√2𝑛). 

This indicates that there is the same amplitude in each of the 2n 

possible molecular solutions. The previously proposed 

quantum circuits have labelled the answer(s), but the amplitude 

or probability of finding the answer(s) will decrease 

exponentially. Hence, based on [2], the diffusion operator is 

applied to increase exponentially the amplitude or probability 

of finding the answer(s), and is defined by matrix G as follows: 

Gi, j = (2 / 2n) if i  j and Gi, i = (1 + (2 / 2n)). Algorithm 2-1 is 

used to measure the answer(s) that are generated by Steps (5a) 

and (5b) in the algorithm Solve-independent-set-problem. 

For convenience of presentation, we assume that |yb
1>, |lk

1>, 

|ok
1>, |wi + 1, j

1> and |wi + 1, i + 1
1> for 1  b  n, 0  k  m, 0  i  

n  1, and 0  j  i, subsequently, represent the fact that the 

value of their corresponding quantum bits is 1. We further 

assume that |yb
0>, |lk

0>,  |ok
0>, |wi + 1, j

0> and |wi + 1, i + 1
0> for 1  

b  n, 0  k  m, 0  i  n  1, and 0  j  i, subsequently, 

represent tha fact that the value of their corresponding quantum 

bits is 0. Furthermore, we have made use of the notation from 

Algorithm 2-1 below in previous subsections. We use the first 

parameter t in Algorithm 2-1 to represent the maximum size of 

vertex sets among legal answers, and the execution of Step (1a) 

in Algorithm 2-2 in the next subsection passes its value. 

Algorithm 2-1 (t): Mathematical solutions obtained by 

reading molecular solutions of the maximum-sized independent 

sets for any graph G with m edges and n vertices. 

(0) A unitary operator, Uinit = (H) (⊗𝑖=𝑛
1 ⊗𝑗=𝑖

0 I2  2) (⊗𝑘=𝑚
1 I2 

 2) (I2  2) (⊗𝑘=𝑚
1 I2  2) (Hn), operates on an initial quantum 

state vector, (|1>) ( ⊗𝑖=𝑛
1 ⊗𝑗=𝑖

0 |wi, j
0>) ( ⊗𝑘=𝑚

1 |ok
0>) (|o0

1>) 

(⊗𝑘=𝑚
1 |lk

1>) (⊗𝑏=𝑛
1 |yb

0>), and the 2n possible choices of n bits 

(containing all possible independent sets) are 

|φ0,0> = (
1

√2
 (|0>  |1>)) 

1

√2𝑛
 (⊗𝑖=𝑛

1 ⊗𝑗=𝑖
0 |wi, j

0>) (⊗𝑘=𝑚
1 |ok

0>) (|o0
1>) 

(⊗𝑘=𝑚
1 |lk

1>) (⊗𝑏=𝑛
1 (|yb

0> + |yb
1>)). 

(1) For labeling which among the 2n possible choices are legal 

independent sets and which are not answers, a quantum circuit 

in Figure 2-2, (I2  2) (⊗𝑖=𝑛
1 ⊗𝑗=𝑖

0 I2  2) (LIS), is used to operate 

on the quantum state vector |φ0,0 >, and the following new 

quantum state vector is obtained 

|φ1,0> = (
1

√2
 (|0>  |1>)) 

1

√2𝑛
 (⊗𝑖=𝑛

1 ⊗𝑗=𝑖
0 |wi, j

0>) (∑ (2𝑛−1
𝑦=0 ⊗𝑘=𝑚

1 |ok
0  

lk  ok  1>) (|o0
1>) (⊗𝑘=𝑚

1 |lk
1  yi  yj>) (|y>)). 

(2) For implementing (w1,1  om  y1) and (w1,0  om  𝑦1) 

in equation (2-3), a quantum circuit in Figure 2-3, (I2  2) 

(CFFV), is applied to the quantum state vector |φ1,0>, and the 

following new quantum state vector is 

|φ2,0> = (
1

√2
 (|0>  |1>)) 

1

√2𝑛
 (⊗𝑖=𝑛

2 ⊗𝑗=𝑖
0 |wi, j

0>) (∑ (2𝑛−1
𝑦=0 |w1, 1

0  om  

y1>) (|w1, 0
0  om  𝑦1̅̅ ̅>) (⊗𝑘=𝑚

1 |ok>) (|o0
1>)(⊗𝑘=𝑚

1 |lk>) (|y>)). 

(3) For i = 1 to n  1 

(4) For j = i down to 0 

(4a) A quantum circuit in Fig. 2-4, (I2  2) (CMO), is to 

determine the number of vertices among the legal independent 

sets and operates on the quantum state vector 

(|φ
2+(∑ (𝜃1+1)𝑖−1

𝜃1=0 )+(𝑖−𝑗),0
>). Since Step (4a) is embedded in the 

only loop, after repeatedly executing the quantum circuit in Fig. 

2-4, (I2  2) (CMO), the resulting state vector for calculating the 

number of vertices in each legal independent set is 

|φ
2+

𝑛2+𝑛−2

2
,0

⟩=(
1

√2
(|0>|1>))

1

√2𝑛(∑ (⊗𝑖=𝑛
1 ⊗𝑗=𝑖

0 |𝑤𝑖,𝑗⟩) 2𝑛−1
𝑦=0 (⊗𝑘=𝑚

1 |ok>) 

(|o0
1>) (⊗𝑘=𝑚

1 |lk>) (|y>)). 

End For 

End For 

(5) A CNOT gate (
|0>−|1>

√2
  wn, t) with the target bit |

|0>−|1>

√2
> 

and the control bit |wn, t> labels the legal independent set(s) with 

the maximum number of vertices in the quantum state vector 

(|φ
2+

𝑛2+𝑛−2

2
,0

>), and the following new quantum state vector is  

|φ
2+

𝑛2+𝑛−2

2
+1,0

> = (
1

√2
 (|0>  |1>)) 

1

√2𝑛  

(1)𝑤𝑛,𝑡  (∑ (⊗𝑖=𝑛
1 ⊗𝑗=𝑖

0 |𝑤𝑖,𝑗 >) 2𝑛−1
𝑦=0 (⊗𝑘=𝑚

1 |ok>) (|o0
1>) (⊗𝑘=𝑚

1 |lk>) 

(|y>)). 

(6) Because quantum operations are reversible by nature, 

reversing all the operations carried out by Steps (4a), (2) and (1) 

can restore the auxiliary quantum bits to their initial states. 

(7) Apply the diffusion operator to the quantum state vector 

produced in Step (6). 

(8) Repeatedly execute Step (1) to Step (7) at most O(√2𝑛 𝑅⁄  ) 
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times, where the value of R is the number of solutions and can 

be determined with the quantum counting algorithm [2]. 

(9) The answer is obtained with a probability of success of  

at least (1 / 2) after a measurement is completed. 

End Algorithm 

Lemma 2-1: The output of Algorithm 2-1 are mathematical 

solutions obtained by reading molecular solutions of the 

maximum-sized independent sets for any graph G with m edges 

and n vertices. 

Proof: Since there are 2n possible choices (including all 

possible independent sets) to the independent set problem for 

any graph G with m edges and n vertices, a quantum register of 

n bits (⊗𝑏=𝑛
1 |yb>) can represent 2n choices with initial state 

vector (⊗𝑏=𝑛
1 |yb

0>). The independent set problem for any graph 

G with m edges and n vertices requires finding a maximum-

sized independent set in G, so those auxiliary quantum registers 

are necessary. By executing Step (0), an initial state vector |> 

= (|1>) (⊗𝑖=𝑛
1 ⊗𝑗=𝑖

0 |wi, j
0>) (⊗𝑘=𝑚

1 |ok
0>) (|o0

1>) (⊗𝑘=𝑚
1 |lk

1>) 

(⊗𝑏=𝑛
1 |yb

0>) starts the quantum computation of the independent 

set problem. A unitary operator, Uinit = (H) (⊗𝑖=𝑛
1 ⊗𝑗=𝑖

0 I2  2) 

(⊗𝑘=𝑚
1 I2  2) (I2  2) (⊗𝑘=𝑚

1 I2  2) (Hn), operates on the initial 

state vector |>, and the resulting state vector becomes |φ0,0> 

with 2n choices. This indicates that 2n possible molecular 

choices generated by Steps (0a) through (1d) in the algorithm 

Solve-independent-set-problem can be implemented by Step 

(0) in Algorithm 2-1. 

Next, Step (1) in Algorithm 2-1 acts as the unitary operator 

LIS in Fig. 2-2. On the execution of Step (1) in Algorithm 2-1, 

those choices among the 2n possible that satisfy the 

straightforward Boolean circuit (⋀𝑘=1
𝑚 (𝑦𝑖 ⋀ 𝑦𝑗

̅̅ ̅̅ ̅̅ ̅̅ )) in equation (2-

2) are labeled. After the execution of Step (1) has been 

completed, the resulting state vector | φ1,0 > is obtained, 

containing those choices with |om
1> that indicate them to be 

legal independent sets and those illegal choices with |om
0> that 

do not satisfy the condition. Hence, the straightforward Boolean 

circuit (⋀𝑘=1
𝑚 (𝑦𝑖 ⋀ 𝑦𝑗

̅̅ ̅̅ ̅̅ ̅̅ )) in equation (2-2) generated by Steps (2a) 

through (2d) in the algorithm Solve-independent-set-problem 

can be implemented by Step (1) in Algorithm 2-1. 

Next, Step (2) in Algorithm 2-1 acts as the unitary operator 

CFFV in Fig. 2-3. On the execution of Step (2) in Algorithm 

2-1, the number of ones from the influence of the first vertex in 

each legal independent set is computed. After the execution of 

Step (2), the state vector |φ2,0> is obtained, which includes 

those legal independent sets with |w1, 1
1> that have one ones and 

contain the first vertex and those legal independent sets with |w1, 

0
1> that have zero ones and do not contain the first vertex. This 

implies that the straightforward Boolean circuit (w1,1  om  y1) 

and (w1,0  om  𝑦1) in equation (2-3) generated by Steps (4a) 

and (4b) in the first iteration (0, 0) in Solve-independent-set-

problem can be implemented by Step (2) in Algorithm 2-1. 

Next, Step (4a) in Algorithm 2-1 works as the unitary 

operator CMO in Fig. 2-4. This step is to determine the number 

of ones (the number of vertices) among the legal independent 

sets. Steps (3) and (4) consist each of a two-level loop. When 

the value of the index variable i is equal to one and the value of 

the index variable j is from one down to zero, Step (4a) is 

executed repeatedly two times. Similarly, when the value of the 

index variable i is equal to two and the value of the index 

variable j is from two down to zero, Step (4a) is executed 

repeatedly three times. Similarly, when the value of the index 

variable i is equal to (n  1) and the value of the index variable 

j is from (n  1) down to zero, Step (4a) is repeatedly executed 

n times. This is to say that the total number of executions of 

Step (4a) is (2 + 3 +  n) = (n2 + n  2) / 2. Because the state 

vector |φ2,0> is generated from Step (2) and its index is 2 (two), 

after repeatedly executing Step (4a), we use 2 + ((n2 + n  2) / 

2) as the index of the resulting state and the resulting state 

vector | φ
2+

𝑛2+𝑛−2

2
,0

> is obtained in which the number of 

vertices in each legal independent set is calculated. This 

indicates that the straightforward Boolean circuit (wi+1, j+1  

yi+1  wi, j) and (wi+1, j  𝑦𝑖+1̅̅ ̅̅ ̅  wi, j) for 1  i  n  1 and 0  j 

 i in equation (2-4) generated in Steps (4a) and (4b) in the same 

iteration (i, j) in Solve-independent-set-problem can be 

implemented by Step (4a) in Algorithm 2-1. 

Next, one CNOT gate, (
|0>−|1>

√2
  wn, t) with the target bit 

|
|0>−|1>

√2
> and the control bit |wn, t >, in Step (5) of Algorithm 2-

1 labels the answer(s) with the phase (1). The resulting state 

vector |φ
2+

𝑛2+𝑛−2

2
+1,0

> consists of the part of the answer with 

the phase (1) and the other part with the phase (+1). Because 

quantum operations are reversible by nature, the execution of 

Step (6) will reverse all these operations completed by Step (4a), 

Step (2) and Step (1) that can restore the auxiliary quantum bits 

to their initial states. Next, on the execution of Step (7) in 

Algorithm 2-1, the diffusion operator is applied to complete the 

task of increasing the probability of success in measuring the 

answer(s). In Step (8) in Algorithm 2-1, after repeatedly 

executing Steps (1) through (7) of O( √2𝑛 𝑅⁄  ) times, a 

maximum probability of success is generated. Next, by 

executing Step (9) in Algorithm 2-1, a measurement is 

obtained and the answer(s) is/are returned to Algorithm 2-2. 

Because the result produced by each step in Algorithm 2-1 is a 

unit vector in a finite-dimensional Hilbert space, therefore, we 

at once infer that the output of Algorithm 2-1 are the 

mathematical solutions obtained by reading molecular solutions 

of the maximum-sized independent sets to any graph G with m 

edges and n vertices.    

F. Solving the Independent Set Problem on any Graph G with 

m Edges and n Vertices 

The following algorithm solves the independent-set problem 

for any graph G with m edges and n vertices. We have used the 

notations used in Algorithm 2-2 in the previous subsections. 

Algorithm 2-2: Solving the independent set problem for any 

Graph G with m edges and n vertices. 

(1) For t = n to 1 

(1a) Call Algorithm 2-1(t). 

(1b) If the answer is obtained from the tth execution of Step 

(1a) then 

(1c) Terminate Algorithm 2-2. 

End If 

End For 

End Algorithm 

Lemma 2-2: Algorithm 2-2 obtains the maximum-sized 

independent sets for any graph G with m edges and n vertices. 
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Proof: In each execution of Step (1a) in Algorithm 2-2, it 

calls Algorithm 2-1 to find the answer(s) with t vertices. Next, 

in each execution of Step (1b) in Algorithm 2-2, if the answer(s) 

is (are) found, then the tth execution of Step (1c) in Algorithm 

2-2 will terminate Algorithm 2-2. Otherwise, repeatedly 

execute Steps (1a) through (1c) until the answer(s) is (are) 

found.   ▉ 

III. COMPLEXITY ASSESSMENT 

A. The Time and Space Complexity of Algorithm 2-2 

Lemma 3-1: The best case time complexity for Algorithm 

2-2 involves ((2n / 2  (2  n)) + (n + 1)) Hadamard gates, (2n / 

2  (2  (n2 + n))) NOT gates, (2n / 2) CNOT gates, (2n / 2  (4  

m + (2  (n2 + n)))) CCNOT gates, (2n / 2) phase shift gates of n 

quantum bits and a quantum measurement. 

Proof: Please refer to Algorithms 2-1 and 2-2.    

Lemma 3-2: The worst case time complexity for Algorithm 

2-2 is (n  ((2n / 2  (2  n)) + (n + 1))) Hadamard gates, (n  

(2n / 2  (2  (n2 + n)))) NOT gates, (n  2n / 2) CNOT gates, (n 

 (2n / 2  (4  m + (2  (n2 + n))))) CCNOT gates, (n  2n / 2) 

phase shift gates of n quantum bits and (n) quantum 

measurements. 

Proof: Please refer to Algorithms 2-1 and 2-2.    

Lemma 3-3: The worst and the best case spatial complexity 

for solving the independent set problem for any graph G are the 

same: ((2  m + 2  n + 2) + ((n  (n + 1)) / 2)) quantum bits. 

Proof: Please refer to Algorithms 2-1 and 2-2.     

B. Proof of a Quadratic Speedup for Solving the Independent 

Set Problem for any Graph G with m Edges and n Vertices 

Lemma 3-4: Algorithm 2-2 gives a quadratic speed-up for 

solving the independent set problem for any graph G. This 

speedup is the best speed-up known for the problem. 

Proof: From [2] and Lemma 3-2, we immediately derive 

that Algorithm 2-2 gives a quadratic speed-up, which is the 

best speed-up known for solving the problem.   █ 

IV. EXPERIMENTAL RESULTS OF FINDING THE 

MAXIMUM-SIZED INDEPENDENT SETS IN A GRAPH 

WITH THREE VERTICES AND TWO  EDGES 

In Fig. 4-1, graph G2 consists of three vertices and two edges. 

The independent sets in G2 are {v2, v3}, {v1}, {v2}, {v3} and {}. 

The maximum-sized independent set for G2 is {v2, v3}. We write 

the program in OpenQASM ver. 2.0 to find the maximum-sized 

independent set {v2, v3} of graph G2. Fig. 4-2 is the 

corresponding quantum circuit. 

 
Fig. 4-1: Graph G2 with three vertices and two edges. 

 

 
Fig. 4-2: The corresponding quantum circuit for finding the 

answer {v2, v3}. 

 

The program labels the amplitude of the answer(s) by (－1) 

and amplifies the amplitude of the answer(s) twice. It declares 

nine quantum bits with the initial state |0> and three classical 

bits with the initial value 0. Quantum bit q[2] encodes vertex v3, 

quantum bit q[1] encodes vertex v2 and quantum bit q[0] 

encodes vertex v1. Next, we use the statements “h q[0]; h q[1]; 

h q[2]; x q[8]; h q[8]; x q[3]; x q[4];” to generate all possible 

solutions and to set the initial state of the auxiliary quantum bits. 

The next eleven statements label the amplitude of the answer(s) 

by (－1). Then, the amplitude amplification is executed by “h 

q[0]; h q[1]; h q[2]; x q[0]; x q[1]; x q[2]; x q[3]; x q[4]; ccx 

q[0],q[1],q[3]; ccx q[3],q[2],q[4]; cz q[4],q[8]; ccx 

q[3],q[2],q[4]; ccx q[0],q[1],q[3]; x q[0]; x q[1]; x q[2]; x q[3]; 

x q[4]; h q[0]; h q[1]; h q[2]”. After that, the next eleven 

statements will again label the amplitude of the answer(s) by 

(－1). And the remaining gates will again execute the amplitude 

amplification of the answer(s). The measurement is carried out 

by the last three statements that are “measure q[0] -> c[0]; 

measure q[1] -> c[1]; measure q[2] -> c[2];”. We use the 

command “simulate” to execute the quantum circuit in Fig. 4-2 

on the simulator backend. Fig. 4-3 shows the measured results 

for the program. The state q[2] q[1] q[0] = 110 is observed with 

the highest probability of 0.55. This state corresponds to the 

answer {v2, v3}.  

 
Fig. 4-3: The measured result of finding the answer {v2, v3} on 

the backend Simulator. 

V. CONCLUSION 

We show that the independent set problem for any graph can 

be solved by the algorithm Solve-independent-set-problem 

with O(n2+m) biological operations, O(2n) DNA strands, O(n) 

tubes and the longest DNA strand, O(n). Lemma 2-1 to 

Lemma 2-2 show that the same problem can be solved with a 

quadratic speed-up by Algorithm 2-2 and Algorithm 2-1 

which implement the straightforward Boolean circuits 

generated from the algorithm Solve-independent-set-problem. 

In Lemma 3-1 to Lemma 3-4, we show that Algorithm 2-2 

and Algorithm 2-1 give a quadratic speed-up which is the best 

speed-up known for dealing with the problem. 
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