Quantum Speedup and Mathematical Solutions from Implementing Bio-molecular Solutions for the Independent Set Problem on IBM's Quantum Computers

Weng-Long Chang ${ }^{1 *}$, Ju-Chin Chen ${ }^{2 *}$, Wen-Yu Chung ${ }^{3 *}$, Chun-Yuan Hsiao ${ }^{4 *}$, Renata Wong ${ }^{5 *}$ and Athanasios V. Vasilakos ${ }^{6 *}$

Abstract

In this paper, we propose a bio-molecular algorithm with $\mathrm{O}\left(n^{2}+m\right)$ biological operations, $\mathrm{O}\left(2^{n}\right)$ DNA strands, $O(n)$ tubes and the longest DNA strand, $O(n)$, for solving the independent-set problem for any graph G with m edges and n vertices. Next, we show that a new kind of the straightforward Boolean circuit yielded from the biomolecular solutions with m NAND gates, $(m+n \times(n+1)$) AND gates and $((n \times(n+1)) / 2)$ NOT gates can find the maximal independent-set(s) to the independent-set problem for any graph G with m edges and n vertices. We show that a new kind of the proposed quantum-molecular algorithm can find the maximal independent set(s) with the lower bound $\Omega\left(2^{n / 2}\right)$ queries and the upper bound $O\left(2^{n / 2}\right)$ queries. This work offers an obvious evidence that to solve the independent-set problem in any graph G with m edges and n vertices, bio-molecular computers are able to generate a new kind of the straightforward Boolean circuit such that by means of implementing it quantum computers can give a quadratic speed-up. This work also offers one obvious evidence that quantum computers can significantly accelerate the speed and enhance the scalability of bio-molecular computers. Furthermore, to justify the feasibility of the proposed quantum-molecular algorithm, we successfully solve a typical independent set problem for a graph G with three vertices and two edges by carrying out experiments on the backend ibmqx4 with five quantum bits and the backend simulator with 32 quantum bits on IBM's quantum computer.

Index Terms- data structures and algorithms, independent-set problem, molecular algorithms, molecular computing, quantum algorithms, quantum computing

[^0]
I. Molecular algorithm for solving the Independent Set Problem

A. Definition of the Independent Set Problem

Let G be a graph and $G=(V, E)$, where V is a set of vertices and E is a set of edges in G. An independent set of graph G is a subset $V^{1} \subseteq V$ of vertices such that for all $v_{a}, v_{b} \in V^{1}$, the edge $\left(v_{a}, v_{b}\right)$ is not in $E[1,2]$.

Definition 1-1: The independent set problem of graph G with n vertices and m edges is to find a maximum-sized independent set in G.

B. Biomolecular Operations

Definition 1-2: Given set $X=\left\{x_{n} x_{n-1} \ldots x_{2} x_{1} \mid \forall x_{d} \in\{0,1\}\right.$ for $1 \leq d \leq n\}$ and a bit x_{j}, the bio-molecular operation "AppendHead" appends x_{j} onto the head of every element in set X. Formally, Append-Head $\left(X, x_{j}\right)=\left\{x_{j} x_{n} x_{n-1} \ldots x_{2} x_{1} \mid \forall x_{d} \in\{0\right.$, $1\}$ for $1 \leq d \leq n$ and $\left.x_{j} \in\{0,1\}\right\}$.

Definition 1-3: Given set $X=\left\{x_{n} x_{n-1} \ldots x_{2} x_{1} \mid \forall x_{d} \in\{0,1\}\right.$ for $1 \leq d \leq n\}$ and a bit x_{j}, the bio-molecular operation "AppendTail" appends x_{j} onto the end of every element in set X. Formally, Append-Tail $\left(X, x_{j}\right)=\left\{x_{n} x_{n-1} \ldots x_{2} x_{1} x_{j} \mid \forall x_{d} \in\{0\right.$, $1\}$ for $1 \leq d \leq n$ and $\left.x_{j} \in\{0,1\}\right\}$.

Definition 1-4: Given set $X=\left\{x_{n} x_{n-1} \ldots x_{2} x_{1} \mid \forall x_{d} \in\{0,1\}\right.$ for $1 \leq d \leq n\}$, the bio-molecular operation " $\operatorname{Discard}(X)$ " resets X to an empty set and can be represented as " $X=\varnothing$ ".

Definition 1-5: Given set $X=\left\{x_{n} x_{n-1} \ldots x_{2} x_{1} \mid \forall x_{d} \in\{0,1\}\right.$

[^1]for $1 \leq d \leq n\}$, the bio-molecular operation "Amplify $\left(X,\left\{X_{i}\right\}\right)$ " creates a number of identical copies X_{i} of set X, and then discards X with the help of " $\operatorname{Discard}(X)$ ".

Definition 1-6: Given set $X=\left\{x_{n} x_{n-1} \ldots x_{2} x_{1} \mid \forall x_{d} \in\{0,1\}\right.$ for $1 \leq d \leq n\}$ and a bit x_{j}, the bio-molecular extract operation has two kinds of representation. The first representation is $+(X$, $\left.x_{j}^{1}\right)=\left\{x_{n} x_{n-1} \ldots x_{j}^{1} \ldots x_{2} x_{1} \mid \forall x_{d} \in\{0,1\}\right.$ for $\left.1 \leq d \neq j \leq n\right\}$ and $-\left(X, x_{j}^{1}\right)=\left\{x_{n} x_{n-1} \ldots x_{j}^{0} \ldots x_{2} x_{1} \mid \forall x_{d} \in\{0,1\}\right.$ for $1 \leq d \neq$ $j \leq n\}$ if the value of x_{j} is equal to one. The second representation is $+\left(X, x_{j}^{0}\right)=\left\{x_{n} x_{n-1} \ldots x_{j}^{0} \ldots x_{2} x_{1} \mid \forall x_{d} \in\{0,1\}\right.$ for $1 \leq d \neq j$ $\leq n\}$ and $-\left(X, x_{j}^{0}\right)=\left\{x_{n} x_{n-1} \ldots x_{j}^{1} \ldots x_{2} x_{1} \mid \forall x_{d} \in\{0,1\}\right.$ for 1 $\leq d \neq j \leq n\}$ if the value of x_{j} is equal to zero.

Definition 1-7: Given m sets $X_{1} \ldots X_{m}$, the bio-molecular merge operation is $\cup\left(X_{1}, \ldots, X_{m}\right)=X_{1} \cup \ldots \cup X_{m}$.

Definition 1-8: Given set $X=\left\{x_{n} x_{n-1} \ldots x_{2} x_{1} \mid \forall x_{d} \in\{0,1\}\right.$ for $1 \leq d \leq n\}$, the bio-molecular operation " $\operatorname{Detect}(X)$ " returns true if X is not an empty tube. Otherwise, it returns false.

Definition 1-9: Given set $X=\left\{x_{n} x_{n-1} \ldots x_{2} x_{1} \mid \forall x_{d} \in\{0,1\}\right.$ for $1 \leq d \leq n\}$, the bio-molecular operation " $\operatorname{Read}(X)$ " describes any element in X. If X contains many different elements, this operation gives an explicit description of exactly one of them.

C. Molecular Algorithm for Solving the Independent Set Problem

From Def. 1-1 we have that for any graph G with n vertices and m edges, all possible independent sets are the 2^{n} possible choices. Each possible choice corresponds to a subset of vertices in G. Therefore, it is assumed that Y is a set of 2^{n} possible choices, i.e., $\left\{y_{n} y_{n-1} \ldots y_{2} y_{1} \mid \forall y_{d} \in\{0,1\}\right.$ for $1 \leq d$ $\leq n\}$. For the sake of presentation, we assume that $y_{d}{ }^{0}$ indicates that the value of y_{d} is zero and $y_{d}{ }^{1}$ indicates that the value of y_{d} is one. We propose the following molecular algorithm to solve the independent set problem for arbitrary graph G. Parameter Y_{0} is an empty tube (set); n represents the number of vertices while m represents the number of edges. Each tube in the Procedure Solve-independent-set-problem is empty and regarded as an auxiliary storage.

Procedure Solve-independent-set-problem $\left(Y_{0}, n, m\right)$
(0a) Append-Tail $\left(X_{1}, y_{n}{ }^{1}\right)$. (0b) Append-Tail $\left(X_{2}, y_{n}{ }^{0}\right)$.
(0c) $Y_{0}=\cup\left(X_{1}, X_{2}\right)$.
(1) For $d=n-1$ downto 1
(1a) Amplify $\left(Y_{0}, X_{1}, X_{2}\right)$. (1b) Append-Tail $\left(X_{1}, y_{d}{ }^{1}\right)$.
(1c) Append-Tail $\left(X_{2}, y_{d}{ }^{0}\right)$. (1d) $Y_{0}=\cup\left(X_{1}, X_{2}\right)$.

End For

(2) For each edge, $e_{k}=\left(v_{i}, v_{j}\right)$, in G where $1 \leq k \leq m$ and bits y_{i} and y_{j} respectively represent vertices v_{i} and v_{j}.
(2a) $P^{1}=+\left(Y_{0}, y_{i}{ }^{1}\right)$ and $P^{3}=-\left(Y_{0}, y_{i}{ }^{1}\right)$.
(2b) $P^{2}=+\left(P^{1}, y_{j}^{1}\right)$ and $P^{4}=-\left(P^{1}, y_{j}^{1}\right)$.
(2c) $Y_{0}=\cup\left(P^{3}, P^{4}\right)$. (2d) $\operatorname{Discard}\left(P^{2}\right)$.

End For

(3) For $i=0$ to $n-1$
(4) For $j=i$ down to 0
(4a) $Y_{j+1}{ }^{O N}=+\left(Y_{j}, y_{i+1}{ }^{1}\right)$ and $Y_{j}=-\left(Y_{j}, y_{i+1}{ }^{1}\right)$.
(4b) $Y_{j+1}=\cup\left(Y_{j+1}, Y_{j+1}{ }^{O N}\right)$.

End For

End For
(5) For $c=n$ down to 1
(5a) If $\left(\operatorname{detect}\left(Y_{c}\right)\right)$ then
(5b) $\operatorname{Read}\left(Y_{c}\right)$ and terminate the algorithm.

EndIf

EndFor

EndProcedure

Lemma 1-1: The independent set problem for a graph G with m edges and n vertices can be solved by the molecular algorithm Solve-independent-set-problem $\left(Y_{0}, n, m\right)$.

Proof: Each execution of Steps (0a) and (0b), respectively, appends the value " 1 " for y_{n} as the first bit of every element in a set X_{1} and the value " 0 " for y_{n} as the first bit of every element in a set X_{2}. Next, each execution of Step (0c) creates the set union for the two sets $X_{1}=\left\{y_{n}{ }^{1}\right\}$ and $X_{2}=\left\{y_{n}{ }^{0}\right\}$ so that $Y_{0}=X_{1}$ $\cup X_{2}=\left\{y_{n}{ }^{1}, y_{n}{ }^{0}\right\}, X_{1}=\varnothing$ and $X_{2}=\varnothing$.

Next, each execution of Step (1a) creates two identical copies, X_{1} and X_{2}, of set Y_{0}, and $Y_{0}=\varnothing$. Each execution of Step (1b) then appends the value " 1 " for y_{d} onto the end of $y_{n} \ldots y_{d+1}$ for every element in X_{1}. Similarly, each execution of Step (1c) also appends the value " 0 " for y_{d} onto the end of $y_{n} \ldots y_{d+1}$ for every element in X_{2}. Next, each execution of Step (1d) creates the set union for the two sets X_{1} and X_{2} so that $Y_{0}=X_{1} \cup X_{2}$, and $X_{1}=$ \varnothing and $X_{2}=\varnothing$. After repeatedly executing Steps (1a) through (1d), $Y_{0}=\left\{y_{n} y_{n-1} \ldots y_{2} y_{1} \mid \forall y_{d} \in\{0,1\}\right.$ for $\left.1 \leq d \leq n\right\}$ consists of 2^{n} DNA strands that encode 2^{n} possible choices.

Next, Step (2) is a loop that evaluates each formula of the form $\left(\overline{y_{i} \Lambda y_{j}}\right)$ for the k th edge in G where $1 \leq k \leq m$. On each execution of Step (2a), DNA strands in tube P^{1} have $y_{i}=1$, DNA strands in tube P^{3} have $y_{i}=0$, and tube $Y_{0}=\varnothing$. Next, on each execution of Step (2b), DNA strands in tube P^{2} have $y_{i}=$ 1 and $y_{j}=1$, DNA strands in tube P^{4} have $y_{i}=1$ and $y_{j}=0$, and tube $P^{1}=\varnothing$. This indicates that molecular solutions in tube P^{2} contain two vertices in the k th edge and are illegal independent sets; molecular solutions in tube P^{4} only contain one vertex in the k th edge and are legal independent sets; and molecular solutions in tube P^{3} contain one vertex or no vertices in the k th edge and are legal independent sets. Then, on each execution of Step (2c), tube Y_{0} contains those DNA strands that encode legal independent sets, tube $P^{3}=\varnothing$, and tube $P^{4}=\varnothing$. Next, on each execution of Step (2d), illegal independent sets encoded by DNA strands in tube P^{2} are discarded. After repeatedly executing Steps (2a) through (2d), tube Y_{0} consists of those DNA strands that satisfy $\wedge_{k=1}^{m}\left(\overline{y_{l} \wedge y_{J}}\right)$ that is the true value for the k th edge in G for $1 \leq k \leq m$.

Each execution of Step (4a) at the iteration (i, j) is applied to compute the influence of y_{i+1} on the number of ones in tubes (sets) Y_{j+1} and Y_{j}. This is to say that tube (set) $Y_{j+1}{ }^{O N}$ has y_{i+1} $=1$ and tube (set) Y_{j} has $y_{i+1}=0$. This indicates that at the iteration (i, j) in the two-level nested loop, the influence of y_{i+1} on the number of ones is to record single ones in tube (set) Y_{j+} ${ }_{1}{ }^{O N}$ and also to record zero ones in tube (set) Y_{j}. Next, upon each execution of Step (4b) at the iteration (i, j), the merge operation is applied to pour the content of tube (set) $Y_{j+1}{ }^{O N}$ into tube (set) Y_{j+1}. This indicates that at the iteration (i, j), the influence of y_{i} +1 on the number of ones is to record single ones in tube (set) Y_{j} +1 . Next, from the iteration $(i, j-1)$ through the iteration $(n-$ $1,0)$, similar processing is applied to compute the influence of y_{i+1} through y_{n} on the number of ones. Hence, after each operation is completed, those DNA strands in tube Y_{i} for $0 \leq i$ $\leq n$ have i ones that contain i vertices. Next, on each execution of Step (5a), if there are DNA strands in tube Y_{c}, a "true" is returned. Next, on each execution of Step (5b), the answer of a
maximum-sized independent set is read and the algorithm terminates.

D. Time and Space Complexity of Molecular Algorithm for Solving the Independent Set Problem

The following lemma describes the time complexity, the volume complexity of solution space, the number of tubes used and the longest library strand in solution space for the algorithm Solve-independent-set-problem $\left(Y_{0}, n, m\right)$.

Lemma 1-2. The independent set problem for any graph G with n vertices and m edges can be solved with $\mathrm{O}\left(n^{2}+m\right)=$ $\mathrm{O}\left(n^{2}\right)$ biological operations, $\mathrm{O}\left(2^{n}\right)$ DNA strands, $\mathrm{O}(n)$ tubes and the longest DNA strand, $\mathrm{O}(n)$.

Proof: The above numbers follow directly from analysis of the algorithm Solve-independent-set-problem $\left(Y_{0}, n, m\right)$.

E. The Straightforward Boolean Circuit for Determining Independent Sets from Bio-molecular Solutions

After completing Steps (0a) through (1d) in the algorithm Solve-independent-set-problem $\left(Y_{0}, n, m\right)$, the 2^{n} DNA strands in tube Y_{0} encode the possible choices. Bits y_{i} and y_{j} are its two inputs, and bit l_{k} for $1 \leq k \leq m$ is its output. If the value of bit l_{k} for $1 \leq k \leq m$ is equal to 1 , then the corresponding subsets of vertices only contain one vertex or zero vertices in the k th edge $\left(v_{i}, v_{j}\right)$ and are legal independent sets. Otherwise, the corresponding subsets of vertices contain two vertices in the k th edge (v_{i}, v_{j}) and are illegal independent sets. Therefore, after repeatedly executing Steps (2a) through (2d) from iteration one through iteration m, bio-molecular solutions in tube Y_{0} contain one or no vertices in each edge and do not contain two vertices of any one edge. This is to say that bio-molecular solutions in tube Y_{0} encode those subsets of vertices in which for all vertices v_{i} and v_{j}, the edge $\left(v_{i}, v_{j}\right)$ is not in E which is the set of edges in graph G. This also implies that bio-molecular solutions in tube Y_{0} satisfy the fact that each NAND operation of two inputs y_{i} and y_{j} has a true value. Therefore, the straightforward Boolean circuit generated from Steps (2a) through (2d) at all m iterations implements the Boolean formula $\left(\wedge_{k=1}^{m}\left(\overline{y_{l} \wedge y_{J}}\right)\right.$) and finds which subsets of vertices satisfy this formula.

Fig. 1-1 shows a flowchart for recognizing independent sets of the independent-set problem for a graph G with n vertices and m edges. In statement S_{1}, variable k is set to one (1) and o_{0} is set to one (1). Next, in statement S_{2}, if the value of k is less than or equal to the value of m, then next executed instruction is statement S_{3}. Otherwise, in statement S_{6}, an End instruction is executed to terminate the task of recognizing independent sets.

In statement S_{3}, a $\boldsymbol{N A N D}$ gate " $l_{k} \leftarrow \overline{y_{l} \wedge y_{J} "}$ " is implemented. Bits (Boolean variables) y_{i} and y_{j} respectively encode vertex v_{i} and vertex v_{j} that are connected by the k th edge in a graph G with n vertices and m edges. Bit (Boolean variable) l_{k} with $1 \leq$ $k \leq m$ stores the result of implementing $\left(\overline{y_{l} \wedge y_{j}}\right)$ (the k th NAND gate). Next, in statement S_{4}, a logical AND operation " $o_{k} \leftarrow l_{k}$ $\wedge o_{k-1}$ " is executed that is the $k t h$ clause in $\left(\bigwedge_{k=1}^{m}\left(\overline{y_{l} \wedge y_{j}}\right)\right)$. Bit (Boolean variable) l_{k} stores the result of implementing the k th NAND gate and is the first operand of the logical AND operation. Bit (Boolean variable) o_{k-1} with $1 \leq k \leq m$ is the second operand of the logical AND operation and stores the result of the previous logical AND operation. Bit (Boolean
variable) o_{k} with $1 \leq k \leq m$ stores the result of implementing l_{k} $\wedge o_{k-1}$ (the k th clause that is the k th $\boldsymbol{A N D}$ gate). Next, in statement S_{5}, variable k is incremented.

Repeat to execute statements S_{2} through S_{5} until in statement S_{2} the conditional judgement returns a false value. From Figure $1-1$ it follows that the total number of NAND gates is m. The total number of logical AND operations corresponds to m AND gates. Therefore, the cost of recognizing independent set(s) corresponds to m NAND gates and m AND gates. We use Lemma 1-3 to show that the straightforward Boolean circuit in Fig. 1-1 for recognizing independent sets of the independent set problem for a graph G is the best Boolean circuit known for the problem.

Fig. 1-1: Recognizing independent-sets of the independent-set problem for a graph G with n vertices and m edges.

Lemma 1-3: For the independent-set problem for any graph G with n vertices and m edges, in Fig. 1-1, the Boolean circuit with m NAND gates and $m \boldsymbol{A N D}$ gates generated from Step (2a) through (2d) at all m iterations in the molecular algorithm Solve-independent-set-problem $\left(Y_{0}, n, m\right)$ is the best Boolean circuit known for recognizing independent-set(s) among 2^{n} possible choices.

Proof: Please refer to the content of this subsection.

F. The Straightforward Boolean Circuit for Computing the Number of Vertices in Independent Sets from Biomolecular Solutions

For computing the number of vertices, auxiliary Boolean variables $w_{i+1, j}$ and $w_{i+1, j+1}$ with $0 \leq i \leq n-1$ and $0 \leq j \leq i$ are set to the initial value 0 (zero). Boolean variable $w_{i+1, j+1}$ stores the number of vertex in a solution after figuring out the influence of Boolean variable y_{i+1} that encodes the $(i+1)$ th vertex in the number of ones (vertices). If the value of Boolean variable $w_{i+1, j+1}$ is equal to 1 (one), then this indicates that there are $(j+1)$ ones (vertices) in the solution. Boolean variable w_{i+1}, ${ }_{j}$ stores the number of vertex in a solution after figuring out the influence of Boolean variable y_{i+1} that encodes the $(i+1)$ th vertex on the number of ones (vertices). If the value of Boolean variable $w_{i+1, j}$ is equal to 1 (one), then this indicates that there are j ones (vertices) in the solution.

In a solution (an independent-set) that has the value of bit o_{m} equal one, bit y_{1} encodes the first vertex v_{1}. If the value of bit y_{1} is equal to one (1), then the first vertex v_{1} appears in the solution and it increments the number of vertices (the number of ones) for the solution. Otherwise, the first vertex v_{1} does not appear in the solution and it preserves the number of vertices (the number of ones) for the solution. In the molecular algorithm

Solve-independent-set-problem $\left(Y_{0}, n, m\right)$, on the execution of Step (4a) in the iteration $(i=0, j=0)$, the DNA strands in tube $Y_{1}{ }^{O N}$ have $y_{1}=1$ and contain vertex v_{1} and the DNA strands in tube Y_{0} have $y_{1}=0$ and do not contain vertex v_{1}. This is to say that the influence of y_{1} (the influence of vertex v_{1}) on the number of ones (the number of vertices) is recorded as single ones in tube $Y_{1}{ }^{O N}$ and to record zero ones in tube Y_{0}. Next, on the execution of Step (4b) in the same iteration $(i=0, j=0)$, the influence of y_{1} on the number of ones is recorded as single ones in tube (set) Y_{1}. Therefore, for the influence of the first vertex v_{1}, incrementing the number of vertices in each solution is to satisfy the formula ($o_{m} \wedge y_{1}$) and preserving the number of vertices is to satisfy the formula $\left(o_{m} \wedge \overline{y_{1}}\right)$.

Similarly, the influence of the $(i+1)$ th vertex with $1 \leq i \leq n$ -1 is to decide whether in each solution the number of vertices (the number of ones) is incremented or is preserved. In order to increment the number of vertices (the number of ones) in each solution two conditions must be satisfied. The first condition is that the $(i+1)$ th vertex is within the solution and the second condition is that each solution currently has j vertices. In order to preserve the number of vertices (the number of ones) in each solution two conditions must be satisfied. The first condition is that the $(i+1)$ th vertex is not within the solution and the second condition is that each solution currently also has j vertices. Next, on each execution of Step (4a) in the iteration (i,j), the DNA strands in tube $Y_{j+1}{ }^{O N}$ encode each solution that has $y_{i+1}=1$ and contains vertex v_{i+1}. The DNA strands in tube Y_{j} on the other hand encode each solution that has $y_{i+1}=0$ and does not contain vertex v_{i+1}. This indicates that in the iteration (i, j), the influence of y_{i+1} on the number of ones (the number of vertices) is recorded as $(j+1)$ ones in tube $Y_{j+1}{ }^{O N}$ and also as j ones in tube Y_{j}. Next, on each execution of Step (4b) in the iteration $(i$, j), the influence of y_{i+1} on the number of ones (the number of vertices) is recorded as having $(j+1)$ ones in tube Y_{j+1}. Therefore, for the influence of the $(i+1)$ th vertex for $1 \leq i \leq n$ - 1 in each solution, the two conditions for incrementing the number of vertices (the number of ones) in each solution are to satisfy the Boolean formula $\left(y_{i+1} \wedge w_{i, j}\right)$. The two conditions for preserving the number of vertices in each solution are to satisfy the Boolean formula $\left(\left(\overline{y_{i+1}}\right) \wedge w_{i, j}\right)$.

Fig. 1-2 shows the logical flowchart for counting the number of vertices in each solution. In statement S_{1}, a logical AND operation " $w_{1,1} \leftarrow o_{m} \wedge y_{1}$ " is implemented. Boolean variable $w_{1,1}$ stores the result of implementing one $\boldsymbol{A} \boldsymbol{N D}$ gate ($o_{m} \wedge y_{1}$). Next, in statement S_{2}, a logical AND operation " $w_{1,0} \leftarrow o_{m} \wedge \overline{y_{1}}$ " is implemented. Boolean variable $w_{1,0}$ stores the result of implementing one $\boldsymbol{A} \boldsymbol{N D}$ gate $\left(o_{m} \wedge \overline{y_{1}}\right)$.

Next, in statement S_{3}, variable i is set to one. Then, in statement S_{4}, if the value of i is less than or equal to the value of ($n-1$), then next executed instruction is statement S_{5}. Otherwise, in statement S_{11}, an End instruction is executed to terminate the task of counting the number of vertices in each solution. In statement S_{5}, variable j is set to the value of the variable i. Next, in statement S_{6}, if the value of j is greater than or equal to zero, then the next executed instruction is statement S_{7}. Otherwise, the next executed instruction is statement S_{10}.

In statement S_{7}, a logical AND operation " $w_{i+1, j+1} \leftarrow y_{i+1} \wedge$ $w_{i, j}$ " is implemented. Boolean variable $w_{i, j}$ stores the number of vertex in a solution after determining the influence of Boolean variable y_{i} that encodes the i th vertex on the number of ones (vertices). Boolean variable $w_{i+1, j+1}$ stores the result of implementing the logical AND operation " $w_{i+1, j+1} \leftarrow y_{i+1} \wedge w_{i,}$ j ". This is to say that $w_{i+1, j+1}$ stores the number of vertex in a solution after determining the influence of Boolean variable y_{i+} 1 that encodes the $(i+1)$ th vertex on the number of ones (vertices).

Fig. 1-2: Flowchart for computing the number of vertices in each solution (independent set).

Next, in statement S_{8}, a logical AND operation " $w_{i+1, j} \leftarrow \overline{y_{l+1}}$ $\wedge w_{i, j}$ " is implemented. For Boolean variable y_{i+1}, its negation $\overline{y_{l+1}}$ is the first operand of the logical AND operation. Boolean variable $w_{i+1, j}$ stores the result of implementing the logical AND operation " $w_{i+1, j} \leftarrow \overline{y_{l+1}} \wedge w_{i, j}$ ". This indicates that $w_{i+1, j}$ stores the number of vertex in a solution after determining the influence of Boolean variable y_{i+1} that encodes the $(i+1)$ th vertex on the number of ones (vertices).

Next, in statement S_{9}, variable j is decremented. Repeat to execute statement S_{6} through statement S_{9} until in statement S_{6} the conditional judgement attains a false value. Next, in statement S_{10}, variable i is incremented. Repeat to execute statements S_{4} through S_{10} until in S_{4} the conditional judgement attains a false value. When this happens, the next executed statement is S_{11}. In S_{11}, an End instruction is executed to terminate the task of counting the number of vertices in each solution. The cost of each operation in Fig. 1-2 is $(n \times(n+1))$ AND gates and $\left(\frac{n \times(n+1)}{2}\right)$ NOT gates. Therefore, the cost of counting the number of vertices for each solution is to implement $(n \times(n+1))$ AND gates and $\left(\frac{n \times(n+1)}{2}\right)$ NOT gates. We use Lemma 1-4 to show that in Fig. 1-2 the straightforward Boolean circuit for counting the number of vertices in each solution is the best Boolean circuit known for the problem.

Lemma 1-4: In Fig. 1-2, the Boolean circuit with $(n \times(n+1))$ AND gates and $\left(\frac{n \times(n+1)}{2}\right)$ NOT gates generated from Steps (4a)
through (4b) in each iteration in the molecular algorithm Solve-independent-set-problem $\left(Y_{0}, n, m\right)$ is the best Boolean circuit known for counting the number of vertices in each solution.

Proof: Please refer to the content of this subsection.

II. QUANTUM ALGORITHMS FOR IMPLEMENTING THE Straightforward Boolean Circuits from Molecular Solutions for Solving the Independent Set Problem

A. Computational State Space of Molecular Solutions for the Independent Set Problem

We use a unique computational basis vector with 2^{n}-tuples of binary numbers to represent each element in set (tube) Y_{0}. The first corresponding computational basis vector for the first element $y_{n}{ }^{0} y_{n-1}{ }^{0} \ldots y_{2}{ }^{0} y_{1}{ }^{0}$ is ([10 $\left.\begin{array}{llll}1 & 0 & \cdots & 0\end{array}\right]_{1 \times 2^{n}}^{T}$). And so on, with the last corresponding computational basis vector for the last element $y_{n}{ }^{1} y_{n-1}{ }^{1} \ldots y_{2}{ }^{1} y_{1}{ }^{1}$ being ($\left[\begin{array}{llll}0 & 0 & \cdots & 1\end{array}\right]_{1 \times 2^{n}}^{T}$). Therefore, the set of the corresponding computational basis vectors that span the space $C^{2^{n}}$ is $D=$ $\left\{\quad\left[\begin{array}{llll}1 & 0 & \cdots & 0\end{array}\right]_{1 \times 2^{n}}^{T},\left[\begin{array}{llll}0 & 1 & \cdots & 0\end{array}\right]_{1 \times 2^{n}}^{T} \quad, \quad \ldots\right.$, $\left.\left[\begin{array}{cccc}0 & 0 & \cdots & 1\end{array}\right]_{1 \times 2^{n}}^{T}\right\}$ and. This is to say it forms an orthonormal basis of a 2^{n} dimensional Hilbert space.

B. Quantum Circuits and Mathematical Solutions for Computational State Space of Molecular Solutions for the Independent Set Problem

Each possible molecular solution corresponds to an element in an orthonormal basis of a Hilbert space $\left(C^{2^{n}}\right)$. A quantum register of n bits, $\left(\otimes_{p=n}^{1}\left|y_{p}\right\rangle\right)$, is set to $\left(\otimes_{p=n}^{1}\left|y_{p}^{0}\right\rangle\right)$. We assume that $\left|\lambda_{0}\right\rangle=\left(\otimes_{p=n}^{1}\left|y_{p}^{0}\right\rangle\right)$ and the initial quantum state vector is $\left(\left|\lambda_{0}\right\rangle\right)$. Using n Hadamard gates to operate on the initial quantum state vector $\left(\left|\lambda_{0}\right\rangle\right), 2^{n}$ possible molecular solutions are encoded by the following new state vector $\left(\left|\lambda_{5-1}\right\rangle\right)$
$\left|\lambda_{5-1}\right\rangle=\left(H^{\otimes n}\right)\left|\lambda_{0}\right\rangle=\frac{1}{\sqrt{2^{n}}}\left(\otimes_{p=n}^{1}\left(\left|y_{p}^{0}\right\rangle+\left|y_{p}^{1}\right\rangle\right)\right)=\frac{1}{\sqrt{2^{n}}}\left(\sum_{y=0}^{2^{n}-1}|y\rangle\right)$. (2-1)

In the new state vector $\left(\left|\lambda_{5-1}\right\rangle\right)$, state $\left\langle y_{n}{ }^{0} y_{n-1}{ }^{0} \ldots y_{2}{ }^{0} y_{1}{ }^{0}\right\rangle$ with the amplitude $\left(\frac{1}{\sqrt{2^{n}}}\right)$ encodes the first element $y_{n}{ }^{0} y_{n-1}{ }^{0} \ldots$ $y_{2}{ }^{0} y_{1}{ }^{0}$ of the molecular solution space that does not contain any vertices. And so on, with state $\left|y_{n}{ }^{1} y_{n-1}{ }^{1} \ldots y_{2}{ }^{1} y_{1}{ }^{1}\right\rangle$ with the amplitude $\left(\frac{1}{\sqrt{2^{n}}}\right)$ encoding the last element $y_{n}{ }^{1} y_{n-1}{ }^{1} \ldots y_{2}{ }^{1} y_{1}{ }^{1}$ of the molecular solution space containing n vertices $\left\{v_{n} v_{n-1} \ldots\right.$ $\left.v_{2} v_{1}\right\}$. Using one Hadamard gate on the state $\mid 1>$ gives the new quantum state vector $\left(\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)\right)$ that labels the amplitude of the answer(s) among the 2^{n} states.

C. Quantum Circuits and Mathematical Solutions for

Implementing Molecular Solutions for legal Independent Sets among 2^{n} Possible Choices

The straightforward Boolean circuit for labelling legal independent sets among the 2^{n} possible choices in Fig. 1-1 is

$$
\begin{equation*}
\left(\wedge_{k=1}^{m}\left(\overline{y_{l} \wedge y_{J}}\right)\right) \tag{2-2}
\end{equation*}
$$

where bits y_{i} and y_{j} respectively represent vertices v_{i} and v_{j} in the k th edge, $e_{k}=\left(v_{i}, v_{j}\right)$, in G for $1 \leq k \leq m$. The Boolean formula $\left(\wedge_{k=1}^{m}\left(\overline{y_{l} \wedge y_{j}}\right)\right)$ consists of m NAND operations and m AND operations. The NAND operation and the AND operation
are, respectively, implemented by quantum circuits in Figures 2-1(a) and 2-1(b). The initial state for each quantum bit in the second quantum register $\mid l_{m} l_{m-1} \ldots l_{1}>$ is prepared in state $\mid 1>$. The k th quantum bit $\mid l_{k}>$ for $1 \leq k \leq m$ stores the result of evaluating the k th NAND gate of the form $\left(\overline{y_{l} \wedge y_{j}}\right)$. The m th quantum bit $\mid l_{m}>$ stores the result of the evaluating computation for the last NAND operation.

Fig. 2-1: (a) NAND operation of two Boolean variables, and (b) AND operation of two Boolean variables.

Next, the first quantum bit $\mid o_{0}>$ in the third quantum register $\mid o_{m} o_{m-1} \ldots o_{1} o_{0}>$ is initially prepared in state $\mid 1>$ and the other m bits are initially in state $\mid 0>$. The k th quantum bit $\left|o_{k}\right\rangle$ for $1 \leq$ $k \leq m$ stores the result of evaluating the AND operation of the previous clause (the ($k-1$)th clause) and the current clause (the k th clause). The $(m+1)$ th quantum bit $\left|o_{m}\right\rangle$ stores the result of evaluating the AND operation of the last two clauses. This indicates that the $(m+1)$ th quantum bit $\left|o_{m}\right\rangle$ stores the result of the evaluating computation for all of the clauses. We use the quantum circuit LIS in Fig. 2-2 with $(2 \times m)$ CCNOT gates to implement the straightforward Boolean circuit $\left(\Lambda_{k=1}^{m}\left(\overline{y_{l} \wedge y_{j}}\right)\right)$ in equation (2-2).

Fig. 2-2: The quantum circuit, LIS, used to label legal independent sets among 2^{n} possible choices.

D. Quantum Circuits and Mathematical Solutions of Molecular Solutions to the Maximum-sized Independent Sets

The straightforward Boolean circuits in Figure 1-2 for counting the number of vertices in each legal independent sets are
$\left(w_{1,1} \leftarrow o_{m} \wedge y_{1}\right)$ and $\left(w_{1,0} \leftarrow o_{m} \wedge \overline{y_{1}}\right)$ and
$\left(w_{i+1, j+1} \leftarrow y_{i+1} \wedge w_{i, j}\right)$ and $\left(w_{i+1, j} \leftarrow \overline{y_{i+1}} \wedge w_{i, j}\right)$ for $1 \leq i \leq n-$
1 and $0 \leq j \leq i$.
For $0 \leq i \leq n-1$ and $0 \leq j \leq i$, each auxiliary quantum bit in $\left|w_{i+1, j}\right\rangle$ and $\left|w_{i+1, i+1}\right\rangle$ is initially prepared in state $|0\rangle$. Quantum
bit $\left|w_{i+1, j+1}\right\rangle$ will record the status of tube (set) Y_{j+1} that has $(j$ +1) ones after the influence of y_{i+1} on the number of ones. Quantum bit $\left|w_{i+1, j}\right\rangle$ will record the status of tube (set) Y_{j} that has j ones after the influence of y_{i+1} on the number of ones. We use the quantum circuit CFFV in Fig. 2-3 to implement the straightforward Boolean circuit ($w_{1,1} \leftarrow o_{m} \wedge y_{1}$) and ($w_{1,0} \leftarrow o_{m}$ $\wedge \overline{y_{1}}$) in equation (2-3). We also use the quantum circuit CMO in Fig. 2-4 to implement the straightforward Boolean circuit $\left(w_{i+1, j+1} \leftarrow y_{i+1} \wedge w_{i, j}\right)$ and $\left(w_{i+1, j} \leftarrow \overline{y_{l+1}} \wedge w_{i, j}\right)$ for $1 \leq i \leq n-$ 1 and $0 \leq j \leq i$ in equation (2-4).

Fig. 2-3: Implementation of the first and the second conditions of equation (2-3) using the quantum circuit CFFV.

Fig. 2-4: Implementation of the first and the second conditions of (2-4) using the quantum circuit CMO.

E. Quantum Circuits and Mathematical Solutions from Reading Molecular Solutions for the Maximum-sized Independent Sets

The 2^{n} possible molecular solutions that are created by Steps (0a) through (1d) in the algorithm Solve-independent-setproblem are initialized in the distribution: $\left(\frac{1}{\sqrt{2^{n}}} \frac{1}{\sqrt{2^{n}}} \frac{1}{\sqrt{2^{n}}} \ldots \frac{1}{\sqrt{2^{n}}}\right)$. This indicates that there is the same amplitude in each of the 2^{n} possible molecular solutions. The previously proposed quantum circuits have labelled the answer(s), but the amplitude or probability of finding the answer(s) will decrease exponentially. Hence, based on [2], the diffusion operator is applied to increase exponentially the amplitude or probability of finding the answer(s), and is defined by matrix G as follows: $G_{i, j}=\left(2 / 2^{n}\right)$ if $i \neq j$ and $G_{i, i}=\left(-1+\left(2 / 2^{n}\right)\right)$. Algorithm 2-1 is used to measure the answer(s) that are generated by Steps (5a) and (5b) in the algorithm Solve-independent-set-problem.

For convenience of presentation, we assume that $\left|y_{b}{ }^{1}\right\rangle,\left|l_{k}{ }^{1}\right\rangle$, $\left|o_{k}^{1}\right\rangle,\left|w_{i+1, j}{ }^{1}\right\rangle$ and $\mid w_{\left.i+1, i+1^{1}\right\rangle}$ for $1 \leq b \leq n, 0 \leq k \leq m, 0 \leq i \leq$ $n-1$, and $0 \leq j \leq i$, subsequently, represent the fact that the value of their corresponding quantum bits is 1 . We further assume that $\left|y_{b}{ }^{0}\right\rangle,\left|l_{k}^{0}\right\rangle,\left|o_{k}^{0}\right\rangle,\left|w_{i+1, j}{ }^{0}\right\rangle$ and $\left|w_{i+1, i+1}{ }^{0}\right\rangle$ for $1 \leq$ $b \leq n, 0 \leq k \leq m, 0 \leq i \leq n-1$, and $0 \leq j \leq i$, subsequently, represent tha fact that the value of their corresponding quantum bits is 0 . Furthermore, we have made use of the notation from

Algorithm 2-1 below in previous subsections. We use the first parameter t in Algorithm 2-1 to represent the maximum size of vertex sets among legal answers, and the execution of Step (1a) in Algorithm 2-2 in the next subsection passes its value.

Algorithm 2-1 (t): Mathematical solutions obtained by reading molecular solutions of the maximum-sized independent sets for any graph G with m edges and n vertices.
(0) A unitary operator, $\mathbf{U}_{\text {init }}=(H)\left(\otimes_{i=n}^{1} \otimes_{j=i}^{0} I_{2 \times 2}\right)\left(\otimes_{k=m}^{1} I_{2}\right.$ $\times 2)\left(I_{2 \times 2}\right)\left(\otimes_{k=m}^{1} I_{2 \times 2}\right)\left(H^{\otimes n}\right)$, operates on an initial quantum state vector, $(\mid 1>)\left(\otimes_{i=n}^{1} \bigotimes_{j=i}^{0}\left|w_{i, j}^{0}\right\rangle\right)\left(\otimes_{k=m}^{1}\left|o_{k}^{0}\right\rangle\right)\left(\left|o_{0}^{1}\right\rangle\right)$ $\left(\otimes_{k=m}^{1}\left|l_{k}^{1}\right\rangle\right)\left(\otimes_{b=n}^{1}\left|y_{b}{ }^{0}\right\rangle\right)$, and the 2^{n} possible choices of n bits (containing all possible independent sets) are
$\left|\varphi_{0,0}\right\rangle=\left(\frac{1}{\sqrt{2}}(|0\rangle-\mid 1>)\right) \frac{1}{\sqrt{2^{n}}}\left(\otimes_{i=n}^{1} \otimes_{j=i}^{0}\left|w_{i, j}{ }^{0}\right\rangle\right)\left(\otimes_{k=m}^{1}\left|o_{k}{ }^{0}\right\rangle\right)\left(\left|o_{0}{ }^{1}\right\rangle\right)$ $\left(\otimes_{k=m}^{1}\left|l_{k}{ }^{1}\right\rangle\right)\left(\otimes_{b=n}^{1}\left(\left|y_{b}{ }^{0}\right\rangle+\left|y_{b}{ }^{1}\right\rangle\right)\right)$.
(1) For labeling which among the 2^{n} possible choices are legal independent sets and which are not answers, a quantum circuit in Figure 2-2, ($\left.I_{2 \times 2}\right)\left(\otimes_{i=n}^{1} \bigotimes_{j=i}^{0} I_{2 \times 2}\right)(\mathbf{L I S})$, is used to operate on the quantum state vector $\left|\varphi_{0,0}\right\rangle$, and the following new quantum state vector is obtained
$\left|\varphi_{1,0}\right\rangle=\left(\frac{1}{\sqrt{2}}(|0\rangle-\mid 1>)\right) \frac{1}{\sqrt{2^{n}}}\left(\otimes_{i=n}^{1} \otimes_{j=i}^{0}\left|w_{i, j}{ }^{0}\right\rangle\right)\left(\sum_{y=0}^{2^{n}-1}\left(\otimes_{k=m}^{1} \mid o_{k}^{0} \oplus\right.\right.$ $\left.\left.\left.l_{k} \bullet o_{k-1}\right\rangle\right)\left(\left|o_{0}{ }^{1}\right\rangle\right)\left(\otimes_{k=m}^{1} \mid l_{k}{ }^{1} \oplus y_{i} \bullet y_{j}>\right)(\mid y>)\right)$.
(2) For implementing $\left(w_{1,1} \leftarrow o_{m} \wedge y_{1}\right)$ and $\left(w_{1,0} \leftarrow o_{m} \wedge \overline{y_{1}}\right)$ in equation (2-3), a quantum circuit in Figure 2-3, $\left(I_{2} \times 2\right)$ (CFFV), is applied to the quantum state vector $\left|\varphi_{1,0}\right\rangle$, and the following new quantum state vector is
$\left|\varphi_{2,0}\right\rangle=\left(\frac{1}{\sqrt{2}}(|0\rangle-\mid 1>)\right) \frac{1}{\sqrt{2^{n}}}\left(\otimes_{i=n}^{2} \otimes_{j=i}^{0}\left|w_{i, j}{ }^{0}\right\rangle\right)\left(\sum_{y=0}^{2^{n}=1}\left(\mid w_{1,1^{0}} \oplus o_{m} \bullet\right.\right.$ $\left.\left.y_{1}>\right)\left(\mid w_{1,0} 0^{0} \oplus o_{m} \bullet \overline{y_{1}}>\right)\left(\otimes_{k=m}^{1}\left|o_{k}\right\rangle\right)\left(\mid o_{0}{ }^{1}>\right)\left(\otimes_{k=m}^{1}\left|l_{k}\right\rangle\right)(\mid y>)\right)$.
(3) For $i=1$ to $n-1$
(4) For $j=i$ down to 0
(4a) A quantum circuit in Fig. 2-4, $\left(I_{2} \times 2\right)$ (CMO), is to determine the number of vertices among the legal independent sets and operates on the quantum state vector $\left(\mid \varphi_{2+\left(\sum_{\theta_{1}=0}^{i-1}\left(\theta_{1}+1\right)\right)+(i-j), 0}>\right)$. Since Step (4a) is embedded in the only loop, after repeatedly executing the quantum circuit in Fig. $2-4,\left(I_{2 \times 2}\right)(\mathbf{C M O})$, the resulting state vector for calculating the number of vertices in each legal independent set is
$\left|\varphi_{2+\frac{n^{2}+n-2}{2}, 0}\right|=\left(\frac{1}{\sqrt{2}}(|0>-| 1>)\right) \frac{1}{\sqrt{2^{n}}}\left(\sum_{y=0}^{2^{n}-1}\left(\otimes_{i=n}^{1} \bigotimes_{j=i}^{0}\left|w_{i, j}\right\rangle\right)\left(\otimes_{k=m}^{1} \mid o_{k}>\right)\right.$ $\left.\left(\mid o_{0}{ }^{1}>\right)\left(\otimes_{k=m}^{1} \mid l_{k}>\right)(\mid y>)\right)$.
End For
End For
(5) A CNOT gate $\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}} \oplus w_{n, t}\right)$ with the target bit $\left\lvert\, \frac{|0\rangle-|1\rangle}{\sqrt{2}}>\right.$ and the control bit $\mid w_{n, t}>$ labels the legal independent set(s) with the maximum number of vertices in the quantum state vector $\left(\left|\varphi_{2+\frac{n^{2}+n-2}{2}, 0}\right\rangle\right)$, and the following new quantum state vector is $\left|\varphi_{2+\frac{n^{2}+n-2}{2}+1,0}\right\rangle=\left(\frac{1}{\sqrt{2}}(|0\rangle-\mid 1>)\right) \frac{1}{\sqrt{2^{n}}} \times$ $(-1)^{w_{n, t}^{2}}\left(\sum_{y=0}^{2^{n}-1}\left(\otimes_{i=n}^{1} \bigotimes_{j=i}^{0} \mid w_{i, j}>\right)\left(\bigotimes_{k=m}^{1}\left|o_{k}\right\rangle\right)\left(\mid o_{0}^{1}>\right)\left(\otimes_{k=m}^{1} \mid l_{k}>\right)\right.$ ($\mid y>)$).
(6) Because quantum operations are reversible by nature, reversing all the operations carried out by Steps (4a), (2) and (1) can restore the auxiliary quantum bits to their initial states.
(7) Apply the diffusion operator to the quantum state vector produced in Step (6).
(8) Repeatedly execute Step (1) to Step (7) at most $O\left(\sqrt{2^{n} / R}\right)$
times, where the value of R is the number of solutions and can be determined with the quantum counting algorithm [2].
(9) The answer is obtained with a probability of success of at least (1/2) after a measurement is completed.

End Algorithm

Lemma 2-1: The output of Algorithm 2-1 are mathematical solutions obtained by reading molecular solutions of the maximum-sized independent sets for any graph G with m edges and n vertices.

Proof: Since there are 2^{n} possible choices (including all possible independent sets) to the independent set problem for any graph G with m edges and n vertices, a quantum register of n bits $\left(\otimes_{b=n}^{1} \mid y_{b}>\right)$ can represent 2^{n} choices with initial state vector $\left(\otimes_{b=n}^{1} y_{b}{ }^{0}>\right)$. The independent set problem for any graph G with m edges and n vertices requires finding a maximumsized independent set in G, so those auxiliary quantum registers are necessary. By executing Step (0), an initial state vector $\mid \Omega>$ $=(\mid 1>)\left(\otimes_{i=n}^{1} \bigotimes_{j=i}^{0} \mid w_{i, j}{ }^{0}>\right)\left(\otimes_{k=m}^{1} \mid o_{k}^{0}>\right)\left(\mid o_{0}{ }^{1}>\right)\left(\otimes_{k=m}^{1} \mid l_{k}^{1>}>\right)$ $\left(\otimes_{b=n}^{1} \mid y_{b}{ }^{0}>\right)$ starts the quantum computation of the independent set problem. A unitary operator, $\mathbf{U}_{\text {init }}=(H)\left(\otimes_{i=n}^{1} \otimes_{j=i}^{0} I_{2 \times 2}\right)$ $\left(\otimes_{k=m}^{1} I_{2 \times 2}\right)\left(I_{2 \times 2}\right)\left(\otimes_{k=m}^{1} I_{2} \times 2\right)\left(H^{\otimes n}\right)$, operates on the initial state vector $\mid \Omega>$, and the resulting state vector becomes $\mid \varphi_{0,0}>$ with 2^{n} choices. This indicates that 2^{n} possible molecular choices generated by Steps (0a) through (1d) in the algorithm Solve-independent-set-problem can be implemented by Step (0) in Algorithm 2-1.

Next, Step (1) in Algorithm 2-1 acts as the unitary operator LIS in Fig. 2-2. On the execution of Step (1) in Algorithm 2-1, those choices among the 2^{n} possible that satisfy the straightforward Boolean circuit $\left(\Lambda_{k=1}^{m}\left(\overline{y_{l} \wedge y_{J}}\right)\right.$) in equation (22) are labeled. After the execution of Step (1) has been completed, the resulting state vector $\left|\varphi_{1,0}\right\rangle$ is obtained, containing those choices with $\left|o_{m}{ }^{1}\right\rangle$ that indicate them to be legal independent sets and those illegal choices with $\left|o_{m}{ }^{0}\right\rangle$ that do not satisfy the condition. Hence, the straightforward Boolean circuit $\left(\Lambda_{k=1}^{m}\left(\overline{y_{l} \wedge y_{j}}\right)\right)$ in equation (2-2) generated by Steps (2a) through (2d) in the algorithm Solve-independent-set-problem can be implemented by Step (1) in Algorithm 2-1.

Next, Step (2) in Algorithm 2-1 acts as the unitary operator CFFV in Fig. 2-3. On the execution of Step (2) in Algorithm $\mathbf{2 - 1}$, the number of ones from the influence of the first vertex in each legal independent set is computed. After the execution of Step (2), the state vector $\left|\varphi_{2,0}\right\rangle$ is obtained, which includes those legal independent sets with $\left|w_{1,1}{ }^{1}\right\rangle$ that have one ones and contain the first vertex and those legal independent sets with $\mid w_{1}$, ${ }_{0}^{1>}$ that have zero ones and do not contain the first vertex. This implies that the straightforward Boolean circuit ($w_{1,1} \leftarrow o_{m} \wedge y_{1}$) and ($w_{1,0} \leftarrow o_{m} \wedge \overline{y_{1}}$) in equation (2-3) generated by Steps (4a) and (4 b) in the first iteration $(0,0)$ in Solve-independent-setproblem can be implemented by Step (2) in Algorithm 2-1.

Next, Step (4a) in Algorithm 2-1 works as the unitary operator CMO in Fig. 2-4. This step is to determine the number of ones (the number of vertices) among the legal independent sets. Steps (3) and (4) consist each of a two-level loop. When the value of the index variable i is equal to one and the value of the index variable j is from one down to zero, Step (4a) is executed repeatedly two times. Similarly, when the value of the index variable i is equal to two and the value of the index
variable j is from two down to zero, Step (4a) is executed repeatedly three times. Similarly, when the value of the index variable i is equal to $(n-1)$ and the value of the index variable j is from $(n-1)$ down to zero, Step (4a) is repeatedly executed n times. This is to say that the total number of executions of Step $(4 \mathrm{a})$ is $(2+3+\ldots n)=\left(n^{2}+n-2\right) / 2$. Because the state vector $\left|\varphi_{2,0}\right\rangle$ is generated from Step (2) and its index is 2 (two), after repeatedly executing Step (4a), we use $2+\left(\left(n^{2}+n-2\right) /\right.$ 2) as the index of the resulting state and the resulting state vector $\left|\varphi_{2+\frac{n^{2}+n-2}{2}, 0}\right\rangle$ is obtained in which the number of vertices in each legal independent set is calculated. This indicates that the straightforward Boolean circuit ($w_{i+1, j+1} \leftarrow$ $\left.y_{i+1} \wedge w_{i, j}\right)$ and $\left(w_{i+1, j} \leftarrow \overline{y_{l+1}} \wedge w_{i, j}\right)$ for $1 \leq i \leq n-1$ and $0 \leq j$ $\leq i$ in equation (2-4) generated in Steps (4a) and (4b) in the same iteration (i, j) in Solve-independent-set-problem can be implemented by Step (4a) in Algorithm 2-1.

Next, one CNOT gate, $\left(\frac{|0>-| 1\rangle}{\sqrt{2}} \oplus w_{n, t}\right)$ with the target bit $\left\lvert\, \frac{|0\rangle-|1\rangle}{\sqrt{2}}>\right.$ and the control bit $\left|w_{n, t}\right\rangle$, in Step (5) of Algorithm 21 labels the answer(s) with the phase (-1). The resulting state vector $\left|\varphi_{2+\frac{n^{2}+n-2}{2}+1,0}\right\rangle$ consists of the part of the answer with the phase (-1) and the other part with the phase $(+1)$. Because quantum operations are reversible by nature, the execution of Step (6) will reverse all these operations completed by Step (4a), Step (2) and Step (1) that can restore the auxiliary quantum bits to their initial states. Next, on the execution of Step (7) in Algorithm 2-1, the diffusion operator is applied to complete the task of increasing the probability of success in measuring the answer(s). In Step (8) in Algorithm 2-1, after repeatedly executing Steps (1) through (7) of $O\left(\sqrt{2^{n} / R}\right)$ times, a maximum probability of success is generated. Next, by executing Step (9) in Algorithm 2-1, a measurement is obtained and the answer(s) is/are returned to Algorithm 2-2. Because the result produced by each step in Algorithm 2-1 is a unit vector in a finite-dimensional Hilbert space, therefore, we at once infer that the output of Algorithm 2-1 are the mathematical solutions obtained by reading molecular solutions of the maximum-sized independent sets to any graph G with m edges and n vertices.

F. Solving the Independent Set Problem on any Graph G with m Edges and n Vertices

The following algorithm solves the independent-set problem for any graph G with m edges and n vertices. We have used the notations used in Algorithm 2-2 in the previous subsections.

Algorithm 2-2: Solving the independent set problem for any Graph G with m edges and n vertices.
(1) For $t=n$ to 1
(1a) Call Algorithm 2-1 (t).
(1b) If the answer is obtained from the t th execution of Step (1a) then
(1c) Terminate Algorithm 2-2.

End If

End For

End Algorithm

Lemma 2-2: Algorithm 2-2 obtains the maximum-sized independent sets for any graph G with m edges and n vertices.

Proof: In each execution of Step (la) in Algorithm 2-2, it calls Algorithm 2-1 to find the answers) with t vertices. Next, in each execution of Step (lb) in Algorithm 2-2, if the answers) is (are) found, then the t th execution of Step (lc) in Algorithm 2-2 will terminate Algorithm 2-2. Otherwise, repeatedly execute Steps (la) through (lc) until the answers) is (are) found.

III. Complexity Assessment

A. The Time and Space Complexity of Algorithm 2-2

Lemma 3-1: The best case time complexity for Algorithm 2-2 involves $\left(\left(2^{n / 2} \times(2 \times n)\right)+(n+1)\right)$ Hadamard gates, $\left(2^{n /}\right.$ $\left.{ }^{2} \times\left(2 \times\left(n^{2}+n\right)\right)\right)$ NOT gates, $\left(2^{n / 2}\right)$ CNOT gates, $\left(2^{n / 2} \times(4 \times\right.$ $\left.m+\left(2 \times\left(n^{2}+n\right)\right)\right)$) CCNOT gates, $\left(2^{n / 2}\right)$ phase shift gates of n quantum bits and a quantum measurement.

Proof: Please refer to Algorithms 2-1 and 2-2.
Lemma 3-2: The worst case time complexity for Algorithm 2-2 is $\left(n \times\left(\left(2^{n / 2} \times(2 \times n)\right)+(n+1)\right)\right)$ Hadamard gates, $(n \times$ $\left.\left(2^{n / 2} \times\left(2 \times\left(n^{2}+n\right)\right)\right)\right)$ NOT gates, $\left(n \times 2^{n / 2}\right)$ CNOT gates, $(n$ $\left.\times\left(2^{n / 2} \times\left(4 \times m+\left(2 \times\left(n^{2}+n\right)\right)\right)\right)\right)$ CCNOT gates, $\left(n \times 2^{n / 2}\right)$ phase shift gates of n quantum bits and (n) quantum measurements.

Proof: Please refer to Algorithms 2-1 and 2-2.
Lemma 3-3: The worst and the best case spatial complexity for solving the independent set problem for any graph G are the same: $((2 \times m+2 \times n+2)+((n \times(n+1)) / 2))$ quantum bits.

Proof: Please refer to Algorithms 2-1 and 2-2.
B. Proof of a Quadratic Speedup for Solving the Independent Set Problem for any Graph G with m Edges and n Vertices

Lemma 3-4: Algorithm 2-2 gives a quadratic speed-up for solving the independent set problem for any graph G. This speedup is the best speed-up known for the problem.

Proof: From [2] and Lemma 3-2, we immediately derive that Algorithm 2-2 gives a quadratic speed-up, which is the best speed-up known for solving the problem.

IV. EXPERIMENTAL RESULTS OF FINDING THE MAXIMUM-SIZED INDEPENDENT SETS IN A GRAPH WITH THREE VERTICES AND TWO EDGES

In Fig. 4-1, graph G^{2} consists of three vertices and two edges. The independent sets in G^{2} are $\left\{v_{2}, v_{3}\right\},\left\{v_{1}\right\},\left\{v_{2}\right\},\left\{v_{3}\right\}$ and $\}$. The maximum-sized independent set for G^{2} is $\left\{v_{2}, v_{3}\right\}$. We write the program in OpenQASM ver. 2.0 to find the maximum-sized independent set $\left\{v_{2}, v_{3}\right\}$ of graph G^{2}. Fig. $4-2$ is the corresponding quantum circuit.

Fig. 4-1: Graph G^{2} with three vertices and two edges.

Fig. 4-2: The corresponding quantum circuit for finding the answer $\left\{v_{2}, v_{3}\right\}$.

The program labels the amplitude of the answers) by (-1) and amplifies the amplitude of the answers) twice. It declares nine quantum bits with the initial state $|0\rangle$ and three classical bits with the initial value 0 . Quantum bit $\mathrm{q}[2]$ encodes vertex v_{3}, quantum bit $\mathrm{q}[1]$ encodes vertex v_{2} and quantum bit $\mathrm{q}[0]$ encodes vertex v_{1}. Next, we use the statements " $\mathrm{h} \mathrm{q}[0] ; \mathrm{h} \mathrm{q}[1]$; $\mathrm{h} q[2] ; \mathrm{xq} \mathrm{q}[8] ; \mathrm{hq} \mathrm{q}[8] ; \mathrm{xq} \mathrm{q}[3]$; $\mathrm{xq} \mathrm{q}[4]$;" to generate all possible solutions and to set the initial state of the auxiliary quantum bits. The next eleven statements label the amplitude of the answers) by (-1). Then, the amplitude amplification is executed by " h q[0]; h q[1]; h q[2]; x q[0]; x q[1]; x q[2]; x q[3]; x q[4]; ccx $\mathrm{q}[0], \mathrm{q}[1], \mathrm{q}[3] ; \quad \operatorname{ccx} \quad \mathrm{q}[3], \mathrm{q}[2], \mathrm{q}[4] ; \quad \mathrm{cz} \quad \mathrm{q}[4], \mathrm{q}[8] ; \quad \mathrm{ccx}$ $\mathrm{q}[3], \mathrm{q}[2], \mathrm{q}[4] ; \mathrm{ccx} \mathrm{q}[0], \mathrm{q}[1], \mathrm{q}[3] ; \mathrm{x} \mathrm{q}[0] ; \mathrm{x} \mathrm{q}[1] ; \mathrm{xq} \mathrm{q}[2] ; \mathrm{x} \mathrm{q[3];}$ x q[4]; h q[0]; h q[1]; h q[2]". After that, the next eleven statements will again label the amplitude of the answers) by (-1). And the remaining gates will again execute the amplitude amplification of the answer (s). The measurement is carried out by the last three statements that are "measure q[0] -> c[0]; measure $q[1]$-> c[1]; measure $q[2]$-> c[2];". We use the command "simulate" to execute the quantum circuit in Fig. 4-2 on the simulator backend. Fig. 4-3 shows the measured results for the program. The state $\mathrm{q}[2] \mathrm{q}[1] \mathrm{q}[0]=110$ is observed with the highest probability of 0.55 . This state corresponds to the answer $\left\{v_{2}, v_{3}\right\}$.

Fig. 4-3: The measured result of finding the answer $\left\{v_{2}, v_{3}\right\}$ on the backend Simulator.

V. CONCLUSION

We show that the independent set problem for any graph can be solved by the algorithm Solve-independent-set-problem with $\mathrm{O}\left(n^{2}+m\right)$ biological operations, $\mathrm{O}\left(2^{n}\right)$ DNA strands, $\mathrm{O}(n)$ tubes and the longest DNA strand, $\mathrm{O}(n)$. Lemma 2-1 to Lemma 2-2 show that the same problem can be solved with a quadratic speed-up by Algorithm 2-2 and Algorithm 2-1 which implement the straightforward Boolean circuits generated from the algorithm Solve-independent-set-problem. In Lemma 3-1 to Lemma 3-4, we show that Algorithm 2-2 and Algorithm 2-1 give a quadratic speed-up which is the best speed-up known for dealing with the problem.

References

[1] Chang, W.-L. and Vasilakos, A.V. Molecular Computing: Towards a Novel Computing Architecture for Complex Problem Solving, Springer, ISBN13: 978-3319051215, ISBN-10: 3319051210, June 2014.
[2] Chang, W.-L. and Vasilakos, A.V. Fundamentals of Quantum Programming in IBM's Quantum Computers, Springer, ISBN 13: 9783030635824, ISBN 10: 3030635821, January 2021.

[^0]: This work was submitted on October 19, 2020.
 This work was supported by the National Science Foundation of the Republic of China under MOST 105-2221-E-151-040-.
 W.-L. Chang is with the Department of Computer Science and Information Engineering, National Kaohsiung University of Science and Technology, No. 415, Jiangong Road, Sanmin District, Kaohsiung City, Taiwan 807-78, Republic of China (e-mail: changwl@cc.kuas.edu.tw).
 J.-C. Chen is with the Department of Computer Science and Information Engineering, National Kaohsiung University of Science and Technology, No. 415, Jiangong Road, Sanmin District, Kaohsiung City, Taiwan 807-78, Republic of China (e-mail: jc.chen@nkust.edu.tw).
 W.-Y. Chung is with the Department of Computer Science and Information Engineering, National Kaohsiung University of Science and Technology, No. 415, Jiangong Road, Sanmin District, Kaohsiung City, Taiwan 807-78, Republic of China (e-mail: wychung@nkust.edu.tw).

[^1]: C.-Y. Hsiao is with the Department of Computer Science and Information Engineering, National Kaohsiung University of Science and Technology, No. 415, Jiangong Road, Sanmin District, Kaohsiung City, Taiwan 807-78, Republic of China (e-mail: cyhsiao@nkust.edu.tw).
 R. Wong is with the Department of Computer Science and Technology, Nanjing University, 163 Xianlin Road, 210023 Nanjing, Jiangsu, China (e-mail: renata.wong@protonmail.com).
 A. V. Vasilakos is with the School of Electrical and Data Engineering, University of Technology, Sydney, Australia, with the College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, China, and with the Department of Computer Science, Electrical and Space Engineering, Lulea University of Technology, Lulea 97187, Sweden (e-mail:th.vasilakos@gmail.com).

