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The maximal-clique problem, to find the maximally sized clique in a given graph, is classically an NP-complete
computational problem, which has potential applications ranging from electrical engineering, computational
chemistry, and bioinformatics to social networks. Here we develop a quantum algorithm to solve the maximal-
clique problem for any graph G with n vertices with quadratic speedup over its classical counterparts, where
the time and spatial complexities are reduced to, respectively, O(

√
2n) and O(n2). With respect to oracle-related

quantum algorithms for the NP-complete problems, we identify our algorithm as optimal. To justify the feasibility
of the proposed quantum algorithm, we successfully solve a typical clique problem for a graph G with two vertices
and one edge by carrying out a nuclear magnetic resonance experiment involving four qubits.
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I. INTRODUCTION

In a social network, identifying the largest group of people
with mutual acquaintance, i.e., who all know each other, is an
NP-complete problem [1], whose complexity scales exponen-
tially with the number of people involved in the social network.
It is mathematically termed the maximal-clique problem [2,3],
described by a graph with vertices and edges representing,
respectively, the people and their mutual relations. Its solution
is to find the largest group (or groups) with the most vertices
connected mutually by edges. Besides its applications in social
networks, the clique problem has also been applied to electrical
engineering for designing efficient circuits [4], computational
chemistry for exploring bound chemicals in the database [5],
and bioinformatics for studying evolutionary trees of species
or predicting protein structure [6].

Mathematically, the maximal-clique problem is defined
regarding a graph G = (V,E) with n vertices and θ edges,
where V is a finite set of n vertices in G and E is a set of θ edges
connecting pairs of vertices in G. A clique is a set of vertices in
which all the vertices are connected with each other by edges.
As such, the maximal-clique problem is to find the largest
clique in the graph, which has been proven to be NP-complete.
Figure 1 shows an example of a graph with six vertices for
such a problem where the vertices {1,2,3,4} form the largest
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clique. It has been shown that any brute-force solution to the
maximal-clique problem requires an exponential increase of
time with the size of the problem [i.e., with time complexity of
O(2n)] [2,3] and no effective approximation had been found
to solve the clique problem [7]. DNA computing techniques,
under the condition of exponentially increasing volumes of
DNA (spatial complexity), claimed to solve this problem in
linearly increasing time due to operations in parallel [8,9].
However, this is not true in real operations since the maximum
number of vertices in procession is limited to 27 [8].

Quantum computers promise to exploit the remarkable
properties of quantum mechanical systems to solve certain
problems more efficiently than their classical counterparts.
Besides the celebrated Shor’s algorithm for integer factoriza-
tion [10] and Grover’s algorithm for searching an unsorted
database [11], some other quantum algorithms for various hard
problems have recently been proposed [12–15]. On the other
hand, experimental progress has witnessed the successful im-
plementation of various quantum algorithms, such as factoring
algorithm in different quantum computer candidates [16–22]
and efficient execution of boson sampling [23–26]. However,
some of the aforementioned works are not for NP-complete
problems. In principle, the NP-complete problems can be
solved by the oracle-related search algorithms, such as Grover
search. It is already known that any such oracle-based quantum
algorithm could not perform better than quadratic speedup over
its classical counterparts [27,28]. This implies that an oracle-
related quantum algorithm for the maximal-clique problem, if
behaving optimally with finite spatial complexity, should work
in time O(

√
2n).
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FIG. 1. Typical graph with six vertices and eleven edges (left) and
its complementary graph (right). As mentioned in the text, using the
complementary graph, we may find the illegal cliques more easily by
identifying the vertices connected by edges.

A quantum adiabatic algorithm has been proposed to solve
the maximal-clique problem [29]. Unfortunately, asymptotic
analysis of quantum adiabatic evolution algorithms appears to
be difficult. Here we propose an optimal oracle-related quan-
tum algorithm, based on a quantum circuit oracle model, for
solving the maximal-clique problem with quadratic speedup
over its classical counterparts. By representing the vertices by
qubits, we first filter out the illegal cliques (defined later) under
quantum logical gates; then we identify the maximally sized
subset of vertices in the legal cliques, followed by operations of
a Grover search for the target states representing the solutions
of the clique problem. The key point of our algorithm is the
polynomial time complexity of the oracle’s job for labeling
the target states. As a justification of the feasibility of our
algorithm, a four-qubit nuclear magnetic resonance (NMR)
experiment is accomplished to solve a typical clique problem
for a graph G with two vertices and one edge.

II. QUANTUM ALGORITHM

For a graph with n vertices, we require n qubits representing
the vertices, and there are 2n possible cliques from |0 · · · 0〉 to
|1 · · · 1〉, where |0 · · · 0〉 and |1 · · · 1〉 represent, respectively,
the clique with no vertex and the one with n vertices. The
qubit state |1〉 (|0〉) represents the presence (absence) of
the corresponding vertex in the clique. For the example in
Fig. 1, the maximally sized set {1,2,3,4} can be represented
as |111100〉. An efficient way to solve a clique problem of the
graph is to consider its complementary graph Ḡ = (V,Ē) with
the edges of the vertices out of the set E. For convenience
of description, we introduce the definitions of legal clique
and illegal clique. A legal clique is the one with no edge in
Ḡ and thus other cliques in Ḡ belong to illegal cliques (i.e.,
the vertices connected by edges in Ḡ form illegal cliques).
After excluding the illegal cliques by means of Ḡ, we are able
to find the solution from the legal cliques by identifying the
maximally sized subset of vertices in G. For example, the state
|1x2x3x41x6〉, with xi = 1 or 0 for the graph in Fig. 1, evidently
denotes an illegal clique. After removing the illegal cliques, we
then explore the maximally sized set from the legal cliques as
the solution and set it as a target state. The final step is to find
the target state by iterating the Grover search operations.

A. Steps of the solution

The concrete implementation of the quantum algorithm is
as follows:

(1) Preparing a uniform superposition state. We first pre-
pare a uniform superposition state of n qubits 1√

2n

∑2n−1
x=0 |x〉

involving all 2n possible cliques by individually performing a
Hadamard gate on each qubit initially prepared in |0〉. We call
this register the data register.

(2) Excluding the illegal cliques. For the graph G with n

vertices and θ edges, it is easy to find its complementary graph
Ḡ with n vertices and m = n(n − 1)/2 − θ edges. Any two
vertices vi andvj disconnecting in the original graphG are con-
nected in the complementary graph Ḡ, i.e., the edges in Ḡ are
represented by ēk = (vi,vj ), where 1 � k � m. Therefore, we
remove the sets represented by |x1x2 · · · 1i · · · 1j · · · xn−1xn〉
from all possible cliques. If the kth edge exists in Ḡ, the
formula xi ∧ xj is then of the true value. As such, the requested
condition for deciding a legal clique among 2n possible cliques
is that the formula ∧m

k=1(xi ∧ xj ) is true. To accomplish the
logical flowchart in Fig. 2(a) in a quantum computer, we have to
introduce some auxiliary qubits such as |ēk〉 (1 � k � m), |c0〉,
and |ck〉 (1 � k � m). The operations of xi ∧ xj and xi ∧ xj

can be realized by a Toffoli gate when the target bit is initially
set to 0 and 1, respectively, i.e., |xi〉|xj 〉|0〉 → |xi〉|xj 〉|xi ∧ xj 〉
and |xi〉|xj 〉|1〉 → |xi〉|xj 〉|xi ∧ xj 〉. Consequently, all |ēk〉 and
|c0〉 are initially set to be |1〉, while the |ck〉 (1 � k � m) are
initialized as |0〉. The quantum circuit is shown in Fig. 2(b).
Only if the final value of cm is 1 do we obtain the legal cliques.

(3) Classifying the legal cliques. In order to find the largest
cliques in the legal cliques, we first classify the cliques
|x1, . . . ,xn〉 into different registers by their Hamming weights
(i.e., the number of 1’s that appear in the binary representation
x1 · · · xn) as sketched in Fig. 2(c). This idea can be described
by the logic flowchart in Fig. 2(d). Auxiliary qubits zi+1,j+1

and zi+1,j are employed to store the results of the formulas
xi+1 ∧ zi,j and xi+1 ∧ zi,j , respectively, which are likely imple-
mented by Toffoli gates. For 0 � i � n and 0 � j � i, |zi+1,j 〉
and |zi+1,j+1〉 are all initially prepared in state |0〉. After the
loops are completed, we have successfully classified the legal
cliques into n + 1 qubits zn,i , with i = 0, . . . ,n, according to
their Hamming weight from 0 to n. If at least |zn,i(x)〉 = |1〉,
the legal cliques with the Hamming weight i exist; otherwise,
if for all 2n, |zn,i(x)〉 = |0〉, there are no legal cliques with the
Hamming weight i.

(4) Identifying the legal cliques. After the classification of
the legal cliques by their Hamming weights, we can identify the
largest ones which correspond to the biggest Hamming weight
among n + 1 registers by a quantum Grover search algorithm.
That is, the largest cliques are labeled by |zn,imax (x)〉 = |1〉
and imax is the size of the largest cliques in the graph G. The
Grover algorithm is repeatedly applied to the data register x

and the qubit zn,i , where i starts from n and stops at imax. For
the Grover algorithm, an oracle qubit O initialized in |1〉 is
introduced to perform the oracle operation, i.e., to invert those
target cliques x labeled by |zn,i(x)〉 = |1〉, which is completed
by a Hadamard gate on the oracle qubit O and a CNOT gate
between qubits zn,i and O. This functions as |x〉|zn,i(x)〉|1〉 →
|x〉|zn,i(x)〉 |0〉−|1〉√

2
→ (−1)zn,i (x)|x〉|zn,i(x)〉 |0〉−|1〉√

2
. Thus,

by applying the reversal quantum circuit of steps 2
and 3, one can accomplish the oracle operation on the
data register:

∑
x∈{{illegal cliques}∩{legal cliques|zn,i (x)=0}} |x〉 −∑

x∈{legal cliques|zn,i (x)=1} |x〉. Then the oracle operation is followed
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FIG. 2. Quantum mechanical treatment of the maximal-clique problem of a graph. (a) Logical flowchart of deciding a legal clique. The
formula xi ∧ xj is realized by the Toffoli gate when the target qubit is in |1〉 and the formula ēk ∧ ck−1 is achieved by the Toffoli gate when the
target qubit is in |0〉. Following the steps, we continue the loop by increasing k. (b) Quantum circuit corresponding to (a). Here xk (k = 1,2, . . .)
represent states of qubits encoding the kth vertex vk , ēk (k = 0,1,2, . . .) are states of auxiliary qubits for storing states of the illegal and legal
cliques, which are all initialized as |1〉, and ck (k = 0,1,2, . . .) are states of auxiliary qubits for further assistance as explained in the flowchart.
Here c0 is initialized as |1〉 and the rest are initially set to be |0〉. (c) Tree diagram for classifying the legal cliques according to the Hamming
weight of x. In the diagram, we first divide the legal cliques into two registers conditional on the value of x1. Then we divide the two registers
into three depending on the value of x2. After n steps, we can classify all the legal cliques into n + 1 registers. These registers contain the
cliques with different numbers of vertices from 0 to n. (d) Logical flowchart for counting the number of the vertices. The formulas xi+1 ∧ zi,j

and xi+1 ∧ zi,j are carried out cyclically to store their results in the auxiliary qubits zi+1,j+1 and zi+1,j , respectively. Implementation of cm ∧ x1

and cm ∧ x1 in the auxiliary qubits z1,1 and z1,0 is the beginning of the loop.

by Hadamard transforms and a conditional phase shift on the
data register to complete one iteration of Grover algorithm
[11]. According to the results of the Grover algorithm [11],
one requires O(

√
2n/M) Grover iterations in order to obtain a

solution to the search problem with high probability. Here M

is the number of solutions. When M is unknown, a quantum
counting algorithm [30] can be used to estimate the number
M of solutions.

B. Example

To further clarify the algorithm introduced above, we
present in Fig. 3(a) a simple example for a graph
G = (3,2) with V = {v1,v2,v3} and E = {e1 = (v1,v2),e2 =
(v2,v3)}, whose complementary graph is Ḡ = (3,1) with V =
{v1,v2,v3} and Ē = {ē1 = (v1,v3)}. In this case, three qubits,
as the data register, are initialized in the equal superposition
state 1

2
√

2

∑7
x=0 |x〉. According to Ḡ, a Toffoli gate among v1,

v3, and ē1 transforms the initial state 1
2
√

2

∑7
x=0 |x〉|ē1 = 1〉

into 1
2
√

2
(
∑

x∈illegal |x〉|ē1 = 0〉 + ∑
x∈legal |x〉|ē1 = 1〉). Thus

the illegal cliques x = x1x2x3 ∈ {(x1 = 1),(x3 = 1)} are sep-
arated from the legal ones by the state of the qubit ē1,
i.e., the legal cliques are labeled by |ē1 = 1〉 in the second
term. Here the register |c0〉 · · · |cm〉 can be omitted because of

only one edge in Ḡ. Let |z〉 = |z1,0z1,1, . . . ,z3,0z3,1, . . . ,z3,3〉.
After the classification by the Hamming weight, the output
state is 1

2
√

2
[
∑

x∈illegal |x〉|ē1 = 0〉|z = 0〉 + ∑
x∈legal |x〉|ē1 =

1〉|z(x)〉], where the values of z(x) are listed in Table I. Thus
the legal clique x with the Hamming weight i is classified into
the qubit z3,i(x), i.e., z3,1 is used to store the legal cliques with
only one of x1, x2, or x3 being in 1. Here z3,1(x) = 1 implies
that x exists in the legal cliques and so on.

Then the final task is to find the maximal value imax with
z3,imax (x) = 1 and the corresponding x. The Grover search
algorithm is employed to complete this task. Starting from
z3,3, due to all z3,3(x) = 0, Grover iterations fail to return a
valid solution, illustrating no legal cliques with the Hamming
weight 3. Then we execute the algorithm by restarting and
in the final step the Grover algorithm is moved to z3,2. With
around four applications of the Grover iteration, we may finally
obtain two valid solutions |110〉 and |011〉, implying that the
largest cliques are {v1,v2} and {v2,v3}. The algorithm ends.
The quantum circuit for the example is shown in Figs. 3(b)
and 3(c).

C. Estimate of complexity

It is not difficult to access the complexity of this quantum
algorithm. Given a graph with n vertices, the required number
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FIG. 3. (a) Graph G(3,2) with V = {v1,v2,v3} and E = {e1 = (v1,v2),e2 = (v2,v3)}. (b) Quantum circuit to perform the algorithm. (c)
Diagram of quantum circuit to complete the algorithm. Here Uselect denotes the execution of the quantum circuit in (b). The oracle |O〉
initialized in |1〉 is introduced for Grover iterations which include the oracle’s operation, Hadamard gates, and a conditional phase shift on the
data register, as explained in the text. Grover iterations are repeatedly applied to qubits from z3,3 to z3,0 and stop when we find a valid solution.

of qubits, including those considered as auxiliary, is at
most 2m + n + 2 + n(n + 3)/2, implying a spatial complexity
O(n2), a polynomial increment with n. However, the time
complexity of the Grover search algorithm is O(

√
2n). This

implies that, in addition to the polynomial time increase of
the oracle’s job for identifying the target states, the time
complexity of our algorithm is at most O(n3

√
2n) ∼ O(

√
2n)

in the worst case. Therefore, the maximal-clique problem can
be solved with a quadratic speedup by our quantum algorithm
in comparison with that by the classical counterparts. Some
detailed discussion can be found in Appendix A.

III. EXPERIMENTAL IMPLEMENTATION

To verify our proposed algorithm, we have also accom-
plished a proof-of-principle NMR experiment for the simplest
clique problem for a graph G = (2,1) that consists of two
vertices {v2,v1} and an edge {(v1,v2)}. After optimizing the
quantum circuit, as detailed in Appendix B, we only require

TABLE I. Values of z(x) in the output state after the quantum
circuit in Fig. 3(b) is performed.

x1 x2 x3 ē1 z1,1 z1,0 z2,2 z2,1 z2,0 z3,3 z3,2 z3,1 z3,0

0 0 0 1 0 1 0 0 1 0 0 0 1
0 0 1 1 0 1 0 0 1 0 0 1 0
0 1 0 1 0 1 0 1 0 0 0 1 0
0 1 1 1 0 1 0 1 0 0 1 0 0
1 0 0 1 1 0 0 1 0 0 0 1 0
1 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 0 1 0 0 0 1 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0

four qubits to solve this problem, as shown in Fig. 4(a). The four
qubits |x1〉, |x2〉, |z1,1〉, and |O〉 are initially prepared as |0〉,
|0〉, |0〉, and |1〉, respectively. The experiment is carried out on
a Bruker AV-400 NMR spectrometer (9.4 T) at 303.0 K with
the sample iodotrifluoroethylene dissolved in chloroform-d,
where three 19F nuclei and a 13C nucleus constitute a four-qubit
quantum processor. The natural Hamiltonian of this four-spin
quantum system in the double-rotating frame is given by
[31,32]

HNMR =
4∑

j=1

πνjσ
j
z +

∑
1�j�k�4

π

2
Jjkσ

j
z σ k

z , (1)

where the measured parameters are shown in Fig. 4(b). The
chemical shifts νj and the J -coupling constants Jjk are,
respectively, listed in the diagonal and off-diagonal terms.

We first prepare a pseudopure state ρ0000 using the line-
selective pulse method [33] with the fidelity of 97.23%. Here
the fidelity is calculated by F = √〈0000|ρ0000|0000〉. Then
we use a high-fidelity shaped pulse found by the gradient
ascent pulse engineering (GRAPE) algorithm [34] to realize
the quantum circuit in Fig. 4(a). The GRAPE pulse has a
duration of 26 ms, with a theoretical fidelity above 99.85%. The
last step is to measure the output state encoding the solution
of the clique problem, which only requires the occupation
information on the computational basis states from |0000〉
to |1111〉. To reconstruct the populations, we record the
experimental spectrum for each spin after a π/2 readout pulse
to this spin. Since the natural abundance of 13C in the sample
is about 1%, we read out all four spins via the 13C channel, by
applying SWAP gates between each 19F spin and the 13C spin,
to distinguish those molecules against the large background
[35]. The experimental spectra are shown in Fig. 4(c), where
the intensities of the main resonant lines are, respectively,
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FIG. 4. The NMR experiment for a maximal-clique problem of the graph G(2,1). (a) Simplified quantum circuit for solving the clique
problem of the graph G(2,1). (b) Relevant parameters of (i) the iodotrifluoroethylene molecule along with the experimental 13C spectra of (ii) the
thermal equilibrium state and (iii) the pseudopure state after a π/2 pulse on 13C. Eight resonance lines of 13C are labeled by the corresponding
states of the three 19F spins. (c) Experimental spectra after performing the quantum circuit in (a) by a π/2 readout pulse to spin i. The spectra
of 19F spins were recorded via the 13C channel, by applying SWAP gates for (i) 13C, (ii) F1, (iii) F2, and (iv) F3. (d) Reconstructed populations of
the states from |0000〉 to |1111〉 from the experimental results in comparison with the theoretical expectations. The final state is evolved close
to |1101〉 encoding the solution of the clique problem |x1x2〉 = |11〉, i.e., {v1,v2}.

−0.9085, 0.9122, −0.9381, and −0.9672, in comparison to the
pseudopure state. From these, the reconstructed populations
[36] on the 16 computational basis states are plotted in
Fig. 4(d), where the population on |1101〉 is around 0.9429,
much larger than those of other states in Fig. 4(d). Therefore,
this experimental result implies that we found the solution of
the clique problem of the graph G(2,1): |x1x2〉 = |11〉, i.e.,
{v1,v2}, with a high probability 94.29%.

The experimental errors are mainly caused from the im-
perfect initial-state preparation (∼2.8%), the GRAPE pulse
error (∼1.0%), and the imperfect readout pulses (∼2.0%).
Decoherence during the implementation is negligible due
to the fact that the experimental running time is less than
30 ms, much shorter than the shortest relaxation time
600 ms.

IV. CONCLUSION

We have proposed an optimal oracle-related quantum al-
gorithm based on a quantum circuit oracle model to solve the
maximal-clique problem for any graph G with n vertices and
θ edges. Our NMR experimental performance, although only
solving a simple clique problem, gives us hopes that if our
quantum algorithm works efficiently, we would have reason to
eagerly await a quantum computer capable of running larger
numbers of qubits to practically treating the graph-relevant
NP-complete problems with quadratic speedup.

An open question regarding the extension of our quantum
algorithm is whether other NP-complete problems can also be
optimally solved if they are reduced to the clique problem. Our

current answer is negative since solving a certain NP-complete
problem in this way would probably take a time complexity
more than O(2n) (see Appendix C for details), which makes
the quantum treatment less efficient than the classical treatment
[with time complexity of O(2n)]. Further clarification of this
point is needed.
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APPENDIX A: COMPLEXITY ASSESSMENT

To solve the maximal-clique problem of a graph G with n

vertices and θ edges (the complementary graph Ḡ thus has n

vertices and m = n(n−1)
2 − θ edges), we require n Hadamard

gates to generate the uniform superposition state, 2m Toffoli
gates to exclude illegal cliques, and n(n + 1) NOT gates
and n(n + 1) Toffoli gates to classify legal cliques by their
Hamming weights. This indicates that we also need n(n + 1)
NOT gates and 2m + n(n + 1) Toffoli gates to restore the qubits
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to their initial states. The steps described above, including a
CNOT and a Hadamard gate, are employed to complete the
oracle’s work of the Grover search. Then the Grover search

is performed. The Grover operator can be decomposed into
H⊗nUPSGH⊗n, where UPSG is an n-qubit conditional phase-
shift gate defined as

UPSG :

{|x〉 → −|x〉 for x �= 0

|0〉 → |0〉 otherwise.
(A1)

Thus one requires O(
√

2n/M) Grover iterations in order to obtain a solution to the search problem with high probability. Here
M is the number of solutions. Therefore, the numbers of logic gates required to solve the clique problem are

O(2n2n/2 + n + 1) ∼ O(n2n/2) (Hadamard gate),

O(2(n2 + n)2n/2) ∼ O(n22n/2) (NOT gate),

O(2n/2) (CNOT gate),

O([4m + 2(n2 + n)]2n/2) ∼ O((m + n2)2n/2) (Toffoli gate),

O(2n/2) (conditional phase-shift gate of n qubits),

O(1) (measurement).

(A2)

For the worst case, we need to repeat the algorithm n times. Thus the complexity is

O(n(2n2n/2 + n + 1)) ∼ O(n22n/2) (Hadamard gate),

O(2n(n2 + n)2n/2) ∼ O(n32n/2) (NOT gate),

O(n2n/2) (CNOT gate),

O(n[4m + 2(n2 + n)]2n/2) ∼ O(n(m + n2)2n/2) (Toffoli gate),

O(n2n/2) (conditional phase-shift gate of n qubits),

O(n) (measurement).

(A3)

As such, the average gate complexity is equal to (1 + 2 + · · · + n)/n multiplied by the complexity of the best case,

O

(
n + 1

2
(2n2n/2 + n + 1)

)
∼ O(n22n/2) (Hadamard gate),

O((n + 1)(n2 + n)2n/2) ∼ O(n32n/2) (NOT gate),

O

(
n + 1

2
2n/2

)
∼ O(n2n/2) (CNOT gate),

O((n + 1)[2m + (n2 + n)]2n/2) ∼ O(n(m + n2)2n/2) (Toffoli gate),

O

(
n + 1

2
2n/2

)
∼ O(n2n/2) (conditional phase-shift gate of n qubits),

O

(
n + 1

2

)
∼ O(n) (measurement).

(A4)

In experiments the Hadamard gates for initializing the system
can be implemented in parallel, which means that the time
complexity associated with Hadamard gates for initialization
should actually be divided by n. Nevertheless, this does not
affect the asymptotic complexity since its dominant part is due
to the Hadamard gates used in the Grover operator.

The spatial complexity can be obtained by counting the
number of qubits required in the algorithm. In summary, one
needs n data qubits to encode the graph with n vertices, 2m + 1
auxiliary qubits (ē and c quantum registers) to exclude illegal
cliques, and n(n+3)

2 qubits (z quantum register) to classify legal
cliques. In addition, the qubit |O〉 is needed for the Grover
search. In total, O(2m + n + 2 + n(n+3)

2 ) ∼ O(n2 + m) qubits
are required. The numbers of qubits needed in both the best
and the worst cases are the same since qubits can be reused.
Note that ∼ means asymptotically equivalent [g(n) is said to be
asymptotically equivalent to f (n) if limn→∞ g(n)/f (n) < ∞].

Therefore, we consider that our proposed oracle-related
quantum algorithm for the maximal-clique problem behaves
with polynomial-scaled spatial complexity and O(

√
2n)-scaled

time complexity. Based on the fact that any oracle-related
quantum algorithm cannot work better than quadratic speedup
over its classical counterparts [27,28], we identify our proposed
quantum algorithm to be optimal with respect to currently
known quantum algorithms.

APPENDIX B: QUANTUM CIRCUIT FOR OUR
EXPERIMENT

This appendix explains how to reach a four-qubit quantum
circuit, as plotted in Fig. 4(a), for a clique problem regarding
the graph G with two vertices and one edge.

All the possible cliques in G are {v1,v2}, {v2}, {v1}, and
∅, where the maximum-sized clique is {v1,v2}. The quantum
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|

Grover
iteration

Grover
iteration

(a)

(b)

FIG. 5. (a) Standard version of the quantum circuit for solving
the clique problem and (b) simplified quantum circuit for solving the
clique problem. The superscript in |·〉 represents the initial state of the
qubit in |0〉 or |1〉.
circuit based on the standard steps as described in the main
text should involve seven qubits [see Fig. 5(a)]. However,
since there is no clique in the complementary graph of G,
we can skip the step of excluding illegal cliques and simplify
the circuit. According to the flowchart in Fig. 2(a), we describe
the algorithm in Fig. 5(b), where the qubits |z0

2,1〉 and |z0
2,0〉 are

excluded from the circuit, because we can obtain the answer in
the first Grover iteration and measurement. Besides, the qubit
|z0

1,0〉 works as a control on the qubits |z0
2,1〉 and |z0

2,0〉. Since
we have deleted |z0

2,1〉 and |z0
2,0〉, the qubit |z0

1,0〉 can also be
discarded.

In fact, the quantum circuit can be further simplified. Since
the qubit |z0

2,2〉 is designed only to control the oracle qubit |O〉,
this qubit |z0

2,2〉 can also be reduced if we carefully consider the
initial state of |O〉. Therefore, we finally get to the four-qubit
quantum circuit, as in Fig. 4(a), for solving the clique problem
regarding the graph G.

APPENDIX C: EXTENSION OF OUR QUANTUM
ALGORITHM

We argue below that it is impossible to optimally solve other
NP-complete problems by simply reducing them to the clique
problem under consideration.

For simplicity, we exemplify the three-satisfiability (3-SAT)
problem with n Boolean variables and m clauses, in which each
clause contains three Boolean variables. The solution to 3-SAT
is to find whether there is a truth assignment that satisfies all the
clauses. In terms of the approaches in [37–39], such a 3-SAT
problem can be reduced to a clique problem with 2n + 3m

vertices and [(2n + 3m)(2n + 3m − 1)/2 − (n + 6m)] edges.
However, solving such a clique problem, with our optimal
oracle-related quantum algorithm, will take a time complex-
ity O(

√
22n+3m) > O(2n). This implies that, by this way of

reduction, the quantum solution of the 3-SAT problem is less
efficient than a classical treatment.

Further exploration is needed to clarify this problem. If this
way of reduction is in principle unavailable for a quantum
treatment, developing independent quantum algorithms for
different NP-complete problems will be indispensable.
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