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Quantum Algorithms and Mathematical Formulations
of Biomolecular Solutions of the Vertex Cover
Problem in the Finite-Dimensional Hilbert Space

Weng-Long Chang , Ting-Ting Ren, and Mang Feng

Abstract—In this paper, it is shown that the proposed quantum
algorithm for implementing Boolean circuits generated from the
DNA-based algorithm solving the vertex-cover problem of any
graph with edges and vertices is the optimal quantum al-
gorithm. Next, it is also demonstrated that mathematical solutions
of the same biomolecular solutions are represented in terms of a
unit vector in the finite-dimensional Hilbert space. Furthermore,
for testing our theory, a nuclear magnetic resonance (NMR) ex-
periment of three quantum bits to solve the simplest vertex-cover
problem is completed.

Index Terms—Data structure and algorithm, quantum algo-
rithms, molecular algorithms, nuclear magnetic resonance.

I. INTRODUCTION

I N 1961 AND 1982 Feynman [1], [2] respectively gave the
possible chance of a molecular computer and a quantum

computer that perhaps are faster than the standard Turing
machines [3]. In 1994 Adleman [4] succeeded in solving an
instance of the Hamiltonian path problem just by handling
DNA strands. In 1985 Deutsch [5] denoted a general model of
quantum computation. An interesting open question is to ask
what the mathematical solutions of biomolecular solutions for
dealing with any NP-Complete problem are. Our motivation is
to find the answer of the interesting open question.
Our major contributions in this journal paper are as follows.
• The proposed quantum algorithm for implementing
Boolean circuits generated from the DNA-based algorithm
solving the vertex-cover problem of any graph with
edges and vertices is the optimal quantum algorithm.

• It is demonstrated that mathematical solutions of the same
biomolecular solutions are represented in terms of a unit
vector in the finite-dimensional Hilbert space.
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• It is proved that biological operations with DNA strands
and quantum gates with quantum bits can each other sim-
ulate for solving the same problem.

• A nuclear magnetic resonance (NMR) experiment of three
quantum bits to solve the simplest vertex-cover problem is
completed.

II. THE FORMAL MODEL OF COMPUTATION

In this section, the vertex cover problem of any graph with
edges and vertices in [6] and biological operations in [7]

are introduced. Next, quantum bits and quantum gates in [8] are
illustrated, and they will be used to design quantum circuits to
show that biomolecular solutions for solving it are represented
in terms of a unit vector in the finite-dimensional Hilbert space.

A. Definition of the Vertex Cover Problem
It is supposed that is a graph and , where is

a set of vertices in and is a set of edges in . Also
it is assumed that is and is and

are, respectively, elements in . Mathematically, a vertex
cover of graph is a subset of vertices such that for
each edge in , at least one of and belongs to
[6].Definition 2-1 cited in [6] is used to denote the vertex-cover
problem of graph .
Definition 2-1: The vertex cover problem of graph with
vertices and edges means finding a minimum-sized vertex

cover in .
Consider a graph to contain three vertices

and two edges . All of the vertex covers in
are , and . The

minimum-sized vertex cover for is .

B. Introduction of Biological Molecular Operations
DNA (deoxyribonucleic acid) includes polymer chains which

are commonly regarded as DNA strands in [7]. Each strand
may be made of a sequence of nucleotides, or bases, attached
to a sugar-phosphate “backbone.” The four DNA nucleotides
are adenine, guanine, cytosine, and thymine, commonly abbre-
viated to and respectively. Double-stranded DNA
may be denatured into single strands by heating the solution to
a temperature determined by the composition of the strand in
[7]. Annealing is the reverse of melting, whereby a solution of
single strands is cooled, and allowing complementary strands to
bind together in [7]. From a biological standpoint, all sequences
generated to represent bits must be checked to ensure that the
DNA strands that they encode do not form unwanted secondary
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structures with one another. The following biomolecular opera-
tions cited in [7] will be applied to construct molecular solutions
for the vertex cover problem of any graph with edges and
vertices. Their implementation can be found in [7].
Definition 2-2: Given set

for and a bit , the biomolecular oper-
ation “Append-Head” appends onto the head of every el-
ement in set . The formal representation is written as Ap-
pend-Head for

and .
Definition 2-3: Given set

for and a bit , the biomolecular op-
eration, “Append-Tail,” appends onto the end of every el-
ement in set . The formal representation is written as Ap-
pend-Tail for

and .
Definition 2-4: Given set

for , the biomolecular operation “Dis-
card ” sets to be an empty set and can be represented as
“ .”
Definition 2-5: Given set

for , the biomolecular operation “Am-
plify ” creates a number of identical copies of set
, and then “Discard .”
Definition 2-6: Given set

for and a bit, , if the value of is equal
to one, then the biomolecular extract operation creates two
new sets,
for and

for .
Otherwise, it produces another two new sets,

for
and for

.
Definition 2-7: Given sets , the biomolecular

merge operation, .
Definition 2-8: Given set

for , the biomolecular operation “Detect ”
returns true if . Otherwise, it returns false.
Definition 2-9: Given set

for , the biomolecular operation “Read ”
describes any element in . Even if contains many different
elements, the biomolecular operation can give an explicit de-
scription of exactly one of them.

C. Introduction of Quantum Bits and Quantum Gates

A quantum bit has two computational basis vectors and
of the two-dimensional Hilbert space from [8], and corre-

sponds to the classical bit values 0 and 1. A collection of
quantum bits is called a quantum register of size . If the state
of a quantum register of size is arbitrary superposition of
the -dimensional computational basis vectors, then it can be
represented as where each weighted factor

is the so-called probability amplitudes; thus they must
satisfy . The time evolution of the states of
quantum registers can be modeled by means of quantum gates
[8]. From [8], the Hadamard gate is a quantum gate of one
quantum bit (a 2 2 matrix), where

and . The
NOT gate is a gate with one quantum bit and sets only the
target bit to its negation. TheCNOT (controlled-NOT) gate is a
gate with two quantum bits and flips the target bit if and only if
the control bit is equal to one. The controlled-controlled-NOT
(CCNOT) gate is a gate with three quantum bits and flips the
target bit if and only if the two control bits are both one.

III. QUANTUM ALGORITHMS FOR BIO-MOLECULAR
SOLUTIONS OF THE VERTEX COVER PROBLEM

In this section, the DNA-based algorithm for solving the
vertex cover problem of any graph with edges and vertices
[8] will be introduced. Next, based on Boolean circuits gen-
erated from the DNA-based algorithm [8], its corresponding
quantum algorithm is presented.

A. All Possible Solutions for the Vertex Cover Problem

From Definition 2-1, for any graph with vertices and
edges, there are possible choices including legal and illegal
vertex covers in . Each possible choice corresponds to a subset
of vertices in . Hence, it is supposed that is a set of pos-
sible choices and is equal to
for . For the sake of presentation, it is assumed that

and respectively denote two values “0” and “1” of . For
an element in that is a legal vertex cover, if
the value of for is one, then represents that the
th vertex is within the legal vertex cover. Otherwise rep-
resents that the th vertex is not within the legal vertex cover.
Definition 3-1 is used to denote how each element in is rep-
resented as a unique computational basis vector with -tuples
of binary numbers.
Definition 3-1: The th element in can be repre-

sented as a unique computational basis vector
where and

for .

B. Computational State Space of Molecular Solutions for the
Vertex Cover Problem

For solving the vertex cover problem of a graph with edges
and vertices, the following biomolecular algorithm can be
applied to create all of the possible choices. A set is
an empty set and is regarded as the input set of the following
DNA-based algorithm. The second parameter in Computa-
tionalStateSpace is used to represent the number of ver-
tices. It is assumed that tubes and in Computational-
StateSpace are initially empty tubes.

Procedure ComputationalStateSpace

(0a) Append-Tail .

(0b) Append-Tail .

(0c) .

(1) For downto 1

(1a) Amplify .
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(1b) Append-Tail .

(1c) Append-Tail .

(1d) .

End For

End Procedure

Lemma 3-1: For solving the vertex cover problem of a
graph with edges and vertices, possible choices are
created from the DNA-based algorithmComputationalStateS-
pace , and the set of the corresponding computational
state vectors of possible choices forms an orthonormal basis
of a dimensional Hilbert space (a complex vector space,

).
Proof: Each execution of Step (0a) and Step (0b), respec-

tively, append the value “1” for as the first bit of every ele-
ment in a set and the value “0” for as the first bit of every
element in a set . That gives that and .
Next, each execution of Step (0c) creates the set union for the
two sets and so that , and

and .
Each execution of Step (1a) creates two identical copies,

and , of set , and . Each execution of Step (1b)
then appends the value “1” for onto the end of
for every element in . Similarly, each execution of Step (1c)
also appends the value “0” for onto the end of
for every element in . Next, each execution of Step (1d)
creates the set union for the two sets and so that

, and and . After repeating Steps
(1a) through (1d),
for is obtained. This implies that
possible choices are produced. From Definition 3-1, -

is the set of the corresponding computational basis vectors for
each element in the tube , and from [8] its span is . This
is to say that it forms an orthonormal basis of a dimensional
Hilbert space.

C. Mathematical Solutions of Computational State Space of
Molecular Solutions for the Vertex Cover Problem

It is assumed that a quantum register of bits,
is used to initialize a system that has states which are
labeled as , where each state for

corresponds to the th possible molecular
solution. For labeling the amplitude of the answer(s) among

states, one Hadamard gate, , is used to operate and
the quantum state vector is obtained.
It is assumed that the initial quantum state vector is

. The system that has states which are
labeled as can be initialized to the distri-
bution: ,
i.e., there is the same amplitude in each of the states. This
distribution can be obtained by means of Hadamard gates
operating the initial quantum state vector .

D. Molecular Solutions of Finding Legal Vertex Covers
Among Possible Choices
It is assumed that the th edge, , in to
and bits and represent vertices and , respectively.

Because a legal vertex cover consists of at least one vertex from
the th edge in for , the requested condition can
be represented as a Boolean formula of the form

(3-1)

where each for is a clause with the form .
Therefore, the question is to find choices among possible
choices that satisfy it.
The following biomolecular algorithm can be used to find

legal vertex covers and to remove illegal vertex covers among
possible choices. possible molecular solutions in a set
are produced by the DNA-based algorithm, Computation-

alStateSpace , and the set is regarded as the input set
of the following DNA-based algorithm. The second parameter
in FindingLegalVertexCover is used to represent

the number of vertices, and the third parameter inFindingLe-
galVertexCover is applied to represent the number
of edges.

Procedure FindingLegalVertexCover

(1) For each edge, , in to and
bits and respectively represent vertices and .

(1a) and .

(1b) and .

(1c) .

(1d) Discard .

End For

End Procedure

Lemma 3-2: For the vertex cover problem of a graph
with edges and vertices, the DNA-based algorithm

FindingLegalVertexCover can be applied to find
the legal vertex covers and to remove illegal vertex covers
among possible choices created by ComputationalStateS-
pace .

Proof: On each execution of Step (1a) and Step (1b), tube
contains DNA strands that have , tube contains

DNA strands that have and , tube contains
DNA strands that have and , tube and
tube . This implies that molecular solutions in tubes
and at least contain one of two vertices in the th edge and
are legal vertex covers, and molecular solutions in tube do
not contain any vertex in the th edge and are not legal vertex
covers. Then, on each execution of Step (1c) and Step (1d),
DNA strands in tube at least encode one vertex in the th
edge, tube , tube , and illegal vertex covers in tube

are removed so that tube . After repeating to execute
Steps (1a) through (1d), tube consists of DNA strands that
satisfy each formula with the form for the th edge in
for .
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E. Mathematical Solutions of Molecular Solutions of Legal
Vertex Covers Among Possible Choices

From [8], the operationOR can be implemented by two NOT
gates and one CCNOT gate with the target bit that is initially
set to state . The operation AND can be also implemented by
one CCNOT gate with the target bit that is initially set to state

. For implementing the function of the Boolean formula (3-1)
with , two
auxiliary quantum registers and
are needed. Because the previous clause of the first clause does
not exist, the first quantum bit of the third quantum register is

. The th quantum bit in the second quantum register
is employed to store the result for the th clause with the form

. The th quantum bit in the third quantum register is
employed to store the result to the current clause (the th clause)
and the previous clause (the th clause). The th
quantum bit in the third register is employed to store the
final result for all of the clauses.
Lemma 3-3: To solve the vertex cover problem of any

graph with vertices and edges, Boolean circuits
generated from the DNA-based algorithm FindingLegalVer-
texCover and to judge which among possible
choices are legal vertex covers and which are not answers can
be implemented by quantum evaluating circuits (QEC) that are
made of NOT gates and CCNOT gates.

Proof: Because Boolean circuits generated from the DNA-
based algorithm FindingLegalVertexCover is actu-
ally to implement the function of the Boolean formula (3-1) with

. For im-
plementing it, two auxiliary quantum registers and

are needed, OR operations through the
relation for and and

are completed, and AND operations through the re-
lation for are completed in [8].
This is to say that OR operations and AND operations are
all implemented by means of CCNOT gates and NOT gates.
Lemma 3-4: Mathematical solutions of molecular solutions

of legal vertex covers created by the DNA-based algorithm
FindingLegalVertexCover are a unit vector in a
finite-dimensional Hilbert space (a complex vector space, ).

Proof: From Lemma 3-3, Boolean circuits gener-
ated from the DNA-based algorithm FindingLegalVertex-
Cover can be implemented by means of quantum
evaluating circuits (QEC) that are made of NOT gates and
CCNOT gates. Because the new quantum state vector is still a
unit vector, hence, it is at once inferred that their mathematical
solutions are a unit vector in a finite-dimensional Hilbert space
(a complex vector space, ).

F. Molecular Solutions of Finding a Minimum-Sized Vertex
Cover Among Legal Vertex Covers

The following biomolecular algorithm can be used to find
a minimum-sized vertex cover among legal vertex covers.
Molecular solutions of legal vertex covers in a set are
produced by the DNA-based algorithm, FindingLegalVertex-
Cover , and the set is regarded as the input set of
the following DNA-based algorithm. In FindingMinumum-
SizedVertexCover , the second parameter is used

to represent the number of vertices, and the third parameter
is applied to represent the number of edges. In FindingMinu-
mumSizedVertexCover , each set for

is initialized to an empty set, and each set for
is also initialized to an empty set.

Procedure
FindingMinumumSizedVertexCover

(1) For to

(2) For down to 0

(2a) and .

(2b) .

End For

End For

End Procedure

Lemma 3-5: The DNA-based algorithm, FindingMinu-
mumSizedVertexCover , for the vertex cover
problem of a graph with edges and vertices can be used
to find aminimum-sized vertex cover among legal vertex covers
yielded by FindingLegalVertexCover .

Proof: At the iteration (0, 0) in the two-level nested loop,
on the first execution of Step (2a) and Step (2b), the influence
of for the number of ones is to record one one in and also
to record zero ones in and . Next, at the iteration
(1, 1) in the two-level nested loop, on the second execution of
Step (2a) and Step (2b), the influence of for the number of
ones is to record two ones in and to record one one in .
Next, at the iteration (1, 0) in the two-level nested loop, on the
third execution of Step (2a) and Step (2b), the influence of
for the number of ones is to record one one in and also to
record zero ones in . Next, from the iteration (2, 2) through
the iteration in the two-level nested loop, similar pro-
cessing is applied to compute the influence of through for
the number of ones. Hence, after each operation is completed,
those combinations in for have ones.

G. Mathematical Solutions of Molecular Solutions of
Minimum-Sized Vertex Covers

For performing Boolean circuits generated from
Steps (2a) and (2b) at the same iteration in Finding-
MinumumSizedVertexCover , auxiliary
quantum bits for and

,
and are needed. For and ,
each quantum bit in , and

is initially prepared in state , and each quantum
bit in and is initially prepared in state . Assume
that for and is applied to
record the status of tube (set) that has ones, and

is used to record the status of tube (set) that has
ones after the influence of to the number of ones is figured
out from the loop iteration in the two-level nested loop
in FindingMinumumSizedVertexCover . Boolean



CHANG et al.: QUANTUM ALGORITHMS AND MATHEMATICAL FORMULATIONS OF BIOMOLECULAR SOLUTIONS 125

circuits generated from Steps (2a) and (2b) at the same iteration
in FindingMinumumSizedVertexCover can be
represented as a Boolean formula of the form

(3-2)

Lemma 3-6: Boolean circuits produced from Steps (2a) and
(2b) at the same iteration in the two-level nested loop
in FindingMinumumSizedVertexCover can be im-
plemented by means of quantum circuits called FMNO (the
abbreviation of finding the minimum number of ones) that are
made of CCNOT gates and NOT gates.

Proof: A Boolean formula of the form (3-2) with

and
is actually Boolean circuits generated from Steps (2a)

and (2b) at the same iteration in FindingMinumumSizedVer-
texCover , so for and ,
each bit in is an auxiliary quantum bit and is applied
to store the result of performing the first condition in (3-2).
Therefore, this step requires computing the AND operations
through the relation , and
for and , the relation

and the relation
. Next, it also requires

figuring out the CCNOT operation through the relation
. It then requires subse-

quently computing the NOT operations on for
to restore each quantum bit to its previous state.

This enables the reuse of for .
For and , each bit in is

also an auxiliary quantum bit, and is applied to store the result
of performing the function of the second condition in (3-2). This
step requires computing the NOT operation on , the
AND operation, and the CCNOT operation through the rela-
tion and the relation

. Next, it requires subsequently figuring out
the NOT operations on to restore each quantum bit
in to its superposition state. This enables us to pre-
serve the superposition in and to reuse the superposi-
tion in . Therefore, it is at once inferred that Boolean
circuits produced from Steps (2a) and (2b) at the same itera-
tion in the two-level nested loop in FindingMinumum-
SizedVertexCover can be implemented by means of
quantum circuits called FMNO (the abbreviation of finding the
minimum number of ones) that are made of CCNOT gates and
NOT gates.

H. Reading Molecular Solutions of Minimum-Sized Vertex
Covers
The following biomolecular algorithm can be used to

read molecular solutions of a minimum-sized vertex cover
among minimum-sized vertex covers. Molecular solutions of
minimum-sized vertex covers in a set are produced by
the DNA-based algorithm, FindingMinumumSizedVertex-
Cover , and the set is regarded as the input
set of the following DNA-based algorithm. In ReadingAn-

swer , the second parameter is used to represent
the number of vertices, and the third parameter is applied to
represent the number of edges. In ReadingAnswer ,
tubes through are all generated by the DNA-based
algorithm FindingMinumumSizedVertexCover ,
and tube includes those DNA strands encoding a vertex
cover with vertices for .

Procedure ReadingAnswer

(1) For to

(1a) If then

(1b) Read and terminate the algorithm.

EndIf

EndFor

End Procedure

Lemma 3-7: For the vertex cover problem of a graph with
edges and vertices, the DNA-based algorithm, Readin-

gAnswer , can be employed to read molecular solu-
tions of a minimum-sized vertex cover among minimum-sized
vertex covers created by FindingMinumumSizedVertex-
Cover .

Proof: On each execution of Step (1a), a “true” is returned
if there are DNA strands in tube . This indicates that the
number of vertices for a minimum-sized vertex cover is the
value of the loop index variable, . Next, on each execution of
Step (1b), the answer of a minimum-sized vertex cover is read
and the algorithm is terminated.

I. Mathematical Solutions for Reading Molecular Solutions of
Minimum-Sized Vertex Covers
Grover's operator in [8] is used to increase exponentially the

amplitude or probability of finding the answer(s), and is de-
fined by matrix as follows: if and

. Algorithm 3-1 is applied to com-
plete one operation detect and one operation Read in
Step (1a) and Step (1b) in ReadingAnswer . The no-
tations used in Algorithm 3-1 below have been denoted in pre-
vious subsections. The first parameter in Algorithm 3-1 is
used to represent the minimum size of vertices among legal an-
swers, and its value is passed from the execution of Step (1a) in
Algorithm 3-2 in the next subsection.

Algorithm 3-1 : Mathematical solutions of reading
molecular solutions of minimum-sized vertex covers for
any graph with edges and vertices.

(1) A unitary operator is applied to
operate an initial quantum state vector with

and possible choices of
bits are obtained:

.

(2) For labeling legal vertex covers, a
quantum circuit, (EQC), is used to
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operate the state vector
, and the new

state vector is obtained:

.

(3) For to

(4) For down to 0

(4a) A quantum circuit, (FMNO), is applied
to calculate the number of vertices among the
legal vertex covers and is also used to operate the
state vector

. Because
Step (4a) is embedded in the only loop, after repeating
to execute the quantum circuit, (FMNO),
the resulting state vector,

is obtained in which the number of vertices in each legal
vertex cover is calculated.

End For

End For

(5) A CNOT gate is
used to label the legal vertex cover(s) with the
minimum number of vertices in the quantum state

and the resulting new quantum
state vector is obtained:

.

(6) Since quantum operations are reversible by nature, the
auxiliary quantum bits can be restored to their initial states
by reversing all these operations finished by Steps (4a)
and (2).

(7) Apply Grover's operator in Grover's algorithm to the
quantum state vector generated in Step (6).

(8) At most repeat executing from Step (2) to Step (7)
times, where the value of is the

number of solutions and can be efficiently computed from
the quantum counting algorithm [8].

(9) The answer is obtained with a successful probability of
at least after a measurement is finished.

End Algorithm

Lemma 3-8: The output of Algorithm 3-1 is mathematical
solutions for reading molecular solutions of the minimum-sized
vertex covers for any graph with edges and vertices.

Proof: From the execution of Step (1), possible vertex
covers in the state vector is
obtained. This implies that the function of the DNA-based

algorithm ComputationalStateSpace can be imple-
mented by Step (1) in Algorithm 3-1. Next, from the execution
of Step (2), legal vertex covers in the resulting state vector

are found. This indicates that
the function of the DNA-based algorithm FindingLegalVer-
texCover can be implemented by Step (2) in
Algorithm 3-1. Next, after repeating to execute Step (4a),
the resulting state vector is obtained in
which the number of vertices in each legal vertex cover is
calculated. This implies that the function of the DNA-based
algorithm FindingMinumumSizedVertexCover
can be implemented by Step (4a) in Algorithm 3-1.
Next, one CNOT gate, in the ex-

ecution of Step (5) is used to perform the oracle work (in the
language of Grover's algorithm), that is, the target state la-
beling preceding Grover's searching step. The resulting state
vector contains the part of the answer
with phase and the other part with phase .
Next, the execution of Step (6) is used to reverse all those

operations completed by Steps (4a) and (2) so that the aux-
iliary quantum bits can be restored to their initial states and
then they can be repeated for safe use. Next, on the execution
of Step (7), it applies Grover's operator to perform the task of
increasing the probability of success in measuring the answer.
From Step (8), after repeating the execution of Steps (2) through
(7) times, a maximum successful probability
is generated. Next, from the execution of Step (9), a measure-
ment is used to obtain the answer(s) and the answer(s) is/are
returned to Algorithm 3-2. Since the result generated by each
step in Algorithm 3-1 is a unit vector in the finite-dimensional
Hilbert space, therefore, it is at once inferred that the output of
Algorithm 3-1 is mathematical solutions of reading molecular
solutions of the minimum-sized vertex covers for any graph
with edges and vertices.

J. Measuring Answers to Mathematical Solutions for Reading
Molecular Solutions of Minimum-Sized Vertex Covers for
Solving the Vertex Cover Problem of Any Graph With
Edges and Vertices

The following algorithm is applied to solve an instance of
the vertex cover problem of any graph with edges and
vertices. The notations used in Algorithm 3-2 below have been
denoted in previous subsections.

Algorithm 3-2: Measuring answers to mathematical
solutions of reading molecular solutions of minimum-sized
vertex covers for solving an instance of the vertex cover
problem of any Graph with edges and vertices.

(1) For to
(1a) Call Algorithm 3-1 .
(1b) If the answer is obtained from the th execution of
Step (1a) then
(1c) Terminate Algorithm 3-2.
End If

End For
End Algorithm
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Lemma 3-9: Algorithm 3-2 is applied to obtain the answer(s)
to solve an instance of the vertex cover problem of any graph
with edges and vertices after measuring mathematical so-
lutions of reading molecular solutions of minimum-sized vertex
covers.

Proof: In each execution of Step (1a) in Algorithm 3-2,
the answer(s) fromAlgorithm 3-1 is/are returned toAlgorithm
3-2. That is to say that it is shown that mathematical solutions
of molecular solutions for finding the minimum-sized vertex
covers are a unit vector in the finite-dimensional Hilbert space
and mathematical solutions of reading molecular solutions of
the minimum-sized vertex covers are still a unit vector in the fi-
nite-dimensional Hilbert space. Next, in each execution of Step
(1b) in Algorithm 3-2, if the answer is found from the th exe-
cution of Step (1a) in Algorithm 3-2, then the th execution of
Step (1c) in Algorithm 3-2 is applied to terminate Algorithm
3-2. Otherwise, Steps (1a) through (1c) are executed until the
answer is found. Therefore, it is at once inferred thatAlgorithm
3-2 can be applied to obtain the answer(s) to solve an instance
of the vertex cover problem of any graph with edges and
vertices after measuring mathematical solutions of reading

molecular solutions of minimum-sized vertex covers.

IV. EXPERIMENTAL RESULTS

For a graph , its minimum
vertex cover is actually . For finding the answer, an
quantum operator (CNOT) (CNOT) is used to
operate and the new state vector

is ob-
tained. Our experiment is carried out on a Varian INOVA
600 NMR spectrometer. The sample is labelled alanine
with formula CH CH(NH ) COOH, where the
three carbons and correspond to the quantum
bits , and , respectively. The J-coupling constants are

Hz, Hz, and Hz.
Soft pulses are used to achieve the selective excitation. If the
algorithm works correctly, the detection of the nuclear spins
of the three in should correspond to the absorption
peaks in the NMR spectra at 2500 Hz, 7620 Hz, and 11 955 Hz,
respectively.
The states of the input quantum bits can be written in the

form of the product operations as follows:
,

where is the unity operator with the form of ,
and , with and 3, being the th
spin angular momentum operator in the direction, and
is the Pauli matrix . Next, the Hadamard gate
can be achieved by a single pulse with phase . The
CNOT gate can be implemented by NMR pulses as follows:

,
where the flip angle of the pulse and the time of delay are written
in square brackets and in round brackets, respectively. The sub-
scripts are the phases (i.e., along the or axis) of the pulse, and
the superscripts are the nuclei to which the pulses are applied.
Then we could obtain the total pulse sequence by connecting
and optimizing the aforesaid pulses according to the quantum

Fig. 1. Experimental spectra (a)–(c) of the three-quantum- bit solution
for the vertex-cover problem after the readout on the first, second and third
quantum bits, respectively, where the phases of the reference of the NMR
spectra for a thermal equilibrium have been adjusted to be in absorption (i.e.,
positive), and then the same phase corrections are used to determine the abso-
lute phases of the experimental spectra of . These absorption peaks of the

NMR spectra represent the three quantum bits to be in the states , re-
spectively, after the disentangling operations are performed.

circuit. Next, a readout pulse is applied to each quantum bit to
obtain the spectra.
In our case, the final state was

which means the three quantum bits are entangled. As the
readout by NMR is a weak measurement, we have no state
collapse after the measurement. Besides, only single quantum
coherence can be detected in NMR. As a result, we have to
employ some additional operations to disentangle them for
detecting the output state . For this
end, we apply a CNOT gate on the second and first quantum
bits to get the state . The second
quantum bit is the control bit and the first is the target bit. Then
the first quantum bit can be read out by a single pulse
along the -axis, as shown in Fig. 1(a) where the horizontal
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axis is for frequency and the vertical axis is for signal strength.
The peak appears at 2492 Hz meaning that is detected to
be in . Similar steps applied to the second and third quantum
bits, respectively, result in peaks at 7615 Hz in Fig. 1(b) and
11 950 Hz in Fig. 1(c).

V. CONCLUSION
From Lemma 3-8 and Lemma 3-9, the quantum algo-

rithm using ideas (Boolean circuits) from DNA computing
for solving the vertex cover problem of any graph with
edges and vertices is the optimal quantum algorithm. The
number of quantum bits for solving it is the successful key
for a quantum system of a real-world situation (for example,
NMR technology). From Lemma 3-8, the space consump-
tion for the worst, average and best case is the same, and is

quantum bits.
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