
104 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 14, NO. 1, JANUARY 2015

DNA Algorithms of Implementing Biomolecular
Databases on a Biological Computer

Weng-Long Chang and Athanasios V. Vasilakos

Abstract—In this paper, DNA algorithms are proposed to per-
form eight operations of relational algebra (calculus), which in-
cludeCartesian product, union, set difference, selection, projection, in-
tersection, join, and division, on biomolecular relational databases.

Index Terms—Biomolecular relational algebra, biomolecular re-
lational databases, DNA computing.

I. INTRODUCTION

T HE GENETIC information of cellular organisms is en-
coded by DNA (deoxyribonucleic acid) in [1]–[3]. DNA

includes polymer chains which are commonly regarded as DNA
strands. Each strand may be made of a sequence of nucleotides,
or bases, attached to a sugar-phosphate “backbone.” The four
DNA nucleotides are adenine, guanine, cytosine and thymine,
commonly abbreviated to , , , and , respectively. The
classical double helix of DNA is formed when two separate
single strands bond. Bonding occurs by the pairwise attraction
of bases: bonds with and bonds with in [1]–[3].
Double-stranded DNA may be denatured into single strands
by heating the solution to a temperature determined by the
composition of the strand in [1]–[3].
From [1]–[3], storing information in molecules of DNA

allows for an information density of approximately 1 bit per
cubic nm (nanometer) and a dramatic improvement over ex-
isting storage media. Relational database system in [4] is the
most popular one. One interesting open question is asking
whether relational database system in [4] can be constructed
by means of biological operations and DNA strands or not.
Our motivation is to find the answer of the interesting open
question.
Our major contributions in this journal paper are as follows.
• We demonstrate that biological operations can be applied
to construct biomolecular databases where data records in
relational tables are encoded as DNA strands.

• We propose DNA-based algorithms to complete eight
operations of relational algebra (calculus), which contain
Cartesian product, union, set difference, selection, projec-
tion, intersection, join, and division.

Manuscript received May 16, 2014; revised July 21, 2014; accepted October
03, 2014. Date of publication October 17, 2014; date of current version February
27, 2015. This work was supported by National Science Foundation of Republic
of China under Grants NSC-102-2221-E-151-031- and NSC-102-2622-E-151-
013-CC3. Asterisk indicates corresponding author.
*W.-L. Chang is with the Department of Computer Science and Information

Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung
807, Taiwan (e-mail: changwl@cc.kuas.edu.tw).
A. V. Vasilakos is with the National Technical University of Athens, Greece

(e-mail: vasilako@ath.forthnet.gr).
Digital Object Identifier 10.1109/TNB.2014.2363470

• We analyze complexity, strengths and weaknesses of con-
structing biomolecular relational databases.

• We theoretically show that constructing biomolecular
databases on a molecular computer is a very feasible task.

II. COMPUTATIONAL MODEL

Definition 2–1: Given set
for and a bit , the biomolecular operation

“Append-Head” appends onto the head of every element in
set . The formal representation is written as Append-Head

for
and .
Definition 2–2: Given set

for and a bit , the biomolecular opera-
tion, “Append-Tail,” appends onto the end of every element
in set . The formal representation is written as Append-Tail

for
and .
Definition 2–3: Given set

for , the biomolecular operation “Discard
” sets to be an empty set and can be represented as “
.”

Definition 2–4: Given set
for , the biomolecular operation “Amplify

” creates a number of identical copies of set ,
and then “Discard .”
Definition 2–5: Given set

for and a bit, , if
the value of is equal to one, then the biomolecular
extract operation creates two new sets,

for
and for

. Otherwise, it produces another two new
sets, for

and
for .

Definition 2–6: Given sets , the biomolecular
merge operation, .
Definition 2–7: Given set

for , the biomolecular operation “Detect
” returns true if . Otherwise, it returns false.
Definition 2–8: Given set

for , the biomolecular operation “Read ”
describes any element in .

III. CONSTRUCTING BIOMOLECULAR DATABASES

A. Introduction to a Relational View of Data
Given sets , , , (not necessarily distinct), is a

relation on these sets if it is a set of -tuples, each of which

1536-1241 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

CHANG AND VASILAKOS: DNA ALGORITHMS OF IMPLEMENTING BIOMOLECULAR DATABASES ON A BIOLOGICAL COMPUTER 105

has its first element from , its second element from , and
so on [4]. We shall refer to as the th domain of . As de-
fined above, is said to have degree . Relations of degree is
called as -ary. From [4], an -ary relation has the five prop-
erties: 1) each row represents an -tuple of , 2) the ordering
of rows is immaterial, 3) all rows are distinct, 4) the ordering of
columns is significant, and 5) the significance of each column
is partially conveyed by labeling it with the name of the corre-
sponding domain.

B. DNA Algorithms for the Cartesian Product on Biomolecular
Databases

The Cartesian product (or cross-product or just product) of
sets, , , , is the set of pairs that can be formed by

choosing the first element of the pair to be any element of ,
the second element of the pair to be any element of , and
so on [4]. Assume that is the number of bits for the value
of each element in to and that is an -ary
relation and has elements. It is assumed that is equal to

for and
and that the value encoding in can be represented as a
binary number, for and .
The bits and represent the first bit and the last bit
for , respectively. From [1]–[3], to for every bit

that encodes the bit of the field of the element in
an -ary relation, two distinct DNA strands (sequences) are de-
signed to minimize the possibility of unwanted binding and their
length is base pairs. One represents the value “0” for and
the other represents the value “1” for . For the sake of con-
venience in our presentation, it is assumed that denotes
the value of to be 1, defines the value of to be
0, and defines the value of to be 0 or 1. DNA algo-
rithms that are used to implement a relational algebra (calculus),
the Cartesian product, for constructing a biomolecular database
are, respectively, proposed in Sections III-B1 and III-B2.
1) A DNA Algorithm of Inserting One Record Into Biomolec-

ular Databases: The following algorithm, Insert , is ap-
plied to insert one record into a biomolecular database de-
noted in Section III-B. In Insert , tube is the first
parameter and is initially set to an empty tube. The second pa-
rameter, , is used to represent the record that will be inserted
into the biomolecular database .

Procedure Insert
1) For to

2) For to
2a) Append-Tail .

EndFor
EndFor
EndProcedure

Lemma 3–1: One record in a biomolecular database can
be constructed with a DNA strand from the algorithm Insert

.
Proof: It consists of one nested loop. The outer loop is ap-

plied to insert one record (including fields) into a biomolec-
ular database . The inner loop is employed to construct each
field of one record in . Each time, Step 2a) is used to append
a DNA sequence, representing the value 0 or 1 for , onto
the end of every strand in tube . This is to say that the value

0 or 1 to the bit in the field of the record in ap-
pears in tube . After repeating the execution of Step 2a), it
finally produces tube that consists of a DNA sequence with

base pairs, representing one record in .
2) A DNA Algorithm of Implementing the Cartesian Product

on Biomolecular Databases: The following algorithm, Carte-
sianProduct , is used to construct a biomolecular data-
base denoted in Section III-B. In CartesianProduct ,
tube is the first parameter and is initially set to an empty tube.
The second parameter, , is employed to represent the number
of records in the biomolecular database .

Procedure CartesianProduct
1) For to

1a) Insert .
1b) .

EndFor
EndProcedure

Lemma 3 –2: A biomolecular database can be constructed
with DNA strands from the algorithm, CartesianProduct

.
Proof: A single loop is used to insert records into a

biomolecular database . Each time, Step 1a) is applied to call
the procedure, Insert , to insert one record (including
fields) into a biomolecular database . This is to say that the

record in appears in tube . Next, Step 2) is applied
to pour tube into tube . This implies that the record
in appears in tube and tube becomes an empty tube.
After repeating the execution of Steps 1a) and 1b), it finally pro-
duces tube that consists of DNA sequences, representing

records in .

C. DNA Algorithms for Set Operations on Biomolecular
Databases

The three most common operations on sets are union, inter-
section, and difference. The contents of Definition 3–1 through
Definition 3–3 are directly cited from [4] and are used to ex-
plain how these operations perform their functions on arbitrary
sets and .
Definition 3 –1: , the union of and , is the set of

elements that are in or or both. An element appears only
once in the union even if it is present in both and .
Definition 3 –2: , the intersection of and , is the

set of elements that are in both and .
Definition 3 –3: , the difference of and , is the

set of elements that are in but not in . Note that is
different from ; the latter is the set of elements that are
in but not in .
When we apply these operations above to -ary relations, we

need to put some conditions on and . The first condition is
that and must have identical sets of columns, and the do-
main for each column must be the same in and . The second
condition is that before we compute the set-theoretic union, in-
tersection, or difference of sets of tuples, the columns of and

must be ordered so that their order is the same for both re-
lations. DNA algorithms for performing these operations are,
respectively, proposed in Sections III-C1, III-C2, and III-C3.
1) A DNA Algorithm for the Union Operator on Biomolec-

ular Databases: Assume that and are -ary relations and

106 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 14, NO. 1, JANUARY 2015

have elements and elements, respectively. Suppose also that
and are, respectively, equal to

for and and
for and . After the two DNA algo-
rithms, CartesianProduct and CartesianProduct ,
are called and are performed, tube consists of DNA se-
quences representing records in and tube includes
DNA sequences representing records in . The following
DNA algorithm is used to perform . Notations used in
the following DNA algorithm appear in Section III-B.
In Section III-B, a binary number is used to encode the
bit of the field of the element in an -ary relation

and its value is zero or one. When we design the DNA-based al-
gorithm, Union , in advance we do not know that
the value of is zero or one. For the convenience of our
presentation, the second parameter of the extract operation in
Step 7a) of Union is set to . If its value is
given as one, then Step 7a) in Union is to imple-
ment and .
Otherwise, Step 7a) in Union is to implement

and .

Procedure Union
1) Amplify .
2) Amplify .
3) .
4) .
5) For to

6) For to
7) For to

7a) and
.

7b) .
EndFor

EndFor
7c) Discard .
7d) .

EndFor
8) .
9) Read .
EndProcedure

Lemma 3–3: The union operator on two -ary relations can
be performed with DNA strands from the algorithm, Union

.
Proof: Please refer to the proof of Lemma 3–1 and Lemma

3–2.
2) A DNA Algorithm for the Intersection Operator on

Biomolecular Databases: Assume that and were denoted
in Section III-C1, tube consists of DNA sequences repre-
senting records in , and tube includes DNA sequences
representing records in . The following DNA algorithm is
used to perform . Notations used in the following DNA
algorithm appear in Section III-B.

Procedure Intersection
1) Amplify .
2) .
3) For to

4) For to
5) For to

5a) and
.

5b) .
EndFor

EndFor
5c) .
5d) .

EndFor
6) Discard .
7) Read .
EndProcedure

Lemma 3–4: The intersection operator on two -ary relations
can be performed with DNA strands from the algorithm, Inter-
section .

Proof: Please refer to the proof of Lemma 3–1 and Lemma
3–2.
3) A DNA Algorithm for the Difference Operator in

Biomolecular Databases: Suppose that and were defined
in Section III-C-IV, tube consists of DNA sequences
representing records in , and tube includes DNA
sequences representing records in . The following DNA
algorithm is used to perform . Notations used in the
following DNA algorithm appear in Section III-B.

Procedure Difference
1) Amplify .
2) Amplify .
3) .
4) .
5) For to
6) For to
7) For to

7a) and
.

7b) .
7c) and

.
7d) .

EndFor
EndFor
5a) If (Detect “yes”) then

5b) Discard .
EndIf
5c) .
5d) .

EndFor
8) .
9) Read .
EndProcedure

Lemma 3–5: The difference operator on two -ary relations
can be performed with DNA strands from the algorithm, Differ-
ence .

Proof: Please refer to the proof of Lemma 3–1 through
Lemma 3–2.

CHANG AND VASILAKOS: DNA ALGORITHMS OF IMPLEMENTING BIOMOLECULAR DATABASES ON A BIOLOGICAL COMPUTER 107

D. DNA Algorithms for the Projection Operator in
Biomolecular Databases

From an -ary relation (denoted in Section III-B), the
projection operator in [4] is applied to produce a new re-
lation that has only some of 's columns. The projection
operator on is denoted as . The value
of expression is a relation that is equal to

for , ,
, and each element is distinct . DNA

algorithms for completing the expression are,
respectively, proposed in Sections III-D1 and III-D2.
1) A DNA Algorithm of the Projection Operator on an N-ary

Relation: The DNA algorithm, Projection , is ap-
plied to perform the expression , and notations
used in the DNA algorithms are denoted in Section III-B. In Pro-
jection , tube is the first parameter and DNA
strands in tube are applied to represent elements in .
Tube is the second parameter and is set to an empty tube.
The third parameter, , is applied to represent the number of
elements in . The fourth parameter, , is used to represent
the number of specified columns for . For the convenience of
our presentation, in the expression , we assign
one number to each specified column in . In Projection

, Steps 3), 4), and 5) are a nested loop and are ap-
plied to extract the values of the specified columns for and
eliminate duplicates. Because the range of the value for index
at each iteration of Step 4) is from one through , its corre-

sponding specified column is different. Therefore, for the con-
venience of our presentation, it is assumed that the specific
column for corresponds to the domain so that the notation

in Projection is consistent with that notation
denoted in Section III-B.

Procedure Projection
1) Amplify .
2) .
3) For to
4) For to
5) For to

5a) and
, where the specific column for

corresponds to the domain.
5b) .

EndFor
6) If (Detect “yes”) then

7) For to
7a) Append-Tail ,
where the specific column
for corresponds to the
domain.

EndFor
EndIf

8) .
EndFor
9) If (Detect “yes”) then

10) If (Detect “yes”) then
11) JudgeDistinctElement

.
12) If (Detect “no”) then

13) .

Else
14) Discard .

EndIf
Else
15) .

EndIf
EndFor
16) Read .

EndProcedure

Lemma 3–6: The projection operator on an -ary relation can
be performed with DNA strands from the algorithm, Projection

.
Proof: DNA strands in tube are applied to represent

elements in . Step 1) is used to amplify tube and to generate
two new tubes, and , which are copies of and tube
becomes empty. Step 2) is then used to pour tube into tube
. This is to say that DNA strands representing elements in
are still reserved in tube . From Step 2), the property for no

change of elements in is satisfied in the processing of expres-
sion . Steps 3), 4), and 5) are a nested loop and
are applied to extract the values of the specified columns for
and eliminate duplicates.
On the execution of Step 5a), it applies the extract operation

to form two tubes, and . DNA strands in tube rep-
resent the values that are equal to the value of . The values
encoded by DNA strands in tube are not equal to the
value of . Next, each time, Step 5b) uses the merge oper-
ation to pour tube into tube . After repeating the
execution of Steps 5a) and 5b) until the value of the loop vari-
able reaches , tube contains DNA strands values that are
the row of the specified columns in , and tube in-
cludes DNA strands encoding values that are not the row of
the specified columns in .
Step 6) is then applied to detect whether tube is not empty.

If it returns a “yes,” then Steps 7) and 7a) are executed. Step 7)
is a single loop and is employed to generate values for the
row of the specified column in . Each time, Step 7a) is
used to append a DNA sequence, representing the value 0 or
1 for , into tube . This is to say that the value 0 or 1
to the bit in the row of the specified column in
appears in tube . After repeating the execution of Step 7a)
until the value of the loop variable reaches , DNA strands
encoding values for the row of the specified column in
are appended into tube . Next, on the execution of Step 8),

it applies the merge operation to pour tube into tube .
This is to say that DNA strands encoding values for other rows
of the specified columns in are in tube . After repeating
to execute until the value of the loop variable reaches , DNA
strands encoding values for the row of the specified columns
in are appended into tube .
Step 9) is then applied to detect whether tube is not empty.

If it returns a “yes,” then Steps 10) through 15) are executed.
Otherwise, nothing is done. Step 10) is used to detect whether
tube is not empty. If it returns a “yes,” then Steps 11) through
14) are executed. Step 11) is then employed to call the algo-
rithm, JudgeDistinctElement , to pro-
duce three new tubes, , , and . Tube includes DNA
strands with the compared result of greater than, tube con-
tains DNA strands with the compared result of equal to, and

108 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 14, NO. 1, JANUARY 2015

tube consists of DNA strands with the compared result of
less than. Step 12) is used to detect whether tube is not
empty. If it returns a “no,” then Step 13) is employed to pour
tube into tube . Otherwise, Step 14) is employed to dis-
card tube . This implies that DNA strands encoding dupli-
cates are removed. If Step 10) returns a “no,” this is to say that
tube is empty, Step 15) is applied to pour tube into tube
. After repeating to execute until the value of the loop vari-

able reaches , DNA strands in tube encode values of the
specified columns in and duplicates in are removed. For
reading the answer(s) that satisfy the projection operator for an
-ary relation , Step 9) uses the read operation to display the

answer(s).
2) A DNA Algorithm of Eliminating Duplicates of the Pro-

jection Operator on an N-ary Relation: The following DNA
algorithm, JudgeDistinctElement ,
is applied to eliminate duplicates of the expression

, and notations used in the following DNA
algorithms are denoted in Section III-B. The algorithm,
JudgeDistinctElement , is called
by the algorithm Projection . In JudgeDis-
tinctElement , DNA strands in
tube encode the previous records (from the first record
through record) of the specified columns in and
duplicates of them are removed. DNA strands in tube
encode the record of the specified column in . Tubes

, and are initially set to empty tubes. The sixth
parameter, , is applied to represent that record which will be
processed is the record in . The seventh parameter, , is
used to represent the number of specified columns for . In
JudgeDistinctElement , Steps 3)
and 4) are a nested loop and are applied to eliminate duplicated
records of the specified columns in . Because the range of
the value for index at each iteration of Step 4) is from one
through , its corresponding specified column is different.
Hence, for the convenience of our presentation, it is assumed
that the specific column for corresponds to the
domain so that the notation in JudgeDistinctElement

is consistent with that notation
denoted in Section III-B.

Procedure JudgeDistinctElement .
1) Amplify .
2) .
3) For to
4) For to

4a) and
, where the

specific column for corresponds to the
domain.

4b) and
.

4c) If (Detect (“yes”) then
4d) .
4e) .
4f) .

Else
4g) .
4h) .
4i) .

EndIf
4j) .

EndFor
EndFor

EndProcedure

Lemma 3–7: Duplicates of the projection operator on an
-ary relation can be eliminated with DNA strands from the

algorithm, JudgeDistinctElement .
Proof: Step 1) is applied to amplify tube and to gen-

erate two new tubes, and , which are copies of
and tube becomes empty. Step 2) is then employed to pour
tube into tube . This is to say that DNA strands repre-
senting values of the specified columns in are still reserved
in tube . Steps 3) and 4) are a nested loop and are applied
to eliminate duplicated values of the specified columns in .
On the execution of Step 4a), it applies the extract operation to
form two test tubes, and . DNA strands in tube

have and DNA strands in tube have
. Next, each time, Step 4b) uses the extract operation

to form two test tubes, and . DNA strands in tube
have and DNA strands in tube have

. On the execution of Step 4c), it employs the detec-
tion operation to detect whether tube is not empty. If it
returns a “yes,” then Steps 4d) through 4f) are executed. Each
time, Steps 4d) through 4f) use three merge operations to pour
tubes , , and , respectively, into tubes ,

, and . If it returns a “no,” then Step 4g), Step 4h) and
Step 4i) are executed. Each time, Steps 4g) through 4i) apply
also three merge operations to pour tubes , , and

, respectively, into tubes , , and .
On the execution of Step 4j), it employs the merge opera-

tion to pour tube into tube . After repeating to ex-
ecute Steps 4a) through 4j) until the value of the loop variable
reaches , it finally produces tubes , , and . DNA

strands in tube have the result of greater than (“ ”), DNA
strands in tube have the result of equal to (“ ”), and DNA
strands in tube have the result of less than (“ ”). There-
fore, it is inferred that duplicates of the projection operator on an
-ary relation can be eliminated with DNA strands from the

algorithm, JudgeDistinctElement .

E. DNA Algorithms for the Selection Operator in Biomolecular
Databases

From an -ary relation (denoted in Section III-B), the se-
lection operator from [4] is used to produce a new relation with a
subset of 's tuples. The tuples in the resulting relation are those
that satisfy some selected condition that involves the columns
of . The selection operator on is denoted as . The se-
lected condition is expressed as , where is a column
of or a constant value, is also a column of or a constant
value, and is any element in . It is assumed
that a column of in or is the column for
and is the number of bits for the length of its domain. It
is also assumed that can be represented as denoted in
Section III-B. Similarly, for ease in our presentation, it is sup-
posed that can be represented as a binary number .
The bits and represent the first bit and the last bit for ,
respectively. For every bit to , the same DNA

CHANG AND VASILAKOS: DNA ALGORITHMS OF IMPLEMENTING BIOMOLECULAR DATABASES ON A BIOLOGICAL COMPUTER 109

strands encoding are also used to encode it. One repre-
sents the value “0” for and the other represents the value “1”
for . For the sake of convenience in our presentation, it is as-
sumed that denotes the value of to be 1, defines the
value of to be 0, and defines the value of to be 0 or
1. The value of expression is a relation that is equal to

for , and the
selected condition is satisfied .
The following DNA algorithm, Selection

, is applied
to complete the expression , and notations used in
Selection are
denoted in Section III-B. Tube is first parameter and DNA
strands in tube are applied to represent elements in .
Tubes , , , , , and are initially
set to empty tubes. The purpose of tube is to store DNA
strands encoding those elements in have a result that satisfies
the condition of greater than . The purpose of tube

is to store DNA strands encoding those elements in
have a result that satisfies the condition of equal to .
The purpose of tube is to store DNA strands encoding
those elements in have a result that satisfies the condition of
less than . The purpose of tube is to store
DNA strands encoding those elements in have a result that
satisfies the condition of greater than or equal to .
The purpose of tube is to store DNA strands encoding
those elements in have a result that satisfies the condition of
less than or equal to . The purpose of tube
is to store DNA strands encoding those elements in have a
result that satisfies the condition of not equal to .

Procedure Selection

1) Amplify .
2) .
3) For to

3a) Append-Tail .
EndFor

4) For to
4a) and

.
4b) and

.
4c) If (Detect (“yes”) then

4d) .
4e) .
4f) .

Else
4g) .
4h) .
4i) .

EndIf
4j) .

EndFor
5) .
6) Amplify .
7) Amplify .
8) Amplify .
9) Amplify .
10) Amplify .

11) Amplify .
12) .
13) .
14) .
15) In light of the selected condition that is one of , , ,
, and , the read operation is used to read the answer(s)

from the corresponding tube of tubes , , , ,
and .

EndProcedure

Lemma 3–8: The selection operator on an -ary relation can
be performed with DNA strands from the algorithm, Selection

.
Proof: Please refer to the proof of Lemma 3–6 through

Lemma 3–7.

F. DNA Algorithms for the Theta-Join Operator in
Biomolecular Databases

Assume that and are -ary relations and have el-
ements and elements, respectively. The theta-join operator,
cited from [4], is applied to produce, from theCartesian product
of and , a new -ary relation. The tuples in the resulting
-ary relation are those that satisfy some selected condition

that involves the columns of and . The theta-join oper-
ator on and is denoted as , where the selected
condition is denoted in Section III-E. From [4], expression

is actually equal to expression . This
is to say that the theta-join operator on and can be per-
formed through the Cartesian product and the selection oper-
ator. The following DNA algorithms are employed to perform
the expression , and notations used in the fol-
lowing DNA algorithms are denoted in Section III-B.

Procedure CartesianProductTwoRelations
1) For to
2) For to
3) For to

3a) and
.

3b) If (Detect (“yes”) then
3c) Append-Tail .

EndIf
3d) If (Detect (“yes”) then

3e) Append-Tail .
EndIf

3f) .
EndFor

EndFor
EndFor

Lemma 3–9: The Cartesian product on two -ary relations
can be performed with DNA strands from the algorithm, Carte-
sianProductTwoRelations .

Proof: Please refer to Lemma 3–6 through Lemma 3–7.

Procedure Theta-join
1) CartesianProduct .
2) CartesianProduct .
3) Amplify .
4) Amplify .

110 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 14, NO. 1, JANUARY 2015

5) .
6) .
7) CartesianProductTwoRelations .
8) Selection .
9) .
10) Read .
EndProcedure

Lemma 3–10: The theta-join operator on two -ary relations
can be performed with DNA strands from the algorithm, Theta-
join .

Proof: Please refer to Lemma 3–6 through Lemma 3–7.

G. DNA Algorithms for the Division Operator in Biomolecular
Databases

Assume that relations and have columns
and , respectively.

Columns are common to the two relations,
additionally has columns and has no

other columns. Moreover, suppose that the domain of every
column comes from (denoted in Section III-B) for

and the corresponding columns (i.e., columns with
the same name) are defined on the same domain. Assume
that relations and have elements and elements,
respectively. The expression of the division operator on
relations and is denoted as , where relations

and represent the dividend and the divisor, respec-
tively. From [4], expression is actually equal to

.
This implies that the division operator on relations and

can be accomplished through the projection operator,
difference operator, and the Cartesian product. The following
DNA algorithms are employed to perform the expression

, and
notations used in the following DNA algorithms are denoted in
Section III-B.

Procedure Division
1) CartesianProduct .
2) CartesianProduct .
3) Amplify .
4) Amplify .
5) .
6) .
7) Projection .
8) CartesianProductTwoRelations .
9) Difference .
10) Projection .
11) Projection .
12) Difference .
13) Read .
EndProcedure

Lemma 3–11: The division operator on relations and
can be implemented with DNA strands from the algorithm, Di-
vision .

Proof: Please refer to Lemma 3–6 through Lemma 3–7.

H. Index Technology and Primary Key in Biomolecular
Databases

For an -ary relation denoted in Section III-A, if the values
of a column or combination of columns for any two rows are dif-
ferent, then the column or combination of the columns is called
a primary key [4]. An index is usually defined on a single field
of a file, called an indexing field. The index typically stores each
value of the index field along with a list of pointers to all disk
blocks that contain a record with that field value. The values
in the index are ordered so that we can do a binary search on
the index [4]. The following DNA algorithm is applied to con-
struct an -ary relation denoted in Section III-A with a pri-
mary key , where are all its domains
and assume that is the number of columns for the primary
key. The notations in the following DNA algorithm are denoted
in Section III-B.

Procedure PrimaryKeyDetect
(0) For to
1) If (Detect “no”) Then

1a) Insert .
1b) .

Else
2) For to

3) For to
3a) Append-Tail .

EndFor
EndFor
4) For to

5) For to
5a) and

.
5b) and

.
5c) If (Detect “yes”) Then
5d) and

.
Else

5e) and
.

EndIf
5f)
and and

.
EndFor

EndFor
6) If (Detect “no”) Then

6a) Insert .
6b)

Else
6c) Terminate the algorithm because input
data are duplicated.

EndIf
EndIf

EndFor
EndProcedure

Lemma 3–12: A biomolecular database with a primary
key can be constructed with DNA strands from
the algorithm, PrimaryKeyDetect .

CHANG AND VASILAKOS: DNA ALGORITHMS OF IMPLEMENTING BIOMOLECULAR DATABASES ON A BIOLOGICAL COMPUTER 111

Proof: Please refer to Lemma 3–1 through Lemma 3–2.

IV. DISCUSSIONS ON STRENGTHS AND WEAKNESSES OF
CONSTRUCTING DNA RELATIONAL DATABASES

From Lemma 3–1 through Lemma 3–12, one DNA strand
with base pairs is used to encode one element
(record) in an -ary relation with records (elements). If for
a record in its length is 4096 bytes that is equal to 32 768 bits,
then we need to design one new DNA strand with
base pairs. From a biological standpoint, all sequences gener-
ated to represent 32 768 bits must be checked to ensure that the
DNA strands that they encode do not form unwanted secondary
structures with one another (i.e., strands remain separate at all
times, and only bind together when this is required). The biggest
challenge of constructing a biomolecular relational database is
actually to the problem of strand design that has been addressed
at length to minimize the possibility of unwanted binding.
With current biotechnology, the time for each operation is

at least one second. Realistically, steps like gel electrophoresis
take much longer, but for the sake of argument say each biolog-
ical operation takes one second. It is assumed that the value of
is equal to . From CartesianProduct , constructing
an -ary relation with elements needs to take seconds
which are about 317 years. Because elements are
processed by Union , Intersection ,
Difference , Projection , Theta-join

and Division , it also takes about seconds to
obtain the results. Even if an electronic supercomputer is used
to construct elements and to complete those functions to

elements, it is impossible to complete them in min-
utes or hours. If the value of is equal to , then for a molec-
ular computer and an electronic supercomputer constructing an
-ary relation with elements is a very difficult task and

completing those functions on elements is also a
very difficult task.

REFERENCES
[1] L. M. Adleman, “Molecular computation of solutions to combinatorial

problems,” Science, vol. 266, no. 11, pp. 1021–1024, 1994.
[2] M. Amos, Theoretical and Experimental DNA Computation. New

York: Springer, 2005.
[3] W.-L. Chang and A. V. Vasilakos, Molecular Computing: Towards a

Novel Computing Architecture for Complex Problem Solving. New
York: Springer, 2014.

[4] E. F. Codd, “A relational model of data for large shared data banks,”
Commun. ACM, vol. 13, no. 6, pp. 377–387, 1970.

Weng-Long Chang received the Ph.D. degree in
computer science and Information Engineering
from National Cheng Kung University, Taiwan, in
1999. He is current Professor at the Department of
Computer Science and Information Engineering in
National Kaohsiung University of Applied Sciences,
Taiwan. His researching interests include biological
algorithms, quantum algorithms, quantum-molecular
algorithms, data structures and algorithms, and
languages and compilers for parallel computing.

Athanasios V. Vasilakos is recently Professor
at Kuwait University. He served or is serving
as an Editor for many technical journals, such
as the IEEE TRANSACTIONS ON NETWORK AND
SERVICE MANAGEMENT; IEEE TRANSACTIONS
ON CLOUD COMPUTING; IEEE TRANSACTIONS
ON INFORMATION FORENSICS AND SECURITY;
IEEE TRANSACTIONS ON CYBERNETICS; IEEE
TRANSACTIONS ON NANOBIOSCIENCE; IEEE
TRANSACTIONS ON INFORMATION TECHNOLOGY
IN BIOMEDICINE; ACM Transactions on Au-

tonomous and Adaptive Systems; the IEEE JOURNAL ON SELECTED AREAS IN
COMMUNICATIONS. He is also General Chair of the European Alliances for
Innovation (http://www.eai.eu).

