
62 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 11, NO. 1, MARCH 2012

Fast Parallel DNA-Based Algorithms for
Molecular Computation: Quadratic Congruence

and Factoring Integers
Weng –Long Chang

Abstract—Assume that is a positive integer. If there is an in-
teger such that , i.e., the con-
gruence has a solution, then is said to be a quadratic congru-
ence . If the congruence does not have a solution, then
is said to be a quadratic noncongruence . The task

of solving the problem is central to many important applications,
the most obvious being cryptography. In this article, we describe a
DNA-based algorithm for solving quadratic congruence and fac-
toring integers. In additional to this novel contribution, we also
show the utility of our encoding scheme, and of the algorithm’s
submodules. We demonstrate how a variety of arithmetic, shifted
and comparative operations, namely bitwise and full addition, sub-
traction, left shifter and comparison perhaps are performed using
strands of DNA.

Index Terms—Biological cryptography, biological parallel
computing, DNA-based supercomputing, factoring integers,
molecular-based supercomputing, quadratic congruence, the RSA
public-key cryptosystem.

I. INTRODUCTION

T HIS PAPER IS organized as follows: in Section II we
introduce DNA models of computation proposed by

Adleman and his coauthors in detail. In Section III we give a
high-level description of our quadratic congruence algorithm.
By breaking this down into submodules in Section IV, we prove
the operation of the various novel algorithms for arithmetic,
shifted, and comparative operations. In Section V, based on
our quadratic congruence algorithm, we also give a high-level
description of our factoring integer algorithm. In Section VI we
demonstrate that the time complexity of our algorithm is square
on the input size. In Section VII, we prove that our proposed
algorithm is currently the fastest method to factor integers, and
we conclude with a brief discussion in Section VIII.

II. BACKGROUND

In this section we present the basic structure of the DNAmol-
ecule, and the techniques for dealing with DNA that will be used
to solve quadratic congruence and factoring integers.

Manuscript received April 15, 2010; revised June 30, 2011; accepted August
01, 2011. Date of publication September 12, 2011; date of current versionMarch
13, 2012. This work was partly supported by the National Science Foundation
of Republic of China under Grants No. 99-2221-E-151-030- and 99-2622-E-
151-021-CC3.
The author is with Department of Computer Science and Information Engi-

neering, National Kaohsiung University of Applied Sciences, Kaohsiung City
807-78, Taiwan (e-mail: changwl@cc.kuas.edu.tw).
Digital Object Identifier 10.1109/TNB.2011.2167757

A. The Structure of DNA

From [1], [2], DNA (DeoxyriboNucleic Acid) is the molecule
that plays themain role in DNA based computing. Each deoxyri-
bonucleotide contains three components: a sugar, a phosphate
group, and a nitrogenous base. The sugar has five carbon atoms,
and the carbons of the sugar are numbered from 1’ to 5’. The
phosphate group is attached to the 5’ carbon, and the base is at-
tached to the 1’ carbon. Within the sugar structure there is a hy-
droxyl group attached to the 3’ carbon. As stated in [4], the base
is made of one of four distinct nucleotides, which are adenine,
guanine, cytosine and thymine that are, respectively abbreviated
, , , and . Because nucleotides are distinguished solely
from their bases, they are simply represented as , , , or
nucleotides, depending upon the sort of base that they have.

B. Adleman’s Experiment for Solution of a Satisfability
Problem

Adleman et al. [6], [7] performed experiments that were ap-
plied to respectively solve a 6-variable 11-clause formula and a
20-variable 24-clause 3-conjunctive normal form (3-CNF) for-
mula. A Lipton encoding was used to represent all possible vari-
able assignments for the chosen 6-variable or 20-variable SAT
problem. For each of the 6 variables two distinct 15
base value sequences were designed. One represents true (),
, and another represents false (), for . Each

of the truth assignments was represented by a library se-
quence of 90 bases consisting of the concatenation of one value
sequence for each variable. DNA molecules with library se-
quences are termed library strands and a combinatorial pool
containing library strands is termed a library. The 6-variable
library strands were synthesized by employing a mix-and-split
combinatorial synthesis technique [6], [7]. The library strands
were assigned library sequences with at the 5’-end and
at the 3’-end (’). Thus
synthesis began by assembling the two 15 base oligonucleotides
with sequences and . This process was repeated until all
6 variables had been treated. The similar method also is applied
to solve a 20-variable of 3-SAT [7]. (For more discussions of
the relevant biological technologies refer to [6], [7]).

C. DNA Manipulations

A (test) tube is a set of molecules of DNA (a multiset of finite
strings over the alphabet). Given a tube, one can
perform the following operations [1], [2]:
1. Extract. Given a tube and a short single strand of DNA,

, the operation produces two tubes and ,

1536-1241/$26.00 © 2011 IEEE

CHANG: FAST PARALLEL DNA-BASED ALGORITHMS FOR MOLECULAR COMPUTATION: QUADRATIC CONGRUENCE AND FACTORING INTEGERS 63

where is all of the molecules of DNA in which
contain as a substrand and is all of themolecules
of DNA in which do not contain .

2. Merge. Given tubes and , yield , where
. This operation is to pour two tubes

into one, without any change in the individual strands.
3. Detect. Given a tube , if includes at least one DNA
molecule we have “yes,” and if contains no DNA mol-
ecule we have “no.”

4. Discard. Given a tube , the operation will discard .
5. Amplify. Given a tube , the operation,

, will produce two new tubes
and so that and are totally a copy of (

and are now identical) and becomes an empty tube.
6. Append. Given a tube containing a short strand of DNA,

, the operation will append onto the end of every strand
in .

7. Append-head. Given a tube containing a short strand of
DNA, , the operation will append onto the head of
every strand in .

8. Read. Given a tube , the operation is used to describe
a single molecule, which is contained in tube . Even if
contains many different molecules each encoding a dif-

ferent set of bases, the operation can give an explicit de-
scription of exactly one of them.

III. QUADRATIC CONGRUENCE ALGORITHM

Given a well-defined notion of the remainder one integer
when divided by another, it is convenient to provide special
notation to indicate equality of remainders. If

, we write and say that is equivalent
to , modulo . The integer can be divided into equivalence
classes according to their remainders modulo . The equiva-
lence class modulo containing an integer is .
The set of all such equivalence classes is

. One often sees the definition
[3]. The greatest common divisor of two integers and , not
both zero, is the largest of the common divisors of and ; it is
denoted . Because the equivalence class of two inte-
gers uniquely determines the equivalence class of their product,
thus, we define multiplication modulo , denoted , as fol-
lows: . Using the definition of multi-
plication modulo , we define the multiplicative group modulo
as , where .
Assume that the length of is bits. Also suppose that is

represented as a -bit binary number, , where the
value of each bit is either 1 or 0 for . The bits

and represent the most significant bit and the least
significant bit for , respectively. Therefore, the form of an
expression, , can be transformed into another form

The following pseudo algorithm is applied to solve quadratic
congruence and factoring integers.
1) Method 1: Solving quadratic congruence and factoring

integers.

(1) Every computation of for is
simultaneously performed on a molecular computer.

(2) Find four solutions that are, respectively, , , ,
and for .

(3) The integer can be factored as , where
and .

EndMethod
Proof: Step (1) in Method 1 is employed to simultaneously

perform every computation of for for .
This indicates that every value of for for

is determined after Step (1) is finished. Then, Step
(2) in Method 1 is used to search four integer solutions so that

is equivalent to 1, modulo . Next, from four solutions of
, Step (4) is used to factor the integer into

. Therefore, it is inferred from Method 1 that quadratic
congruence and factoring integers can both be solved.
The following DNA algorithm is applied to figure out solu-

tion space of quadratic congruence that is to perform Step (1) in
Method 1.
Algorithm 3–1: Figure out solution space of quadratic con-

gruence.
(1) .
(2) .
(3) .
(4) .

EndAlgorithm
Theorem 3–1: From Algorithm 3–1, the problem of

quadratic congruence can be solved.
Proof: On the execution of Step (1), it calls

to construct library sequences for possible solutions
for quadratic congruence. This means that tube in-
cludes library sequences encoding possible solutions
for quadratic congruence. Next, the execution of Step (2)
calls to perform
selection of legal solutions for quadratic congruence. This
implies that legal solutions for quadratic congruence are
encoded in tube . On the execution of Step (3), it calls

to encode . This indicates that tube
contains a library sequence encoding . Next, the execution
of Step (4) calls to finish
computation of . After those steps are processed,
every library sequence in tube performs computation of

. Therefore, solutions of quadratic congruence can
be computed from those steps in Algorithm 3–1.

ALGORITHM MODULES

We now describe, in detail, the various modules that are com-
bined to form the overall quadratic congruence algorithm.

A. A Library for Solving Quadratic Congruence

From [1], [2], for every bit in denoted in Section III,
two distinct 15 base value sequences are designed to respec-
tively represent the value “0” for and the value “1” for .
Assume that denotes the value of to be 1 and defines
the value of to be 0. Each of the different values for
was represented by a library sequence of bases con-
sisting of the concatenation of one value sequence for each bit.

64 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 11, NO. 1, MARCH 2012

Library sequences are also termed library strands and a com-
binatorial pool containing library strands is termed a library.
The following procedure is used to construct a library to solve
quadratic congruence.

Procedure

(1) For to

(1a) .

(1b) .

(1c) .

(1d) .

EndFor

EndProcedure

Lemma 4–1: A library for solving quadratic congruence can
be constructed from .

B. Selection of a Library for Solving Quadratic Congruence

Because the largest element in is equal to , suppose
that is represented as a -bit binary number, ,
where the value of each bit is either 1 or 0 for .
The bits and is used to represent the most significant
bit and the least significant bit for , respectively. From [1],
[2], for every bit , two distinct 15 base value sequences are
designed to respectively represent the value “0” for and the
value “1” for . Assume that denotes the value of to be 1
and defines the value of to be 0. The following algorithm,

, is proposed to con-
struct a library sequence for encoding and select library
strands encoding those values which ranges are from 0 through

from tube , generated by the algorithm .

Procedure

(1) For to

(1a) .

EndFor

(2) For to 0

(2a) and .

(2b) and .

(2c) If then

(2d) and .

Else

(2e) and .

EndIf

(2f) .

(2g) .

(2h) .

EndFor

(3) .

EndProcedure

Lemma 4–2: The algorithm
can be applied to

encode and select library strands encoding those values

which ranges are from 0 through from tube ,
generated by the algorithm .

C. A Library Sequence for the Second Operand of a Modular
Operation
Assume that the length of denoted in Section III is bits.

Also suppose that is represented as a -bit binary number,
, where the value of each bit is either 1 or 0 for

. The bits and represent the most sig-
nificant bit and the least significant bit for , respectively. From
[1], [2], for every bit , two distinct 15 base value sequences
are designed to respectively represent the value “0” for and
the value “1” for . Assume that denotes the value of to
be 1 and defines the value of to be 0. The following algo-
rithm , is proposed to construct a library
sequence for encoding .

(1) For to

(1a) .

EndFor

EndProcedure

Lemma 4–3: A library sequence for encoding can be con-
structed from .

D. The Algorithm for Computation of a ModularMultiplication

For any positive integer , Blakley [4] proposed the fastest
method to perform computation of (3–1) denoted in Section III
for . Blakley’s algorithm is described below.

Blakley’s algorithm: Perform computation of
.

Input: Two positive integers and .

Output: The answer of , .

Method:

(1)

(2) For down to 0

(2a)

(2b) If then

(2c)

EndIf

(2d) If then

(2e)

(2f) If then

(2g)

EndIf

EndIf

EndFor

EndAlgorithm

From Blakley’s algorithm, it is indicated that adder and sub-
tractor of at most times are applied to perform com-
putation of . From Blakley’s method, is
finally obtained after at most updating times of the
value for . Assume that the length of is bits. Also suppose

CHANG: FAST PARALLEL DNA-BASED ALGORITHMS FOR MOLECULAR COMPUTATION: QUADRATIC CONGRUENCE AND FACTORING INTEGERS 65

that is represented as a -bit binary number, ,
where the value of each bit is either 1 or 0 for

and . The bits, and ,
represent the most significant bit and the least significant bit
for , respectively. If updating of the time for is fin-
ished through an adder, then two binary numbers
and represent the augends and the sum of
the updating, respectively. If updating of the time for
is finished through a subtractor, then two binary numbers

and represent the minuend
and the difference of the updating, respectively.
From [1], [2], for every bit , two distinct 15 base value

sequences were designed to respectively represent the value “0”
for and the value “1” for . Assume that denotes the
value of to be 1 and defines the value of to be 0.
In Blakley’s algorithm, it uses successive opera-

tions of left shifter, subtraction and addition to perform
computation of . The procedure,

, is applied to perform all
of the steps to computation of . This implies
that each step in Blakley’s algorithm is performed through the
procedure, .

Procedure

(1) .

(2) For down to 0

(2a) .

(2b)
.

(2c) .

(2c1) If then

(2d)
.

EndIf

(2d1) If then

(2e) .

EndIf

(2f) .

(2g) and .

(2h) If then

(2i)
.

(2j)
.

(2k) .

(2k1) If then

(2l)
.

EndIf

(2l1) If then

(2m) .

EndIf

(2n) .

EndIf

(2o) If then

(2p) .

(2q) .

EndIf

(2r) .

EndFor

EndProcedure.

Lemma 4–4: The algorithm
can be used to finish computation of .

E. A Library Sequence for an Initial Value to Computation
of a Modular Multiplication

The module uses, as a
submodule, a parallel initial-valued assignment. We describe
the construction of a parallel initial-valued assignment for bit-
strings of arbitrary length. The following algorithm is used to
construct a library sequence to encode an initial value to com-
putation of a modular multiplication.

Procedure

(1) For to
(1a) .

EndFor
EndProcedure

Lemma 4–5: Library strands for initial values to computation
of a modular multiplication for of bits can be constructed
from the algorithm .

F. The Construction of a Left Shifter

The module uses, as a
submodule, a parallel left shifter. We describe the construction
of a parallel left shifter for bit-strings of arbitrary length. A left
shifter is an instruction of two operands of bits that the second
operand is applied to represent the number of the left shift to
the first operand. Suppose that a binary number
denoted in Section IV-D, represent the first operand of a left
shifter. Because computation of denoted in
Section IV-D only needs to perform left shift of one time, the
second operand actually is equal to one. The following algo-
rithm is used to construct a parallel left shifter.

Procedure

(1) .

(2) For to

(2a) and .

(2b) .

(2c) .

(2d) .

EndFor
EndProcedure

66 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 11, NO. 1, MARCH 2012

TABLE I
TRUTH TABLE OF A ONE-BIT SUBTRACTOR

Lemma 4–6: The algorithm
can be applied to finish the function of a parallel left shifter.

G. The Construction of a Parallel Comparator

The module uses, as a
submodule, a parallel comparator. We now describe its con-
struction in detail. A one-bit parallel comparator is a Boolean
function that performs compared operation of the two input bits.
From compared results in a one-bit parallel comparator, DNA
strands encoding those pairs with compared results
“ ”, DNA strands encoding those pairs with compared
results “ ” andDNA strands encoding those pairs with
compared results “ ” are, respectively, put into three different
tubes.
Therefore, the submodule,

is presented to compute the function of a
one-bit parallel comparator. The first parameter and the second
parameter, and , respectively, contain those DNA strands
that respectively encode and . The third parameter, ,
includes those DNA strands with the comparative result of
greater than (“ ”) between and . The fourth parameter,
, contains those DNA strands with the comparative result

of equal (“ ”) between and . The fifth parameter, ,
consists of those DNA strands with the comparative result of
less than (“ ”) between and . The sixth parameter, ,
is applied to represent the compared operation in parallel
comparator of a -bits. The seventh parameter, , is used to
represent the compared operation of the time for a one-bit
parallel comparator from the compare operation in parallel
comparator of a -bits. The eighth parameter, , is employed
to represent the bit of to be compared. The module,

also is pro-
posed to finish the function of a -bit parallel comparator.

Procedure

(1) and .

(2) and .
(3) If then

(3a) and .
Else
(3b) and .

EndIf
(4) .
EndProcedure

Lemma 4–7: The algorithm
can be

applied to finish the function of a one-bit parallel comparator.

Procedure

(1) For to 0

(1a) .
(1b) If then
(1c) Terminate the execution of the loop.

Else
(1d) .
EndIf

EndFor
(2) .
EndProcedure

Lemma 4–8: The algorithm
can be used to finish the function of a

-bit parallel comparator.

H. The Construction of a Binary Parallel Subtractor

The module uses, as a
submodule, a parallel subtractor. We first describe the construc-
tion of a parallel subtractor for a single bit, and then show how
this may be used as a building block for a subtractor using
bit-strings of arbitrary length. A one-bit subtractor is to finish
the arithmetic subtraction of three input bits. It consists of three
inputs and two outputs. Two of the input bits represent minuend
and subtrahend bits to be subtracted. The third input represents
the borrow bit from the previous higher significant position. The
first output gives the value of the difference for minuend and
subtrahend bits to be subtracted. The second output gives the
value of the borrow bit to minuend and subtrahend bits to be
subtracted.
Suppose that the two one-bit binary numbers and

denoted in Section IV-D, represent the first input and the first
output of a one-bit subtractor for and

. Also suppose a one-bit binary number
denoted in Section IV-C, represents the second input of a one-bit
subtractor for , and two one-bit binary numbers

and represent the second output and the third input of
a one-bit subtractor. From [1], [2], two distinct DNA sequences
are designed to encode every bit and . Assume that

contains the value of to be 1 and contains the value
of to be 0. Similarly, also suppose that contains the
value of to be 1 and contains the value of to
be 0. The following algorithm is proposed to finish the function
of a parallel one-bit subtractor.

Procedure

(1) and .

(2) and .
(3) and .
(4) and .
(5) and .
(6) and .

CHANG: FAST PARALLEL DNA-BASED ALGORITHMS FOR MOLECULAR COMPUTATION: QUADRATIC CONGRUENCE AND FACTORING INTEGERS 67

(7) and .

(8a) If then

(8a1) and
.

EndIf

(9a) If then

(9a1) and
.

EndIf

(10a) If then

(10a1) and
.

EndIf

(11a) If then

(11a1) and
.

EndIf

(12a) If then

(12a1) and
.

EndIf

(13a) If then

(13a1) and
.

EndIf

(14a) If then

(14a1) and
.

EndIf

(15a) If then

(15a1) and
.

EndIf

(16) .

EndProcedure

Lemma 4–9: The algorithm
can be applied to finish the function of a parallel

one-bit subtractor.
The one-bit subtractor just described calculates the difference

bit and the borrow bit for two input bits and a previous borrow.
Two -bit binary numbers can finish subtractions of times by
means of this one-bit subtractor. A binary parallel subtractor is
to finish arithmetic subtraction for two -bit binary numbers.
The following algorithm is proposed to finish the function of a
binary parallel subtractor.

Procedure

(1) .

(2) For to

(2a) .

EndFor

EndProcedure

Lemma 4–10: The algorithm
can be applied to finish

the function of a binary parallel subtractor.

I. Library Strands for Intermediate Values to Computation
of a Modular Multiplication

The module uses, as a
submodule, a parallel assignment operator.We describe the con-
struction of a parallel assignment operator for using bit-strings
of arbitrary length. Blakley’s algorithm denoted in Section IV-D
is used to finish computation of . In Blakley’s
algorithm, it uses successive operations of addition, subtraction
and left shifter to perform computation of .
The procedure, , is used to reserve the
result to intermediate computation of . The
intermediate result will be used through next intermediate com-
putation for .

Procedure

(1) For to

(1a) and .

(1b) If then

(1c) .

EndIf

(1d) If then

(1e) .

EndIf

(1f) .

EndFor

EndProcedure

Lemma 4–11: The algorithm can
be applied to finish the function of reserving the intermediate
result for computation of .

J. The Construction of a Binary Parallel Adder

The module uses, as a
submodule, a parallel adder. We first describe the construction
of a parallel adder for a single bit, and then demonstrate how
this perhaps is applied as a building block for a parallel adder
by means of using bit-strings of arbitrary length. A one-bit adder
is to perform the arithmetic sum of three input bits. It consists
of three inputs and two outputs. Two of the input bits represent
augends and addend bits to be added, respectively. The third
input represents the carry from the previous lower significant
position. The first output gives the value of the sum for augends
and addend bits to be added. The second output gives the value
of the carry to augends and addend bits to be added. The truth
table of the one-bit adder is shown in Table II.
Suppose that two one-bit binary numbers denoted in

Section IV-D, and , represent the first input of a
one-bit adder for and , and
the first output of a one-bit adder, respectively, a one-bit binary
number denoted in Section III, , represents the second input
of a one-bit adder for , and two one-bit binary
numbers, and , represent the second output and the

68 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 11, NO. 1, MARCH 2012

TABLE II
TRUTH TABLE OF A ONE-BIT ADDER

third input of a one-bit adder, respectively. Two distinct DNA
sequences are designed to encode the value “0” or “1” for every
bit and to and .
For the sake of convenience in our presentation, assume that

contains the value of to be 1 and contains the
value of to be 0. Also suppose that denotes the
value of to be 1 and defines the value of
to be 0. Similarly, assume that contains the value of

to be 1 and contains the value of to be 0.
The following algorithm is proposed to finish the function of a
parallel one-bit adder.

Procedure

(1) and .

(2) and .

(3) and .

(4) and .

(5) and .

(6) and .

(7) and .

(8a) If then

(8a1) and
.

EndIf

(9a) If then

(9a1) and
.

EndIf

(10a) If then

(10a1) and
.

EndIf

(11a) If then

(11a1) and
.

EndIf

(12a) If then

(12a1) and
.

EndIf

(13a) If then

(13a1) and
.

EndIf

(14a) If then

(14a1) and
.

EndIf

(15a) If then

(15) and
.

EndIf

(16) .

EndProcedure

Lemma 4–12: The algorithm
can be applied to finish

the function of a parallel one-bit adder.

IV. FACTORING INTEGER ALGORITHM

The RSA public-key cryptosystem can be used to encrypt
messages sent between two communicating parties so that an
eavesdropper who overhears the encrypted message will not be
able to decode them. One must be an element in denoted in
Section III and must be quadratic residue of modulo . There-
fore, assume that one is represented as a -bit binary number,

, denoted in Section IV-D. For using
the same library sequence to encode one, the main advantage is
to reduce the time-complexity of the algorithm for solving the
RSA public-key cryptosystem. An eavesdropper only needs to
use the following algorithm to factor integers. This implies that
the RSA public-key cryptosystem can be broken from the fol-
lowing algorithm.
Algorithm 5–1: Breaking the RSA public-key cryptosystem.

(1) Call Algorithm 3–1.

(2) and .

(3) .

(4) .

(5) For to

(5a) and .

(5b) .

(5c) .

EndFor

(6) If then

(6a) .

EndIf

(7) Assume that four integer solutions for
are, respectively, , , 1 and .

(8) Through a digital computer, two large prime numbers
and are determined, where and

.

CHANG: FAST PARALLEL DNA-BASED ALGORITHMS FOR MOLECULAR COMPUTATION: QUADRATIC CONGRUENCE AND FACTORING INTEGERS 69

(9) Through a digital computer, the corresponding
secret key for the public key is determined, where

.

EndAlgorithm

Theorem 5–1: From those steps inAlgorithm 5–1, an eaves-
dropper can break the RSA public-key cryptosystem.

V. COMPLEXITY ASSESSMENT

Theorem 6–1: Suppose that the length of is bits. The
RSA public-key cryptosystem can be broken with bio-
logical operations of laboratory techniques from solution space
of library sequences.

Proof: Refer to Algorithm 3–1 and Algorithm 5–1.
Theorem 6–2: Suppose that the length of is bits. The

RSA public-key cryptosystem can be broken with library
strands in biological operations of laboratory techniques from
solution space of library sequences.

Proof: Refer to Algorithm 3–1 and Algorithm 5–1.
Theorem 6–3: Suppose that the length of is bits. The

RSA public-key cryptosystem can be broken with tubes
in biological operations of laboratory techniques from solution
space of library sequences, where is a constant value.

Proof: Refer to Algorithm 3–1 and Algorithm 5–1.
Theorem 6–4: Suppose that the length of is bits. The

RSA public-key cryptosystem can be broken with the longest li-
brary strand, , in biological operations of laboratory tech-
niques from solution space of library sequences.

Proof: Refer to Algorithm 3–1 and Algorithm 5–1.

VI. THE FASTER METHOD FOR FACTORING INTEGER

Algorithm 3–1 is used to solve the problem of quadratic con-
gruence. With the result generated by Algorithm 3–1, Algo-
rithm 5–1 is applied to factor integers and its ultimate aim is
to break the RSA public-key cryptosystems. The following the-
orem is employed to prove that time complexity of Algorithm
5–1 is currently the fastest method to factor integers.
Theorem 7: With biological operations of laboratory

techniques from solution space of library sequences, time com-
plexity of Algorithm 5–1 is the optimal solution of breaking
the RSA public-key cryptosystems.

Proof: Algorithm 5–1 is used to factor a big integer into
primes by quadratic congruence, and its ultimate aim is to break
the RSA public-key cryptosystems. Blakley’s algorithm is the
best method to perform computation of and it is
implemented in . Thus, it
is inferred that time complexity of Algorithm 5–1 is currently
the fastest method to factor integers.

VII. CONCLUSION

The number of steps any classical computer requires in order
to find the prime factors of a -bit integer increases exponen-

tially with , at least by means of using algorithms [5] known
at present. Shor’s quantum factoring algorithm [6] contains that
the two main components, modular exponentiation (computa-
tion of) and the inverse quantum Fourier transform
(QFT) take only operations. Vandersypen and his coau-
thors [7] report an implementation of the simplest instance of
Shor’s algorithm: factorization of (whose prime fac-
tors are 3 and 5). The previous relative work [8] theoretically
proves that the problem of factoring integers can be solved with

biological operations. In this article, Our molecular fac-
toring algorithm demonstrate theoretically how basic biological
operations can be used to solve the problem of factoring inte-
gers with biological operations. Both of Shor’s quantum
factoring algorithm and our molecular factoring algorithm need
to simultaneously deal with bit information to find the
prime factors for an integer of 1024 bits used in the current
RSA public-key cryptosystem. However, due to current many
technical difficulties, therefore, the two algorithms currently do
not in fact find the prime factors for an integer of 1024 bits.
This implies that if a quantum computer and a molecular com-
puter are really constructed in the future (perhaps after many
years), then Shor’s quantum factoring algorithm and our molec-
ular factoring algorithm have very high feasibility for solving
the problem of factoring integers.

REFERENCES

[1] R. S. Braich, C. Johnson, P. W. K. Rothemund, D. Hwang, N.
Chelyapov, and L. M. Adleman, “Solution of a satisfiability problem
on a gel-based DNA computer,” in Proc. 6th Int. Conf. DNA Comput.,
2001, vol. 2054, Lecture Notes in Computer Science, pp. 27–42.

[2] L. M. Adleman, R. S. Braich, C. Johnson, P. W. K. Rothemund, D.
Hwang, and N. Chelyapov, “Solution of a 20-variable 3-SAT problem
on a DNA computer,” Science, vol. 296, no. 5567, pp. 499–502, Apr.
2002.

[3] N. Koblitz, A Course in Number Theory and Cryptography. New
York: Springer-Verlag, 1987.

[4] G. R. Blakley, “A computer algorithm for calculating product AB
modulo M,” IEEE Trans. Comput., vol. C-32, no. 5, pp. 497–500,
1983.

[5] D. E. Knuth, The Art of Computer Programming,: Seminumerical Al-
gorithms. Reading, MA: Addison-Wesley, 1998, vol. 2.

[6] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM Comput., vol. 26,
no. 5, pp. 1484–1509, 1997.

[7] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H.
Sherwood, and I. L. Chuang, “Experimental realization of Shor’s
quantum factoring algorithm using nuclear magnetic resonance,”
Nature, vol. 414, pp. 883–887, 2001.

[8] W.-L. Chang, M. Guo, and M. Ho, “Fast parallel molecular algo-
rithms for DNA-based computation: Factoring integers,” IEEE Trans.
NanoBiosci., vol. 4, no. 2, pp. 149–163, Jun. 2005.

Weng-Long Chang received the Ph.D. degree in
computer science and information engineering from
National Cheng Kung University, Taiwan, in 1999.
He is currently a full Professor in the Department

of Computer Science and Information Engineering,
National Kaohsiung University of Applied Sciences,
Taiwan. His research interests include quantum algo-
rithms, quantum-molecular algorithms, DNA-based
algorithms, and languages and compilers for parallel
computing.

