
J Supercomput (2011) 56: 129–163
DOI 10.1007/s11227-009-0347-9

Fast parallel DNA-based algorithms for molecular
computation: discrete logarithm

Weng-Long Chang · Shu-Chien Huang ·
Kawuu Weicheng Lin · Michael (Shan-Hui) Ho

Published online: 11 November 2009
© Springer Science+Business Media, LLC 2009

Abstract Diffie and Hellman (IEEE Trans. Inf. Theory 22(6):644–654, 1976) wrote
the paper in which the concept of a trapdoor one-way function was first proposed. The
Diffie–Hellman public-key cryptosystem is an algorithm that converts input data to an
unrecognizable encryption, and converts the unrecognizable data back into its origi-
nal decryption form. The security of the Diffie–Hellman public-key cryptosystem is
based on the difficulty of solving the problem of discrete logarithms. In this paper, we
demonstrate that basic biological operations can be applied to solve the problem of
discrete logarithms. In order to achieve this, we propose DNA-based algorithms that
formally verify our designed molecular solutions for solving the problem of discrete
logarithms. Furthermore, this work indicates that public-key cryptosystems based on
the difficulty of solving the problem of discrete logarithms are perhaps insecure.

Keywords Discrete logarithm · The public-key cryptosystems · Cryptography ·
Security technologies · Molecular cryptography · Biological-based supercomputing ·
Molecular-based supercomputing · DNA-based supercomputing

W.-L. Chang (�) · K.W. Lin
Department of Computer Science and Information Engineering, National Kaohsiung University of
Applied Sciences, No. 415, Chien Kung Road, Kaohsiung City 807-78, Taiwan, Republic of China
e-mail: changwl@cc.kuas.edu.tw

K.W. Lin
e-mail: linwc@cc.kuas.edu.tw

S.-C. Huang
Department of Computer Science, National PingTung University of Education, No. 4-18 Ming Shen
Road, Pingtung 900, Taiwan, Republic of China
e-mail: schuang@mail.npue.edu.tw

M. (S.-H.) Ho
Computer Center and Institute of Electrical Engineering, National Taipei University, 151, University
Rd., San Shia 237, Taipei County, Taiwan, Republic of China
e-mail: MHoInCerritos@yahoo.com

mailto:changwl@cc.kuas.edu.tw
mailto:linwc@cc.kuas.edu.tw
mailto:schuang@mail.npue.edu.tw
mailto:MHoInCerritos@yahoo.com

130 W.-L. Chang et al.

1 Introduction

Feynman first proposed molecular computation in 1961, but his idea was not imple-
mented by experiment for a few decades [1]. In 1994, Adleman [2] succeeded to
solve an instance of the Hamiltonian path problem in a test tube, just by handling
DNA strands. Diffie and Hellman [3] wrote the paper in which the concept of a trap-
door one-way function is proposed. The Diffie–Hellman public-key cryptosystem [3]
is a popular cryptosystem and is one of the primary cryptosystems used for security
on the Internet and World Wide Web.

DES (the United States Data Encryption Standard) is one of the most widely used
cryptographic systems. It produces a 64-bit ciphertext from a 64-bit plaintext under
the control of a 56-bit key. A cryptanalyst obtains a plaintext and its corresponding
ciphertext and wishes to determine the key used to perform the encryption. The most
naive approach to this problem is to try all 256 keys, encrypting the plaintext under
each key until a key that produces the ciphertext is found and is called the plaintext-
ciphertext attack. Adleman and his co-authors [4] provided a description of such an
attack using the sticker model of molecular computation. Start with approximately
256 identical ssDNA memory strands each 11,580 nucleotides long. Each memory
strand contains 579 contiguous blocks each 20 nucleotides long. As it is appropri-
ate in the sticker model, there are 579 stickers—one complementary to each block.
Memory strands with annealed stickers are called memory complexes. When the 256

memory complexes have half of their sticker positions occupied at the end of the
computation, they weigh approximately 0.7 g and, in solution at 5 g/liter, would oc-
cupy approximately 140 ml. Hence, the volume of the 1303 tubes needs be no more
than 140 ml each. It follows that the 1303 tubes occupy, at most, 182 liters and can,
for example, be arrayed in 1 m long and wide and 18 cm deep.

Adleman and his co-authors [4] indicated that at the end of computation for break-
ing DES, 256 × (56 key bits + 64 ciphertext bits) pairs were generated and processed.
Adleman and his co-authors [4] also pointed out that this codebook for breaking DES
has approximately 263 (8×1018) bits of information (the equivalent of approximately
one billion 1 gigabyte CDs). The actual running time for the algorithm of breaking
DES depends on how fast the operations can be performed. If each operation re-
quires one day, then the computation for breaking DES will require 18 years. If each
operation requires one hour, then the computation for breaking DES will require ap-
proximately nine months. If each operation can be completed in one minute, then the
computation for breaking DES will take five days. Finally, if the effective duration
of a step can be reduced to one second, then the effort for breaking DES will require
two hours. While it has been argued that special purpose electronic hardware [4]
or massively parallel supercomputers (the IBM Blue Gene/L machine is capable of
183.5 TFLOPS or 183.5 × 1012 floating-point operations per second) might be used
to break DES in a reasonable amount of time, it appears that today’s most powerful
sequential machines would be unable to accomplish the task.

In this paper, we describe novel DNA-based algorithms for a range of binary op-
erations, consisting of bitwise and full comparison, left shifter, addition, subtraction,
modular arithmetic, and assignment. We also prove how these smaller modules may
be combined to produce an algorithm for solving the problem of discrete logarithm.

Fast parallel DNA-based algorithms for molecular computation 131

The rest of the paper is organized as follows. In Sect. 2, we introduce the devel-
opment of molecular computing. In Sect. 3, we provide the motivation of writing the
article, and the formal model of computation within which the various algorithms are
expressed. In Sect. 4, we give a high-level description of our algorithm to solve the
problem of discrete logarithms. By means of breaking this down into sub-modules
in Sect. 5, we show the operation of the various novel algorithms for comparative
and arithmetic operations. In Sect. 6, we propose the attacking method to break the
Diffie–Hellman public-key cryptosystem. In Sect. 7, we demonstrate that the time
complexity of our algorithm is cubic on the input size. In Sect. 8, we show how the
basic operations within our model may be implemented by means of using standard
laboratory operations on DNA strands. In Sect. 9, we conclude with a brief discus-
sion.

2 The development of molecular computing

From [5], it was demonstrated that optimal biological molecular solution of every
NP-complete or NP-hard problem is determined due to its characteristic. Molecular
dynamics and (sequential) membrane systems from the viewpoint of Markov chain
theory were proposed in [6]. Reif and LaBean [7] overviewed the past and current
state of a selected part of the emerging research area of the field of bio-molecular de-
vices. There are DNA algorithms for solving many famous computational problems,
including the 3-SAT problem [14], the binary integer programming problem [15],
the dominating-set problem [16], three-vertex-coloring [17], the maximal clique and
the set-packing problems [18], the set-splitting problem [19], the set-cover problem
and the problem of exact cover by 3-sets [20], subset-production [21], real DNA
experiments of Knapsack problems [22], and the set-partition problem [23]. One po-
tentially significant area of application for DNA algorithms is the breaking of en-
cryption schemes [24, 25, 27]. In [28], the design and experimental implementation
of DNA-based digital logic circuits were reported, and AND, OR, and NOT gates,
signal restoration, amplification, feedback, and cascading were also demonstrated.
Kari et al. [29] recalled a list of known properties of DNA languages which are free
of certain types of undesirable bonds, and then introduced a general framework in
which they can characterize each of these properties by a solution of a uniform for-
mal language inequation.

Wu and Seeman [8] described computation using a DNA strand as the basic unit
and they had used this unit to achieve the function of multiplication. From [9], it
was reported that a second-generation deoxyribozyme-based automaton, MAYA-II,
which plays a complete game of tic-tac-toe according to a perfect strategy, integrating
128 deoxyribozyme-based logic gates, 32 input DNA molecules, and 8 two-channel
fluorescent outputs across 8 wells. The first direct observations of tile-based DNA
self-assembly in solution using fluorescent nanotubes composed of a single tile was
presented from [10]. From [11], it was found that with increasing range of correla-
tions the capacity to distinguish between the species on the basis of this correlation
profile is getting better and requires ever shorter sequence segments for obtaining
a full species separation. From [12], it was shown that “open” tweezers exist in a

132 W.-L. Chang et al.

single conformation with minimal FRET efficiency. From [13], the first algorithm
for calculating the partition function of an unpseudoknotted complex of multiple in-
teracting nucleic acid strands was proposed. In [26], Zhang and Winfree presented
an allosteric DNA molecule that, in its active configuration, catalyzes a noncovalent
DNA reaction.

In [40], Kershner et al. described the use of electron-beam lithography and dry
oxidative etching to create DNA origami-shaped binding sites on technologically
useful materials, such as SiO2 and diamond-like carbon. In buffer with ∼100 mM
MgCl2, DNA origami binds with high selectivity and good orientation: 70–95% of
sites have individual origami aligned with an angular dispersion (±1 s.d.) as low as
±10◦ (on diamond-like carbon) or ±20◦ (on SiO2). In [41], Barish et al. presented a
programmable DNA origami seed that can display up to 32 distinct binding sites and
demonstrate the use of seeds to nucleate three types of algorithmic crystals. In the
simplest case, the starting materials are a set of tiles that can form crystalline ribbons
of any width; the seed directs assembly of a chosen width with >90% yield. Increased
structural diversity is obtained by using tiles that copy a binary string from layer to
layer; the seed specifies the initial string and triggers growth under near-optimal con-
ditions where the bit copying error rate is <0.2%. Increased structural complexity is
achieved by using tiles that generate a binary counting pattern; the seed specifies the
initial value for the counter. Self-assembly proceeds in a one-pot annealing reaction
involving up to 300 DNA strands containing >17 kb of sequence information.

3 Motivation and our model

The Diffie–Hellman public-key cryptosystem [3] is an algorithm that converts input
data to an unrecognizable encryption, and converts the unrecognizable data back into
its original decryption form. The security of the Diffie–Hellman public-key cryp-
tosystem is based on the difficulty to solve the problem of discrete logarithm. No
method in a reasonable amount of time can be applied to solve the problem of dis-
crete logarithm.

In the following subsection, we now describe our formal model of computation,
within which we express the various algorithms that are combined to form the overall
method for solving the problem of discrete logarithm. We first introduce it only in
terms of abstract operations performed on multisets of strings over some alphabet Σ .
The presented biological implementation of the model is introduced in Sect. 8. Within
our model, a computation starts and ends with zero or more multisets of strings. An
algorithm is made of a sequence of operations performed on one or more multisets
of strings. We note in passing that this model is sufficiently powerful to solve any
problem in the complexity class NP [2, 4, 17, 30, 31].

3.1 Operations

Here we describe the basic legal operations on multisets (henceforth referred to as
tubes) from [2, 4, 17]:

Fast parallel DNA-based algorithms for molecular computation 133

1. Extract. Given a tube T and a short single strand of DNA, s, the operation pro-
duces two new tubes, +(T , s) and −(T , s). Tube +(T , s) is all of the molecules of
DNA in T which contain s as a sub-strand and tube −(T , s) is all of the molecules
of DNA in T which do not contain s as a sub-strand.

2. Merge. Given any n tubes T1 . . . Tn, the operation yields Merge(T1, . . . , Tn) =⋃n
i=1 Ti = T1 ∪ T2 ∪ . . . ∪ Tn. This implies that it is to pour any n tubes into

one, without any change in the individual strands.
3. Discard. Given a tube T , the operation sets T to be an empty set (T ← ∅).
4. Detect. Given a tube T , the operation returns true if T includes at least one DNA

molecule (T �= ∅), otherwise returns false.
5. Amplify. Given a tube T , the operation produces a number of identical copies, Ti ,

of tube T , and then discard(T).
6. Concatenate(s1, s2). Given two strands of DNA, s1 and s2, the operation returns

a new strand of DNA, comprised of the concatenation of s1 and s2. If s1 is a null
strand of DNA, return s2, and if s2 is a null strand of DNA, return s1.

7. Append-head(T , s). Given a non-empty tube T and a short strand of DNA, s, the
operation first creates a null tube, U , and then, in parallel, for each string ti ∈ T

finishes the following: T ← Merge(U,Concatenate(s, ti)). If T is initially empty,
then after the operation is performed, T contains only s.

8. Read. Given a tube T , the operation is used to describe a single molecule, which is
contained in tube T . Even if T contains many different molecules, each encoding
a different set of bases, the operation can give an explicit description of exactly
one of them.

3.2 Representation scheme

We now introduce our scheme for the representation of unsigned integers. Because
this scheme consists of specific features required by the biological implementation
of our algorithms, we denote Σ = {A,G,C,T }. An unsigned integer of k bits, e, is
represented as a k-bit binary number, ek−1 . . . e0, where the value of each bit ej is
either 1 or 0 for 0 ≤ j ≤ k − 1. The bits ek−1 and e0 represent, respectively, the most
significant bit and the least significant bit for e. From [30, 31], for each bit ej , two
distinct 15 base value sequences over the alphabet Σ are designed. One represents
the value “0” for ej and the other represents the value “1” for ej . For the sake of
convenience in our presentation, assume that e1

j denotes the value of ej to be 1 and

e0
j defines the value of ej to be 0.

4 Molecular solutions of discrete logarithms

In Sect. 4.1, we introduce definition of discrete logarithm. In Sect. 4.2, we describe a
pseudo algorithm to solve the problem of discrete logarithm. In Sect. 4.3, we propose
a DNA-based algorithm to solve the problem of discrete logarithm.

134 W.-L. Chang et al.

4.1 The introduction of discrete logarithms

For any integer d and any positive integer n, there are unique integers s and r such
that 0 ≤ r < n and d = s ∗ n + r . The value s = d/n is the quotient of the division.
The value r = d mod n is the remainder of the division. We have that n|d if and
only if d mod n = 0. Given a well-defined notion of the remainder one integer when
divided by another, it is convenient to provide special notation to indicate equality
of remainders. If (d mod n) = (b mod n), we write d ≡ b(mod n) and say that d

is equivalent to b, modulo n. In other words, d ≡ b(mod n) if d and b have the
same remainder when divided by n. The integer can be divided into n equivalence
classes according to their remainders modulo n. The equivalence class modulo n

containing an integer d is [d]n = {d + h ∗ n, where h is an integer}. The set of all
such equivalence classes is Zn = {[d]n : 0 ≤ d ≤ n− 1}. One often sees the definition
Zn = {0,1, . . . , n − 1} [32].

The greatest common divisor of two integers d and n, not both zero, is the largest
of the common divisors of d and n; it is denoted gcd(d,n). Two integers d and n are
said to be relatively prime if their only common divisor is 1, that is, if gcd(d,n) = 1.
Because the equivalence class of two integers uniquely determines the equivalence
class of their product, thus we define multiplication modulo n, denoted ∗n, as follows:
[d]n ∗n [h]n = [d ∗h]n. Using the definition of multiplication modulo n, we define the
multiplicative group modulo n as (Z∗

n,∗n), where Z∗
n = {[d]n ∈ Zn: gcd(d,n) = 1}.

Just as it is natural to consider the multiples of a given element d modulo n, it
is often natural to consider the sequence of power of d modulo n, where d ∈ Zn :
d0, d1, d2, . . . , modulo n. Indexing from 0, its value in this sequence is d0 mod n = 1,
and the ith value is di mod n. We denote 〈d〉 as the subgroup of Z∗

n generated by d ,
and we also denote ordn(d) (the “order of d , modulo n”) as the order of d in Z∗

n. For
example, 〈2〉 = {1,2,4} in Z∗

7, and ord7(2) = 3.
If ordn(M) is equal to the number of elements in Z∗

n, then every element in Z∗
n is

a power of M modulo n, and we say that M is a primitive root or a generator of Z∗
n

[32]. For example, there is a primitive root modulo 7 and 〈3〉 = {1,3,2,6,4,5}. If Z∗
n

possesses a primitive root, we say that the group Z∗
n is cyclic. If M is a primitive root

of Z∗
n and C is any element of Z∗

n, then there exists an e such that Me ≡ C(mod n).
This e is called the discrete logarithm of C modulo n, to the base M . No method in a
reasonable amount of time can be applied to solve the problem of discrete logarithm.
The following method is used to figure out Me ≡ C(mod n) [33].

Procedure Encryption(M,e,n)

(1) Let ek−1 . . . e0 be the binary representation of e.
(2) C = 1.
(3) For i = k − 1 down to 0

(3a) Set C to the remainder of (C2) when divided by n.
(3b) If ei = 1 then
(3c) Set C to the remainder of (C ∗ M) when divided by n.
EndFor

(4) Halt. Now C is the result of Me(mod n).

EndProcedure

Fast parallel DNA-based algorithms for molecular computation 135

4.2 The pseudo algorithm for solving discrete logarithms

Assume that the length of e is k bits. Also suppose that e is represented as a k-bit
binary number, ek−1 . . . e0, where the value of each bit ej is either 1 or 0 for 0 ≤ j ≤
k − 1. The bits ek−1 and e0 represent the most significant bit and the least significant
bit for e, respectively. The form of an expression, Me(mod n), can be transformed
into another form: (. . . ((1∗Mek−1(mod n))2 ∗Mek−2(mod n))2 ∗Mek−3(mod n) . . .)2 ∗
Me0(mod n). In the Diffie–Hellman public-key cryptosystem, n is a prime number.
Therefore, in this paper, we also assume that n is a prime number. Because n is a
prime number, 〈M〉 = {M0(mod n),M1(mod n) . . .Mn−2(mod n)}. That is to say
that 0 ≤ e ≤ n − 2. The following pseudo algorithm is applied to solve the problem
of discrete logarithm.

Method 1 Solving the problem of discrete logarithm.

(1) All of the computations for M0(mod n), M1(mod n) . . .Mn−2(mod n) are simul-
taneously performed on a molecular computer.

(2) For any given C, from the result finished in Step (1), find Me ≡ C(mod n).
(3) Output(“discrete logarithm is:”, e).

EndMethod

Proof Step (1) in Method 1 is used to simultaneously complete all of the computa-
tions for M0(mod n),M1(mod n) . . .Mn−2(mod n). This implies that the value of
every element in 〈M〉 is determined after Step (1) is carried out.

Then, Step (2) in Method 1 is applied to search C among (n−1) elements in 〈M〉.
When the value of the eth element in 〈M〉 is equal to C,e is the answer (discrete
logarithm of C). Finally, Step (3) in Method 1 is employed to describe the answer. �

4.3 The algorithm for computation of discrete logarithms

The procedure, Encryption(M,e,n), denoted in Sect. 4.1, is used to finish compu-
tation of an exponential modular operation. The following DNA algorithm is applied
to implement the procedure, Encryption(M,e,n).

Algorithm 1 Implementing the procedure, Encryption(M,e,n)

(0) T0 ← ∅;Tθ ← ∅;Tn ← ∅;T1 ← ∅.
(1) Init(T0).
(2) SelectDiscreteLogarithm(T0, Tθ).
(3) MakeValue(Tn).
(4) InitialValue(T0).
(5) For j = k − 1 down to 0

(5a) ModularMultiplication(T0, Tn, (2 ∗ (k − 1 − j)) ∗ (4 ∗ k + 1)+ 1,2 ∗ (k −
j),C,C).

(5b) T0 = +(T0, e
1
j) and T1 = −(T0, e

1
j).

(5c) ModularMultiplication(T0, Tn, (2 ∗ (k − 1 − j) + 1) ∗ (4 ∗ k + 1) + 1,2 ∗
(k − j) + 1,C,M).

136 W.-L. Chang et al.

(5d) For r = 0 to 4 ∗ k

(5e) ReservedValue(T1, (2 ∗ (k − 1 − j) + 1) ∗ (4 ∗ k + 1) + r).
EndFor

(5f) AssignmentOperator(T1, (2 ∗ (k − 1 − j)+ 1)∗ (4 ∗ k + 1)+ 1 + 4 ∗ k,2 ∗
(k − j) + 1).

(5g) T0 = ⋃
(T0, T1).

EndFor
EndAlgorithm

Theorem 1 From the steps in Algorithm 1, the problem of discrete logarithm can be
solved.

Proof From the execution of Step (0), tubes T0, Tθ , Tn, and T1 are set to empty tubes.
On the execution of Step (1), it calls Init(T0) to construct solution space for 2k pos-
sible discrete logarithms. This means that tube T0 includes strands encoding 2k pos-
sible discrete logarithms. Next, the execution of Step (2) calls SelectDiscreteLoga-
rithm(T0, Tθ) to perform selection of legal discrete logarithms with its range is from
0 to n − 2. This implies that these legal discrete logarithms are encoded in tube T0.
On the execution of Step (3), it calls MakeValue(Tn) to encode a prime number, n.
This indicates that tube Tn contains a strand encoding it. Next, the execution of Step
(4) calls InitialValue(T0) to finish the execution of Step (2) in the procedure, En-
cryption(M,e,n). This is to say that the initial value for C is set to one.

Step (5) is a loop and is mainly used to finish the function of the only loop (Step
(3)) in the procedure, Encryption(M,e,n). Next, the first execution of Step (5a) calls
ModularMultiplication(T0, Tn, (2 ∗ (k − 1 − j))∗ (4 ∗ k + 1)+ 1,2 ∗ (k − j),C,C)

to perform Step (3a) in Encryption(M,e,n). On the first execution of Step (5b),
it employs the extract operation to form two tubes: T0 and T1. The first tube
T0 includes all of the strands that have ej = 1. The second tube T1 consists of
all of the strands that have ej = 0. This indicates that the execution of the step
finishes Step (3b) in Encryption(M,e,n). Because the j th bit of e encoded in
tube T0 is one, next, the first execution of Step (5c) calls ModularMultiplica-
tion(T0, Tn, (2 ∗ (k − 1 − j) + 1) ∗ (4 ∗ k + 1) + 1,2 ∗ (k − j) + 1,C,M) to per-
form Step (3c) in Encryption(M,e,n). Since the j th bit of e encoded in tube T1
is zero, Step (5d) is the loop and is mainly used to maintain the consistency of
the intermediate value for Y . On the first execution of Step (5e), it calls Reserved-
Value(T1, (2 ∗ (k − 1 − j) + 1) ∗ (4 ∗ k + 1) + r) to copy the current intermediate
value of Y to the next intermediate value of Y . Repeat to execute Step (5e) until the
value of r reaches (4 ∗ k). Next, the first execution of Step (5f) calls AssignmentOp-
erator(T1, (2 ∗ (k − 1 − j) + 1) ∗ (4 ∗ k + 1) + 1 + 4 ∗ k,2 ∗ (k − j) + 1) to perform
updating of the value for C. Because the j th bit of e encoded in tube T1 is zero, the
updated value of C is still equal to the previous value.

On the first execution of Step (5g), it uses the merge operation to pour tube T1
into T0. Repeat execution of Steps (5a) through (5g) until the value of j is zero. After
all of the steps are processed, every strand in tube T0 performs computation of an
exponential modular operation, Me(mod n). This implies that Algorithm 1 performs
Step (1) in the pseudo algorithm, Method 1, in Sect. 4.2. Therefore, the problem of
discrete logarithm can be solved from those steps in Algorithm 1. �

Fast parallel DNA-based algorithms for molecular computation 137

5 Algorithm modules

We now describe, in detail, the various modules that are combined to form the overall
DNA-based algorithm for solving the problem of discrete logarithm.

5.1 Construction of initial solution space for discrete logarithms

From [30, 31], for every bit ej in discrete logarithm e, two distinct 15 base value
sequences are designed. One represents the value “0” for ej and the other represents
the value “1” for ej . For the sake of convenience in our presentation, assume that e1

j

denotes the value of ej to be 1 and e0
j defines the value of ej to be 0. We first de-

scribe the module Init(T0), which constructs an initial multiset of 2k binary strings,
each representing a possible discrete logarithm. After the initial construction has been
completed, we return a tube T0 containing binary strings encoding the possible dis-
crete logarithm 0 . . .2k − 1.

Procedure Init(T0)

(0) T1 ← ∅;T2 ← ∅.
(0a) Append-head(T1, e

1
0).

(0b) Append-head(T2, e
0
0).

(0c) T0 = ⋃
(T1, T2).

For j = 1 to k − 1

(1a) Amplify(T0, T1, T2).
(1b) Append-head(T1, e

1
j).

(1c) Append-head(T2, e
0
j).

(1d) T0 = ⋃
(T1, T2).

EndFor
EndProcedure

Lemma 1 Solution space for 2k possible discrete logarithms can be constructed from
the algorithm Init(T0).

Proof The algorithm, Init(T0), is implemented via the amplify, append-head and
merge operations. On the execution of Step (0), it sets tubes T1 and T2 to empty
tubes. Next, from the execution of Step (0a), it is used to append a DNA sequence,
representing the value 1 for e0, onto the head of every strand in tube T1. This indicates
that possible discrete logarithms consisting of the value 1 to the first bit appear in
tube T1. Next, on the execution of Step (0b), it is also applied to append a DNA
sequence, representing the value 0 for e0, onto the head of every strand in tube T2.
This is to say that possible discrete logarithms including the value 0 to the first bit
appear in tube T2. Next, Step (0c) is used to pour tube T1 and T2 into tube T0. This
implies that DNA strands in tube T0 contain DNA sequences of e0 = 1 and e0 = 0,
tube T1 = ∅, and tube T2 = ∅.

138 W.-L. Chang et al.

Each time Step (1a) is used to amplify tube T0 and to generate two new tubes, T1
and T2, which are copies of T0, tube T0 becomes empty. Then, Step (1b) is applied
to append a DNA sequence, representing the value 1 for ej , onto the head of every
strand in tube T1. This means that possible discrete logarithms containing the value
1 to the (j + 1)th bit appear in tube T1. Step (1c) is also employed to append a DNA
sequence, representing the value 0 for ej , onto the head of every strand in tube T2.
That implies that possible discrete logarithms containing the value 0 to the (j + 1)th
bit appear in tube T2. Next, Step (1d) is used to pour tube T1 and T2 into tube T0.
This indicates that DNA strands in tube T0 include DNA sequences of ej = 1 and
ej = 0. After repeating execution of Steps (1a) to (1d), it finally produces tube T0
that consists of 2k DNA sequences representing 2k possible discrete logarithms, tube
T1 = ∅, and tube T2 = ∅. Therefore, it is inferred that solution space for 2k possible
discrete logarithms can be constructed. �

5.2 Solution space for Ordern(M)

Because Ordern(M) is equal to n − 1, suppose that n − 1 is represented as a k-
bit binary number, θk−1 . . . θ0, where the value of each bit θj is either 1 or 0 for
0 ≤ j ≤ k − 1. The bits θk−1 and θ0 are used to represent the most significant bit
and the least significant bit for n − 1, respectively. From [30, 31], for every bit θj ,
two distinct 15 base value sequences are designed. One represents the value “0” for
θj and the other represents the value “1” for θj . For the sake of convenience in our
presentation, assume that θ1

j denotes the value of θj to be 1 and θ0
j defines the value of

θj to be 0. The following algorithm, SelectDiscreteLogarithm(T0, Tθ), is proposed
to construct a DNA strand for encoding n − 1 and select legal discrete logarithms.

Procedure SelectDiscreteLogarithm(T0, Tθ)

(1) For j = 0 to k − 1
(1a) Append-head(Tθ , θj).
EndFor

(2) For j = k − 1 down to 0
(2a) T ON

0 = +(T0, e
1
j) and T OFF

0 = −(T0, e
1
j).

(2b) T ON
θ = +(Tθ , θ

1
j) and T OFF

θ = −(Tθ , θ
1
j).

(2c) If (Detect(T ON
θ) == true) then

(2d) T =
0 = ⋃

(T =
0 , T ON

0) and T <
0 = ⋃

(T <
0 , T OFF

0).
Else

(2e) T >
0 = ⋃

(T >
0 , T ON

0) and T =
0 = ⋃

(T =
0 , T OFF

0).
EndIf

(2f) Tθ = ⋃
(T ON

θ , T OFF
θ).

(2g) Discard(T >
0).

(2h) T0 = ⋃
(T0, T

=
0).

EndFor
(3) Discard(T0).
(4) T0 = ⋃

(T0, T
<
0).

EndProcedure

Fast parallel DNA-based algorithms for molecular computation 139

Lemma 2 The algorithm, SelectDiscreteLogarithm(T0, Tθ), can be applied to en-
code n − 1 and perform selection of legal discrete logarithms, with its range is from
0 to n − 2, from solution space.

Proof The algorithm, SelectDiscreteLogarithm(T0, Tθ), is implemented via the ap-
pend-head, extract, detect, merge and discard operations. The first loop in the algo-
rithm is mainly used to construct a DNA strand for n−1. Each time Step (1a) is used,
it appends a DNA sequence, encoding the value “1” or “0” of θj , onto the head of
every strand in tube Tθ . After repeating execution of Step (1a), it finally produces tube
Tθ that includes a DNA strand encoding n − 1. Therefore, it is inferred that solution
space for n − 1 can be constructed.

The second loop is mainly used to finish selection of legal discrete logarithms.
Each execution of Step (2a) employs the extract operation to form two test tubes:
T ON

0 and T OFF
0 . The first tube T ON

0 includes all of the strands that have ej = 1. The
second tube T OFF

0 consists of all of the strands that have ej = 0. On each execution

of Step (2b), it uses the extract operation to form two test tubes: T ON
θ and T OFF

θ . The
first tube T ON

θ includes all of the strands that have θj = 1. The second tube T OFF
θ

consists of all of the strands that have θj = 0. Next, each execution of Step (2c) uses
the detect operation to check whether there is any DNA sequence in tube T ON

θ . If it
returns a true, this indicates that the value of the j th bit in n − 1 is one. On each
execution of Step (2d), it uses the merge operations to pour T ON

0 into T =
0 and also to

pour T OFF
0 into T <

0 . If the detect operation in Step (2c) returns a false, this indicates
that the value of the j th bit in n − 1 is zero. Hence, next, each execution of Step (2e)
applies the merge operations to pour T ON

0 into T >
0 and also to pour T OFF

0 into T =
0 . On

each execution of Step (2f), it applies the merge operations to pour T ON
θ and T OFF

θ

into Tθ . Then, because the encoded value of DNA strands in tube T >
0 is great than

n − 1, each execution of Step (2g) employs the discard operation to discard T >
0 . On

each execution of Step (2h), it applies the merge operations to pour T =
0 into T0. After

repeating execution of Steps (2a) to (2h), it finally produces tubes T0 and T <
0 . Tube

T0 contains the encoded value of DNA strands to be equal to n−1. Tube T <
0 includes

the encoded value of DNA strands to be less than n − 1. Next, on the execution of
Step (3), it applies the discard operation to discard T0 that contains the encoded
value of a DNA strand to be equal to n− 1. Finally, the execution of Step (4) uses the
merge operations to pour T <

0 into T0. This indicates that DNA strands encoding legal
discrete logarithms are reserved in T0. Therefore, it is inferred that selection of legal
discrete logarithms with its range is from 0 to n − 2 can be performed. �

5.3 Solution space for module n

Assume that the length of n denoted in Sect. 3.1 is k bits. Also suppose that n is
represented as a k-bit binary number, nk−1 . . . n0, where the value of each bit nj is
either 1 or 0 for 0 ≤ j ≤ k − 1. The bits nk−1 and n0 represent the most significant
bit and the least significant bit for n, respectively. From [30, 31], for every bit nj ,
two distinct 15 base value sequences are designed. One represents the value “0” for
nj and the other represents the value “1” for nj . For the sake of convenience in our
presentation, assume that n1

j denotes the value of nj to be 1 and n0
j defines the value

140 W.-L. Chang et al.

of nj to be 0. The following algorithm, MakeValue(Tn), is proposed to construct a
DNA strand for encoding n.

Procedure MakeValue(Tn)

For j = 0 to k − 1
(1a) Append-head(Tn,nj).

EndFor
EndProcedure

Lemma 3 Solution space of n can be constructed from the algorithm, MakeValue(Tn).

Proof Similar to Lemmas 1 and 2. �

5.4 Solution space for a primitive root M and the result of an exponential modular
operation C

Suppose that the length of a primitive root M for Z∗
n is k bits. Also assume that M is

represented as a k-bit binary number, mk−1 . . .m0, where the value of each bit mj is
either 1 or 0 for 0 ≤ j ≤ k − 1. The bits mk−1 and m0 represent the most significant
bit and the least significant bit for M , respectively. From [30, 31], for every bit mj ,
two distinct 15 base value sequences are designed. One represents the value “0” for
mj and the other represents the value “1” for mj . For the sake of convenience in our
presentation, assume that m1

j denotes the value of mj to be 1 and m0
j defines the value

of mj to be 0.
Assume that the length of C, the result of an exponential modular operation de-

noted in Sect. 4.1, is k bits. From the procedure Encryption(M,e,n),C is finally
obtained after at most updating (2 ∗ k + 1) times of the value for C. Therefore, sup-
pose that C is represented as a k-bit binary number, ca,k−1 . . . ca,0, where the value
of each bit ca,j is either 1 or 0 for 1 ≤ a ≤ (2 ∗ k + 1) and 0 ≤ j ≤ k − 1. The bits,
ca,k−1 and ca,0, represent the most significant bit and the least significant bit for C,
respectively. The first k-bit binary number, c1,k−1 . . . c1,0, is used to represent the ini-
tial value to C. The last k-bit binary number, c(2∗k+1),k−1 . . . c(2∗k+1),0, is used to
represent the final result of C. For other k-bit binary numbers, they are applied to
represent the intermediate computed form of C. From [30, 31], for every bit ca,j , two
distinct 15 base value sequences were designed. One represents the value “0” for ca,j

and the other represents the value “1” for ca,j . For the sake of convenience in our
presentation, assume that c1

a,j denotes the value of ca,j to be 1 and c0
a,j defines the

value of ca,j to be 0. The following algorithm is used to construct solution space for
the initial value for C and the primitive root M .

Procedure InitialValue(T0)

(1) For j = 0 to k − 1
(1a) Append-head(T0,mj).

EndFor
(2) Append-head(T0, c

1
1,0).

(3) For j = 1 to k − 1

Fast parallel DNA-based algorithms for molecular computation 141

(3a) Append-head(T0, c
0
1,j).

EndFor
EndProcedure

Lemma 4 Solution space for the initial value of C and the primitive root M can be
constructed from the algorithm, InitialValue(T0).

Proof Similar to Lemmas 1 and 2. �

5.5 The algorithm for computation of a modular multiplication

The procedure, Encryption(M,e,n), denoted in Sect. 4.1, is used to finish com-
putation of an exponential modular operation. In the procedure, it uses successive
operations of square and multiplication to perform the exponential modular oper-
ation. We now give details of the ModularMultiplication(T0, Tn, f, a,α,β) mod-
ule used by the main algorithm. The following DNA-based algorithm, Modular-
Multiplication(T0, Tn, f, a,α,β), is applied to perform all of the steps to a mod-
ular multiplication. This implies that Steps (3a) and (3c) in the procedure, Encryp-
tion(M,e,n), are performed through the following DNA-based algorithm, Modular-
Multiplication(T0, Tn, f, a,α,β). The two parameters, α and β , in ModularMulti-
plication(T0, Tn, f, a,α,β) represent the multiplicand and the multiplier of a modu-
lar multiplication. Assume that β1

j is applied to represent the value of “1” for the j th
bit of the multiplier (β).

Procedure ModularMultiplication(T0, Tn, f, a,α,β)

(1) InitialSet(T0, f).
(2) For j = k − 1 down to 0

(2a) ParallelLeftShifter(T0, f + (k − 1 − j) ∗ 4).
(2b) ParallelComparator(T0, Tn, T

>
0 , T =

0 , T <
0 , f + (k − 1 − j) ∗ 4 + 1).

(2c) T0 = ⋃
(T >

0 , T =
0).

(2d) BinaryParallelSubtractor(T0, f + (k − 1 − j) ∗ 4 + 1).
(2e) ReservedValue(T <

0 , f + (k − 1 − j) ∗ 4 + 1).
(2f) T0 = ⋃

(T0, T
<
0).

(2g) T0 = +(T0, β
1
j) and T1 = −(T0, β

1
j).

(2h) If (Detect(T0) == true) then
(2i) BinaryParallelAdder(T0, f + (k − 1 − j) ∗ 4 + 2, a).
(2j) ParallelComparator(T0, Tn, T

>
0 , T =

0 , T <
0 , f + (k − 1 − j) ∗ 4 + 3).

(2k) T0 = ⋃
(T >

0 , T =
0).

(2l) BinaryParallelSubtractor(T0, f + (k − 1 − j) ∗ 4 + 3).
(2m) ReservedValue(T <

0 , f + (k − 1 − j) ∗ 4 + 3).
(2n) T0 = ⋃

(T0, T
<
0).

EndIf
(2o) If (Detect(T1) == true) then

(2p) ReservedValue(T1, f + (k − 1 − j) ∗ 4 + 2).
(2q) ReservedValue(T1, f + (k − 1 − j) ∗ 4 + 3).

142 W.-L. Chang et al.

EndIf
(2r) T0 = ⋃

(T0, T1).
EndFor
(2s) AssignmentOperator(T0, f + k ∗ 4, a).

EndProcedure.

Lemma 5 The algorithm, ModularMultiplication(T0, Tn, f, a,α,β), can be used
to finish computation of a modular multiplication.

Proof On the execution of Step (1), it calls InitialSet(T0, f) to set the initial value
to zero for computation of a modular multiplication in solution space. This means
that the strands encoding the initial value are appended onto the head of every strand
in tube T0. Step (2) is a loop and is mainly used to finish the function of Steps (3a)
and (3c) in the procedure, Encryption(M,e,n). Next, the first execution of Step (2a)
calls ParallelLeftShifter(T0, f + (k − 1 − j) ∗ 4) to perform left shift of one time
to the initial value. This indicates that the new (intermediate) value is equal to twice
of the initial value. On the first execution of Step (2b), it calls ParallelCompara-
tor(T0, Tn, T

>
0 , T =

0 , T <
0 , f + (k − 1 − j) ∗ 4 + 1) to compare the new value with the

value of n. After it is performed, tube T >
0 contains the strands with the comparative

result of greater than (“>”), tube T =
0 includes the strands with the comparative result

of equal (“=”) and tube T <
0 consists of the strands with the comparative result of less

than (“<”).
Next, the first execution of Step (2c) applies the merge operation to pour tubes

T >
0 and T =

0 into T0. This implies that tube T0 contains with the comparative re-
sult of greater than (“>”) or equal (“=”). On the first execution of Step (2d), it
calls BinaryParallelSubtractor(T0, f + (k − 1 − j) ∗ 4 + 1) to finish the func-
tion of one subtraction. This is to say that every intermediate value encoded in tube
T0 is subtracted from the value of n. Because every intermediate value encoded in
tube T <

0 is less than the value of n, the first execution of Step (2e) calls Reserved-
Value(T <

0 , f + (k −1− j)∗4+1) to reserve the values encoded in T <
0 . Then, on the

first execution of Step (2f), it uses the merge operation to pour tube T <
0 into T0. The

first execution of Step (2g) employs the extract operation to form two test tubes: T0
and T1. The first tube T0 includes all of the strands that have βj = 1, and the second
tube T1 consists of all of the strands that have βj = 0.

Next, the first execution of Step (2h) employs the detect operation to check
whether there is any DNA sequence in tube T0. If it returns a true, this indicates that
the value of the j th bit in C or M (they are multipliers) is one. On the first execution
of Step (2i), it calls BinaryParallelAdder(T0, f + (k − 1 − j) ∗ 4 + 2, a) to perform
the function of one addition. This means that the value of C (it is also a multiplicand)
is added to every intermediate value encoded in tube T0. Then, the first execution of
Step (2j) calls ParallelComparator(T0, Tn, T

>
0 , T =

0 , T <
0 , f + (k − 1 − j) ∗ 4 + 3)

to compare the intermediate value with the value of n. After it is performed, tube
T >

0 contains the strands with the comparative result of greater than (“>”), tube T =
0

includes the strands with the comparative result of equal (“=”) and tube T <
0 consists

of the strands with the comparative result of less than (“<”).
On the first execution of Step (2k), it uses the merge operation to pour tubes T >

0
and T =

0 into T0. This implies that tube T0 contains with the comparative result of

Fast parallel DNA-based algorithms for molecular computation 143

greater than (“>”) or equal (“=”). Then, the first execution of Step (2l), it calls Bi-
naryParallelSubtractor(T0, f + (k − 1 − j) ∗ 4 + 3) to finish the function of one
subtraction. This is to say that every intermediate value encoded in tube T0 is sub-
tracted from the value of n. Because every intermediate value encoded in tube T <

0
is less than the value of n, next, the first execution of Step (2m) calls Reserved-
Value(T <

0 , f + (k − 1 − j) ∗ 4 + 3) to reserve the values encoded in T <
0 . On the first

execution of Step (2n), it uses the merge operation to pour tube T <
0 into T0.

Next, the first execution of Step (2o) applies the detect operation to check whether
there is any DNA sequence in tube T1. If it returns a true, this indicates that the value
of the j th bit in C or M (they are multipliers) is zero. Therefore, for the consistency
of encoding every intermediate value in tubes T0 and T1, on the first execution of
Step (2p), it calls ReservedValue(T1, f + (k − 1 − j) ∗ 4 + 2) to reserve the inter-
mediate values encoded in T1. Then, similarly, the first execution of Step (2q), it also
calls ReservedValue(T1, f + (k − 1 − j) ∗ 4 + 3) to reserve the intermediate values
encoded in T1.

On the first execution of Step (2r), it uses the merge operation to pour tube T1 into
T0. Repeat execution of Steps (2a) through (2r) until the value of j is zero. After all of
the steps in the only loop are processed, every strand in tube T0 performs computation
of a modular multiplication, (C ∗C) mod n or (C ∗M) mod n. Finally, the execution
of Step (2s) calls AssignmentOperator(T0, f +k ∗4, a) to perform the ath updating
of the value for C. �

5.6 Solution space for the initial value for computation of a modular multiplication

For any given two positive integers d and b, Blakley [34] proposed the fastest
method to perform computation of (d ∗ b) (mod n). Blakley used adder and sub-
tractor of (4 ∗ k) times to perform computation of (d ∗ b)(mod n). Assume that
Y ≡ (d ∗b) (mod n) and the length of Y is k bits. From Blakley’s method, Y is finally
obtained after at most updating (4 ∗ k + 1) times of the value for Y . From the proce-
dure Encryption(M,e,n), Blakley’s method is at most called (2 ∗ k) times. That is
to say, at most updating (8∗k2 +2∗k) times of the value for Y are completed. There-
fore, suppose that Y is represented as a k-bit binary number, yf,k−1 . . . yf,0, where the
value of each bit yf,g is either 1 or 0 for 1 ≤ f ≤ (8 ∗ k2 + 2 ∗ k) and 0 ≤ g ≤ k − 1.
The bits, yf,k−1 and yf,0, represent the most significant bit and the least significant
bit for Y , respectively. If updating of f th time for Y is finished through an adder, then
two binary numbers yf,k−1 . . . yf,0 and yf +1,k−1 . . . yf +1,0 represent the augend and
the sum of the f th updating, respectively. If updating of f th time for Y is finished
through a subtractor, then two binary numbers yf,k−1 . . . yf,0 and yf +1,k−1 . . . yf +1,0

represent the minuend and the difference of the f th updating, respectively.
From [30, 31], for every bit yf,g , two distinct 15 base value sequences were de-

signed. One represents the value “0” for yf,g and the other represents the value “1”
for yf,g . For the sake of convenience in our presentation, assume that y1

f,g denotes

the value of yf,g to be 1 and y0
f,g defines the value of yf,g to be 0. The following

algorithm is used to construct solution space for the initial value to computation of a
modular multiplication.

144 W.-L. Chang et al.

Procedure InitialSet(T0, f)

(1) For g = 0 to k − 1
(1a) Append-head(T0, y

0
f,g).

EndFor
EndProcedure

Lemma 6 Solution space for the initial value to computation of a modular multipli-
cation can be constructed from the algorithm, InitialSet(T0, f).

Proof Similar to Lemmas 1 and 2. �

5.7 The construction of a left shifter

The ModularMultiplication(T0, Tn, f, a,α,β) module uses, as a sub-module, a par-
allel left shifter. We now describe its construction in detail. A left shifter is an in-
struction of two operands of k bits that the second operand is applied to represent
the number of the left shift to the first operand. Suppose that the one-bit binary
numbers yf,g denoted in Sect. 5.6, represent the first operand of a left shifter for
1 ≤ f ≤ (8 ∗ k2 + 2 ∗ k) and 0 ≤ g ≤ k − 1. Because computation of (d ∗ b)(mod n)

denoted in Sect. 5.6 cited from [34] only needs to perform left shift of one time, the
second operand actually is equal to one. The following algorithm is used to construct
a parallel left shifter.

Procedure ParallelLeftShifter(T0, f)

(1) Append-head(T0, y
0
f +1,0).

(2) For j = 0 to k − 2
(2a) T1 = +(T0, y

1
f,j) and T2 = −(T0, y

1
f,j).

(2b) Append-head(T1, y
1
f +1,j+1).

(2c) Append-head(T2, y
0
f +1,j+1).

(2d) T0 = ⋃
(T1, T2).

EndFor
EndProcedure

Lemma 7 The algorithm, ParallelLeftShifter(T0, f), can be applied to finish the
function of a parallel left shifter.

Proof On the execution of Step (1), it uses the append-head operations to append
y0
f +1,0 onto the head of every strand in T0. This is to say that the least significant

position of every value encoded is filled out zero. Step (2) is a loop and is employed
to finish the main operations of a parallel left shifter for tube T0. Each execution of
Step (2a), it employs the extract operation to form two test tubes: T1 and T2. The first
tube T1 includes all of the strands that have yf,j = 1, and the second tube T2 consists
of all of the strands that have yf,j = 0. Next, with each execution of Step (2b) it
uses the append-head operations to append y1

f +1,j+1 onto the head of every strand

Fast parallel DNA-based algorithms for molecular computation 145

in T1. On each execution of Step (2c) applies the append-head operations to append
y0
f +1,j+1 onto the head of every strand in T2. Then, each execution of Step (2d)

applies the merge operation to pour tubes T1 and T2 into T0. Tube T0 contains the
strands finishing left shift of a bit. Repeat execution of Steps (2a) through (2d) until
the k bits are processed. Tube T0 contains every strand encoding the corresponding
value that is twice of the original encoded value. This indicates that tube T0 contains
the strands finishing left shift of one time. �

5.8 The construction of a parallel comparator

The ModularMultiplication(T0, Tn, f, a,α,β) module uses, as a sub-module, a par-
allel comparator. We now describe its construction in detail. A modular multiplication
denoted in Sect. 5.6 cited from [34] is carried out by means of successive shift, com-
pared, to addition, and subtract operations. This indicates that shift, and compared
operations must be finished before the corresponding addition and subtraction are
done. A one-bit parallel comparator is a Boolean function that performs compared
operation of two input bits. The first input bit and the second input bit, respectively,
represent bits of Y and n to be compared. From compared results in a one-bit par-
allel comparator, DNA strands encoding those pairs (Y,n) with compared results
“>”, DNA strands encoding those pairs (Y,n) with compared results “=” and DNA
strands encoding those pairs (Y,n) with compared results “<” are, respectively, put
into three different tubes.

Therefore, the sub-module, OneBitComparator(T0, Tn, T
>
0 , T =

0 , T <
0 , f, g, j) is

presented to compute the function of a one-bit parallel comparator. The first parame-
ter, T0, consists of those DNA strands encoding each possible value of Y . The second
parameter, Tn, contains the only DNA strand encoding the value of n. The third pa-
rameter, T >

0 , includes those DNA strands with the comparative result of greater than
(“>”) between Y and n. The fourth parameter, T =

0 , contains those DNA strands with
the comparative result of equal (“=”) between Y and n. The fifth parameter, T <

0 ,
consists of those DNA strands with the comparative result of less than (“<”) between
Y and n. The sixth parameter, f , is used to represent the f th comparison between
Y and n. The seventh parameter, g, is applied to represent the gth bit of Y in the
f th comparison. The eighth parameter, j , is employed to represent the j th bit of n

in the f th comparison. The module, ParallelComparator(T0, Tn, T
>
0 , T =

0 , T <
0 , f),

is proposed to compute the function of a k-bit parallel comparator.

Procedure OneBitComparator(T0, Tn, T
>
0 , T =

0 , T <
0 , f, g, j)

(1) T ON
0 = +(T0, y

1
f,g) and T OFF

0 = −(T0, y
1
f,g).

(2) T ON
n = +(Tn,n

1
j) and T OFF

n = −(Tn,n
1
j).

(3) If (Detect(T ON
n) == true) then

(3a) T =
0 = ⋃

(T =
0 , T ON

0) and T <
0 = ⋃

(T <
0 , T OFF

0).
Else

(3b) T >
0 = ⋃

(T >
0 , T ON

0) and T =
0 = ⋃

(T =
0 , T OFF

0).
EndIf

146 W.-L. Chang et al.

(4) Tn = ⋃
(T ON

n , T OFF
n).

EndProcedure

Lemma 8 The algorithm, OneBitComparator(T0, Tn, T
>
0 , T =

0 , T <
0 , f, g, j), can be

applied to finish the function of a one-bit parallel comparator.

Proof The algorithm, OneBitComparator(T0, Tn, T
>
0 , T =

0 , T <
0 , f, g, j), is imple-

mented via the extract, detect and merge operations. The execution of Step (1) em-
ploys the extract operation to form two test tubes: T ON

0 and T OFF
0 . The first tube T ON

0
includes all of the strands that have yf,g = 1. The second tube T OFF

0 consists of all
of the strands that have yf,g = 0. The execution of Step (2) also uses the extract op-
eration to form two test tubes: T ON

n and T OFF
n . The first tube T ON

n includes all of
the strands that have nj = 1. The second tube T OFF

n consists of all of the strands
that have nj = 0. Next, the execution of Step (3) uses the detect operation to check
whether there is any DNA sequence in tube T ON

n . If it returns true, this indicates
that the value of the j th bit in n is one. On the execution of Step (3a), it uses the
merge operations to pour T ON

0 into T =
0 and also to pour T OFF

0 into T <
0 . If the detect

operation in Step (3) returns a false, this implies that the value of the j th bit in n is
zero. Next, the execution of Step (3b) applies the merge operations to pour T ON

0 into
T >

0 and also to pour T OFF
0 into T =

0 . Finally, the execution of Step (4) employs the
merge operations to pour T ON

n and T OFF
n into Tn. This indicates that the DNA strand

encoding n is reserved in Tn and will be used for comparator of the next bit. �

Procedure ParallelComparator(T0, Tn, T
>
0 , T =

0 , T <
0 , f)

(1) For j = k − 1 down to 0
(1a) OneBitComparator(T0, Tn, T

>
0 , T =

0 , T <
0 , f, j, j).

(1b) If (Detect(T =
0) == false) then

(1c) Terminate the execution of the loop.
EndIf

EndFor
EndProcedure

Lemma 9 The algorithm, ParallelComparator(T0, Tn, T
>
0 , T =

0 , T <
0 , f) can be

used to finish the function of a k-bit parallel comparator.

Proof The only loop is used to implement the function of a k-bit parallel com-
parator. The first execution of Step (1a) calls the algorithm, OneBitCompara-
tor(T0, Tn, T

>
0 , T =

0 , T <
0 , f, j, j), to finish the comparative result of the correspond-

ing bit for Y and n. On the first execution of Step (1b), it uses the detect operations
to check whether there is any DNA sequence in T =

0 . If it returns a false, then the
execution of Step (1c) will terminate the execution of the loop. Otherwise it repeats
execution of Steps (1a) through (1c) until the corresponding bits are all processed.
Therefore, Tube T >

0 contains the strands with the comparative result of greater than
(“>”). Tube T =

0 includes the strands with the comparative result of equal (“=”). Tube
T <

0 consists of the strands with the comparative result of less than (“<”). �

Fast parallel DNA-based algorithms for molecular computation 147

5.9 The construction of a binary parallel subtractor

The ModularMultiplication(T0, Tn, f, a,α,β) module uses, as a sub-module, a par-
allel subtractor. The one-bit subtractor (later introduced in Sect. 5.10) figures out the
difference bit and the borrow bit for two input bits and a previous borrow. Two k-bit
binary numbers can finish subtractions of k times by means of this one-bit subtractor.
A binary parallel subtractor is a Boolean function that finishes the arithmetic subtrac-
tion for two k-bit binary numbers. The following algorithm is proposed to finish the
Boolean function of a binary parallel subtractor.

Procedure BinaryParallelSubtractor(T0, f)

(1) Append − head(T0, b
0
f,−1).

(2) For j = 0 to k − 1
(2a) ParallelOneBitSubtractor(T0, f, j, j).

EndFor
EndProcedure

Lemma 10 The algorithm, BinaryParallelSubtractor(T0, f), can be applied to fin-
ish the Boolean function of a binary parallel subtractor.

Proof When the first subtract operation occurs, the least significant position for a
minuend of k bits and a subtrahend of k bits is subtracted, the input borrow bit
must be 0. So, Step (1) uses the append-head operation to append 15-based DNA
sequences for representing b0

f,−1 onto the head of every strand in T0. Step (2) is
the only loop and is mainly used to finish the Boolean function of a binary parallel
subtractor. On the first execution of Step (2a), it calls the procedure, ParallelOneBit-
Subtractor(T0, f, j, j), to compute the arithmetic subtraction of the least significant
bit to the minuend and the subtrahend of k bits. Repeat execution of Step (2a) until
the most significant bit in the minuend and the subtrahend of k bits is processed. Tube
T0 contains the strands finishing the arithmetic subtraction of k bits. �

5.10 The construction of a parallel one-bit subtractor

A one-bit subtractor is a Boolean function that forms the arithmetic subtraction of
three input bits. It consists of three inputs and two outputs. Two of the input bits
represent minuend and subtrahend bits to be subtracted. The third input represents
the borrow bit from the previous higher significant position. The first output gives
the value of the difference for minuend and subtrahend bits to be subtracted. The
second output gives the value of the borrow bit to minuend and subtrahend bits to be
subtracted. The truth table of the one-bit subtractor is as follows:

Suppose that the two one-bit binary numbers yf,g and yf +1,g denoted in Sect. 5.6,
represent the first input and the first output of a one-bit subtractor for 1 ≤ f ≤ (8 ∗
k2 + 2 ∗ k) and 0 ≤ g ≤ k − 1. Also suppose a one-bit binary number nj denoted in
Sect. 5.3, represents the second input of a one-bit subtractor for 0 ≤ j ≤ k − 1, and
two one-bit binary numbers bf,g and bf,g−1 represent the second output and the third
input of a one-bit subtractor.

148 W.-L. Chang et al.

Table 1 The truth table of a one-bit subtractor

Minuend bit Subtrahend bit Previous borrow bit Difference bit Borrow bit

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

Two distinct DNA sequences are designed to encode every bit bf,g−1 and bf,g .
For the sake of convenience in our presentation, assume that b1

f,g contains the value

of bf,g to be 1 and b0
f,g contains the value of bf,g to be 0. Similarly, also suppose that

b1
f,g−1 contains the value of bf,g−1 to be 1 and b0

f,g−1 contains the value of bf,g−1 to

be 0. The following algorithm is proposed to finish the Boolean function of a parallel
one-bit subtractor.

Procedure ParallelOneBitSubtractor(T0, f, g, j)

(1) T1 = +(T0, y
1
f,g) and T2 = −(T0, y

1
f,g).

(2) T3 = +(T1, n
1
j) and T4 = −(T1, n

1
j).

(3) T5 = +(T2, n
1
j) and T6 = −(T2, n

1
j).

(4) T7 = +(T3, b
1
f,g−1) and T8 = −(T3, b

1
f,g−1).

(5) T9 = +(T4, b
1
f,g−1) and T10 = −(T4, b

1
f,g−1).

(6) T11 = +(T5, b
1
f,g−1) and T12 = −(T5, b

1
f,g−1).

(7) T13 = +(T6, b
1
f,g−1) and T14 = −(T6, b

1
f,g−1).

(8a) If (Detect(T7) == true) then
(8) Append-head(T7, y

1
f +1,g) and Append-head(T7, b

1
f,g).

EndIf
(9a) If (Detect(T8) == true) then

(9) Append-head(T8, y
0
f +1,g) and Append-head(T8, b

0
f,g).

EndIf
(10a) If (Detect(T9) == true) then

(10) Append-head(T9, y
0
f +1,g) and Append-head(T9, b

0
f,g).

EndIf
(11a) If (Detect(T10) == true) then

(11) Append-head(T10, y
1
f +1,g) and Append-head(T10, b

0
f,g).

EndIf
(12a) If (Detect(T11) == true) then

(12) Append-head(T11, y
0
f +1,g) and Append-head(T11, b

1
f,g).

Fast parallel DNA-based algorithms for molecular computation 149

EndIf
(13a) If (Detect(T12) == true) then

(13) Append-head(T12, y
1
f +1,g) and Append-head(T12, b

1
f,g).

EndIf
(14a) If (Detect(T13) == true) then

(14) Append-head(T13, y
1
f +1,g) and Append-head(T13, b

1
f,g).

EndIf
(15a) If (Detect(T14) == true) then

(15) Append-head(T14, y
0
f +1,g) and Append-head(T14, b

0
f,g).

EndIf
(16) T0 = ⋃

(T7, T8, T9, T10, T11, T12, T13, T14).

EndProcedure

Lemma 11 The algorithm, ParallelOneBitSubtractor(T0, f, g, j), can be applied
to finish the Boolean function of a parallel one-bit subtractor.

Proof The algorithm, ParallelOneBitSubtractor(T0, f, g, j), is implemented by
means of the extract, append-head and merge operations. From the execution of
Steps (1) through (7), they use the extract operations to form some different test tubes
including different strands (T1 to T14). That is, T1 contains all of the strands that have
yf,g = 1, T2 consists of all of the strands that have yf,g = 0, T3 includes those that
have yf,g = 1 and nj = 1, T4 contains those that have yf,g = 1 and nj = 0, T5 con-
sists of those that have yf,g = 0 and nj = 1, T6 includes those that have yf,g = 0
and nj = 0, T7 contains those that have yf,g = 1, nj = 1 and bf,g−1 = 1, T8 con-
sists of those that have yf,g = 1, nj = 1 and bf,g−1 = 0, T9 includes those that have
yf,g = 1, nj = 0 and bf,g−1 = 1, T10 consists of those that have yf,g = 1, nj = 0
and bf,g−1 = 0, T11 includes those that have yf,g = 0, nj = 1 and bf,g−1 = 1, T12
contains those that have yf,g = 0, nj = 1 and bf,g−1 = 0, T13 consists of those that
have yf,g = 0, nj = 0 and bf,g−1 = 1, and finally, T14 includes those that have
yf,g = 0, nj = 0 and bf,g−1 = 0. Having finished Steps (1) through (7), this implies
that eight different inputs of a one-bit subtractor as shown in Table 1 were poured
into tubes T7 through T14, respectively.

Next, Steps (8a), (9a), (10a), (11a), (12a), (13a), (14a) and (15a) are used to detect
whether there are DNA strands from tubes T7 through T14. If a true is returned from
each operation, then the corresponding Steps (8a1) through (15a1) use the append-
head operations to append y1

f +1,g or y0
f +1,g , and b1

f,g or b0
f,g onto the head of every

strand in the corresponding test tubes. After finishing Steps (8a1) through (15a1), we
can say that eight different outputs of a one-bit subtractor in Table 1 are appended into
tubes T7 through T14. Finally, the execution of Step (16) applies the merge operation
to pour tubes T7 through T14 into tube T0. Tube T0 contains the strands finishing the
subtraction of a bit. �

5.11 Reserving the result for intermediate computation of a modular multiplication

The procedure, Encryption(M,e,n), denoted in Sect. 4.1, is applied to perform com-
putation of an exponential modular operation. The following DNA-based algorithm,

150 W.-L. Chang et al.

ReservedValue(T2, f), is employed to reserve the result to intermediate computation
of a modular multiplication.

Procedure ReservedValue(T2, f)

(1) For j = 0 to k − 1
(1a) T3 = +(T2, y

1
f,j) and T4 = −(T2, y

1
f,j).

(1b) Append-head(T3, y
1
f +1,j).

(1c) Append-head(T4, y
0
f +1,j).

(1d) T2 = ⋃
(T3, T4).

EndFor
EndProcedure

Lemma 12 The algorithm, ReservedValue(T2, f), can be applied to finish the func-
tion of reserving the intermediate result for computation of a modular multiplication.

Proof Refer to Lemmas 1 through 11. �

5.12 The construction of a binary parallel adder

The one-bit adder (later introduced in Sect. 5.13) figures out the sum and the carry of
two input bits and a previous carry. Two k-bit binary numbers each can be added by
means of this one-bit adder. A binary parallel adder is also a Boolean function that
finishes the arithmetic sum for two k-bit binary numbers. The following algorithm is
proposed to finish the Boolean function of a binary parallel adder.

Procedure BinaryParallelAdder(T0, f, a)

(1) Append-head(T0, z
0
f,−1).

(2) For j = 0 to k − 1
(2a) ParallelOneBitAdder(T0, f, j, a, j).

EndFor
EndProcedure

Lemma 13 The algorithm, BinaryParallelAdder(T0, f, a), can be applied to finish
the Boolean function of a binary parallel adder.

Proof With the addition, the least significant position of the augend and the addend
of k bits is added; the input carry must be 0. So, Step (1) uses the append-head
operation to append 15-based DNA sequences for representing z0

f,−1 onto the head of
every strand in T0. Step (2) is the main loop and is mainly used to finish the Boolean
function of a binary parallel adder. Each execution of Step (2a) calls the procedure,
ParallelOneBitAdder(T0, f, j, a, j), to compute the arithmetic sum of one bit for
the augend and the addend. Repeat execution of Step (2a) until the most significant
bit for the augend and the addend is processed. Tube T0 contains the strands finishing
the arithmetic sum of k bits. �

Fast parallel DNA-based algorithms for molecular computation 151

5.13 The construction of a parallel one-bit adder

A one-bit adder is a Boolean function that forms the arithmetic sum of three input bits.
It consists of three inputs and two outputs. Two of the input bits represent augend and
addend bits to be added, respectively. The third input represents the carry from the
previous lower significant position. The first output gives the value of the sum for
augend and addend bits to be added. The second output gives the value of the carry to
augend and addend bits to be added. The truth table of the one-bit adder is as follows:

Table 2 The truth table of a one-bit adder

Augend bit Addend bit Previous carry bit Sum bit Carry bit

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Suppose that two one-bit binary numbers denoted in Sect. 5.6, yf,g and yf +1,g ,
represent the first input of a one-bit adder for 1 ≤ f ≤ (8 ∗ k2 + 2 ∗ k) and 0 ≤ g ≤
k − 1, and the first output of a one-bit adder, respectively, a one-bit binary number
denoted in Sect. 5.4, ca,j , represents the second input of a one-bit adder for 1 ≤ a ≤
(2 ∗ k + 1) and 0 ≤ j ≤ k − 1, and two one-bit binary numbers, zf,g and zf,g−1,
represent the second output and the third input of a one-bit adder, respectively. From
[30, 31], two distinct DNA sequences are designed to represent the value “0” or “1”
of every bit zf,g−1 and zf,g for 1 ≤ f ≤ (8 ∗ k2 + 2 ∗ k) and 0 ≤ g ≤ k − 1. For the
sake of convenience in our presentation, assume that z1

f,g contains the value of zf,g

to be 1 and z0
f,g contains the value of zf,g to be 0. Also suppose that y1

f +1,g denotes

the value of yf +1,g to be 1 and y0
f +1,g defines the value of yf +1,g to be 0. Similarly,

assume that z1
f,g−1 contains the value of zf,g−1 to be 1 and z0

f,g−1 contains the value

of zf,g−1 to be 0. The following algorithm is proposed to finish the Boolean function
of a parallel one-bit adder.

Procedure ParallelOneBitAdder(T0, f, g, a, j)

(1) T1 = +(T0, y
1
f,g) and T2 = −(T0, y

1
f,g).

(2) T3 = +(T1, c
1
a,j) and T4 = −(T1, c

1
a,j).

(3) T5 = +(T2, c
1
a,j) and T6 = −(T2, c

1
a,j).

(4) T7 = +(T3, z
1
f,g−1) and T8 = −(T3, z

1
f,g−1).

152 W.-L. Chang et al.

(5) T9 = +(T4, z
1
f,g−1) and T10 = −(T4, z

1
f,g−1).

(6) T11 = +(T5, z
1
f,g−1) and T12 = −(T5, z

1
f,g−1).

(7) T13 = +(T6, z
1
f,g−1) and T14 = −(T6, z

1
f,g−1).

(8a) If (Detect(T7) == true) then
(8) Append-head(T7, y

1
f +1,g) and Append-head(T7, z

1
f,g).

EndIf
(9a) If (Detect(T8) == true) then

(9) Append-head(T8, y
0
f +1,g) and Append-head(T8, z

1
f,g).

EndIf
(10a) If (Detect(T9) == true) then

(10) Append-head(T9, y
0
f +1,g) and Append-head(T9, z

1
f,g).

EndIf
(11a) If (Detect(T10) == true) then

(11) Append-head(T10, y
1
f +1,g) and Append-head(T10, z

0
f,g).

EndIf
(12a) If (Detect(T11) == true) then

(12) Append-head(T11, y
0
f +1,g) and Append-head(T11, z

1
f,g).

EndIf
(13a) If (Detect(T12) == true) then

(13) Append-head(T12, y
1
f +1,g) and Append-head(T12, z

0
f,g).

EndIf
(14a) If (Detect(T13) == true) then

(14) Append-head(T13, y
1
f +1,g) and Append-head(T13, z

0
f,g).

EndIf
(15a) If (Detect(T14) == true) then

(15) Append-head(T14, y
0
f +1,g) and Append-head(T14, z

0
f,g).

EndIf
(16) T0 = ⋃

(T7, T8, T9, T10, T11, T12, T13, T14).

EndProcedure

Lemma 14 The algorithm, ParallelOneBitAdder(T0, f, g, a, j), can be applied to
finish the Boolean function of a parallel one-bit adder.

Proof The algorithm ParallelOneBitAdder(T0, f, g, a, j) is implemented by means
of the extract, append-head and merge operations. Steps (1) through (7) employ
the extract operations to form some different test tubes including different strands
(T1 to T14). That is, T1 includes all of the strands that have yf,g = 1, T2 includes
all of the strands that have yf,g = 0, T3 includes those that have yf,g = 1 and
ca,j = 1, T4 includes those that have yf,g = 1 and ca,j = 0, T5 includes those that
have yf,g = 0 and ca,j = 1, T6 includes those that have yf,g = 0 and ca,j = 0, T7 in-
cludes those that have yf,g = 1, ca,j = 1 and zf,g−1 = 1, T8 includes those that have
yf,g = 1, ca,j = 1 and zf,g−1 = 0, T9 includes those that have yf,g = 1, ca,j = 0 and
zf,g−1 = 1, T10 consists of those that have yf,g = 1, ca,j = 0 and zf,g−1 = 0, T11 in-
cludes those that have yf,g = 0, ca,j = 1 and zf,g−1 = 1, T12 includes those that have
yf,g = 0, ca,j = 1 and zf,g−1 = 0, T13 includes those that have yf,g = 0, ca,j = 0

Fast parallel DNA-based algorithms for molecular computation 153

and zf,g−1 = 1, and finally, T14 consists of those that have yf,g = 0, ca,j = 0 and
zf,g−1 = 0. Having finished Steps (1) through (7), this implies that eight different
inputs of a one-bit adder as shown in Table 2 were poured into tubes T7 through T14,
respectively.

Next, Steps (8a), (9a), (10a), (11a), (12a), (13a), (14a) and (15a) are used to detect
whether there are DNA strands from tubes T7 through T14. If a true is returned from
each operation, then the corresponding steps (8a1) through (15a1) use the append-
head operations to append y1

f +1,g or y0
f +1,g , and z1

f,g or z0
f,g onto the head of every

strand in the corresponding test tubes. After finishing Steps (8a1) through (15a1), we
can say that eight different outputs of a one-bit adder in Table 2 are appended into
tubes T7 through T14. Finally, the execution of Step (16) applies the merge operation
to pour tubes T7 through T14 into tube T0. Tube T0 contains the strands finishing the
addition of a bit. �

5.14 The construction of an assignment operator

An assignment operator is an instruction of the first operand of k bits and the second
operand of k bits that the value of the first operand is set to the value of the second
operand. The following algorithm is applied to construct an assignment operator. This
implies that the assignment operator can be used to update the value of C denoted in
Sect. 5.4. The third parameter, a, in the algorithm is used to represent the ath updating
for C.

Procedure AssignmentOperator(T0, f, a)

(1) For j = 0 to k − 1
(1a) T1 = +(T0, y

1
f,j) and T2 = −(T0, y

1
f,j).

(1b) Append-head(T1, c
1
a,j).

(1c) Append-head(T2, c
0
a,j).

(1d) T0 = ⋃
(T1, T2).

EndFor
EndProcedure

Lemma 15 The algorithm, AssignmentOperator(T0, f, a), can be applied to finish
the function of an assignment operator.

Proof Step (1) is a loop and is used to perform the function of an assignment oper-
ator for tube T0. On each execution of Step (1a), it employs the extract operation to
form two test tubes: T1 and T2. The first tube T1 includes all of the strands that have
yf,j = 1, and the second tube T2 consists of all of the strands that have yf,j = 0. Next,
each execution of Step (1b) uses the append-head operations to append c1

a,j onto the
head of every strand in T1. On each execution of Step (1c), it applies the append-head
operations to append c0

a,j onto the head of every strand in T2. Then, each execution of
Step (1d) applies the merge operation to pour tubes T1 and T2 into T0. Tube T0 con-
tains the strands finishing assignment of a bit. Repeat execution of Steps (1a) through
(1d) until the k bits are processed. Tube T0 contains the strands finishing assignment
of k bits. This indicates that the ath updating of the value to C is finished. �

154 W.-L. Chang et al.

6 The attacking plan of breaking the Diffie–Hellman public-key cryptosystem

The Diffie–Hellman public-key cryptosystem can be used to encrypt messages
sent between two communicating parties so that an eavesdropper who overhears
the encrypted message will not be able to decode them. Assume that the public
key between two communicating parties is represented as a k-bit binary number,
c(2∗k+1),k−1 . . . c(2∗k+1),0, denoted in Sect. 5.4. An eavesdropper only needs to use
the following algorithm to figure out the corresponding secret key.

Algorithm 2 The attacking plan of breaking the Diffie–Hellman public-key cryp-
tosystem.

(1) Call Algorithm 1.
(2) For j = 0 to k − 1

(2a) T1 = +(T0, c(2∗k+1),j) and T2 = −(T0, c(2∗k+1),j).
(2b) T0 = ⋃

(T0, T1).
EndFor

(3) If (Detect(T0) == true) then
(3a) Read(T0).

EndIf
EndAlgorithm

Theorem 2 From those steps in Algorithm 2, an eavesdropper can compute the cor-
responding secret key.

Proof After the execution of Step (1) is performed, each pair (the public key, the
corresponding secret key) is encoded by DNA strands in tube T0. From the encrypted
message overheard by an eavesdropper, after each execution of Steps (2a) and (2b)
is finished, the corresponding secret key (the corresponding discrete logarithm) is
stored in tube T0. Therefore, a true is returned from the execution of Step (3). Next,
from the execution of Step (3a), the answer is found from tube T0. �

6.1 The power of Algorithm 2 for figuring out the secret key in the Diffie–Hellman
public-key cryptosystem

It is assumed that between two communicating parties an eavesdropper overhears the
encrypted message c0

7,2c
0
7,1c

1
7,0. The eavesdropper uses Algorithm 2 to find the cor-

responding secret key (discrete logarithm of the encrypted message). When Step (1)
in Algorithm 2 is executed, it invokes Algorithm 1 in Sect. 4.3. The first parameter
in Algorithm 1 is a primitive root M for Z∗

7 and its length is three bits. Therefore, its
binary value is m0

2m
1
1m

1
0. The second parameter in Algorithm 1 is applied to encode

all of the possible discrete logarithms for the encrypted message c0
7,2c

0
7,1c

1
7,0, and its

length is three bits. Therefore, the range of its value is from zero (e0
2e

0
1e

0
0) through

seven (e1
2e

1
1e

1
0). The third parameter in Algorithm 1 is the divisor of the modular

operation, and its length is three bits. Hence, its binary value is n1
2n

1
1n

1
0.

Fast parallel DNA-based algorithms for molecular computation 155

Table 3 The result for tube T0 is generated by Init(T0)

Tube The result is generated by Init(T0)

T0 {e0
2e0

1e0
0, e0

2e0
1e1

0, e0
2e1

1e0
0, e0

2e1
1e1

0, e1
2e0

1e0
0, e1

2e0
1e1

0, e1
2e1

1e0
0, e1

2e1
1e1

0}

Table 4 The results for tubes
T0 and Tθ are yielded by Select-
DiscreteLogarithm(T 0,Tθ)

Tube The result is generated by SelectDiscreteLogarithm(T 0,Tθ)

T0 {e0
2e0

1e0
0, e0

2e0
1e1

0, e0
2e1

1e0
0, e0

2e1
1e1

0, e1
2e0

1e0
0, e1

2e0
1e1

0}
Tθ {θ1

2 θ1
1 θ0

0 }

Table 5 The result for tube Tn

is generated by MakeValue(Tn) Tube The result is generated by MakeValue(Tn)

Tn {n1
2n1

1n1
0}

Table 6 The result for tube T0
is generated by InitialValue(T0) Tube The result is generated by InitialValue(T0)

T0 {c0
1,2c0

1,1c1
1,0m0

2m1
1m1

0e0
2e0

1e0
0, c0

1,2c0
1,1c1

1,0m0
2m1

1m1
0e0

2e0
1e1

0,

c0
1,2c0

1,1c1
1,0m0

2m1
1m1

0e0
2e1

1e0
0, c0

1,2c0
1,1c1

1,0m0
2m1

1m1
0e0

2e1
1e1

0,

c0
1,2c0

1,1c1
1,0m0

2m1
1m1

0e1
2e0

1e0
0, c0

1,2c0
1,1c1

1,0m0
2m1

1m1
0e1

2e0
1e1

0}

After the first execution of Step (0) in Algorithm 1 is completed, tubes T0, Tθ , Tn,
and T1 are set to empty tubes. Next, after the first execution of Step (1) in Algorithm 1
is completed, the result for tube T0 is shown in Table 3.

Next, after the first execution of Step (2) in Algorithm 1 is completed, the results
for tubes T0 and Tθ are shown in Table 4.

Next, after the first execution of Step (3) in Algorithm 1 is completed, the result
for tube Tn is shown in Table 5.

Next, after the first execution of Step (4) in Algorithm 1 is completed, the result
for tube T0 is shown in Table 6.

Next, Steps (5a) through (5g) in Step (5) in Algorithm 1 are used to complete
all of the computations for M0(mod n), M1(mod n) . . .Mn−2(mod n), where the
value of M is equal to three, and the value of n is equal to seven. This is to say
that those operations are employed to perform all of the computations for 30(mod 7),
31(mod 7), 32(mod 7), 33(mod 7), 34(mod 7) and 35(mod 7). After those opera-
tions are all completed, the results for tubes T0, T1, and Tn are shown in Table 7.
In Table 7 in tube T0, c

0
7,2c

0
7,1c

1
7,0, c

0
7,2c

1
7,1c

1
7,0, c

0
7,2c

1
7,1c

0
7,0, c

1
7,2c

1
7,1c

0
7,0, c

1
7,2c

0
7,1c

0
7,0

and c1
7,2c

0
7,1c

1
7,0 are, respectively, applied to store the final output of those modular

operations. The immediate result generated by Steps (5a) through (5g) is omitted.
Next, because each operation in Algorithm 1 is completed, an eavesdropper can

continue to execute Step (2) in Algorithm 2. The value of k is equal to three, so
Steps (2a) and (2b) will be executed three times. The eavesdropper overhears the

156 W.-L. Chang et al.

Table 7 The results for tubes
T0, T1, and Tn are generated by
Steps (5a) through (5g) in
Algorithm 1

Tube The result is generated by Steps (5a) through (5g)

T0 {c0
7,2c0

7,1c1
7,0 . . . c0

1,2c0
1,1c1

1,0m0
2m1

1m1
0e0

2e0
1e0

0,

c0
7,2c1

7,1c1
7,0 . . . c0

1,2c0
1,1c1

1,0m0
2m1

1m1
0e0

2e0
1e1

0,

c0
7,2c1

7,1c0
7,0 . . . c0

1,2c0
1,1c1

1,0m0
2m1

1m1
0e0

2e1
1e0

0,

c1
7,2c1

7,1c0
7,0 . . . c0

1,2c0
1,1c1

1,0m0
2m1

1m1
0e0

2e1
1e1

0,

c1
7,2c0

7,1c0
7,0 . . . c0

1,2c0
1,1c1

1,0m0
2m1

1m1
0e1

2e0
1e0

0,

c1
7,2c0

7,1c1
7,0 . . . c0

1,2c0
1,1c1

1,0m0
2m1

1m1
0e1

2e0
1e1

0}
T1 ∅

Tn {n1
2n1

1n1
0}

Table 8 The result for tube T0
is generated by Steps (2a) and
(2b) in Algorithm 2

Tube The result is generated by Steps (2a) and (2b)

T0 {c0
7,2c0

7,1c1
7,0 . . . c0

1,2c0
1,1c1

1,0m0
2m1

1m1
0e0

2e0
1e0

0}

encrypted message c0
7,2c

0
7,1c

1
7,0, and the encrypted message c0

7,2c
0
7,1c

1
7,0 is used to find

the corresponding secret key (discrete logarithm). Therefore, after each operation of
Steps (2a) and (2b) is completed, the result for tube T0 is shown in Table 8. Next, a
true is returned from the first execution of Step (3), so the first execution of Step (3a)
is applied to obtain the answer e0

2e
0
1e

0
0. That is to say that for the encrypted message

c0
7,2c

0
7,1c

1
7,0 the corresponding secret key (discrete logarithm) is e0

2e
0
1e

0
0.

7 Complexity assessment

Theorem 3 Suppose that the length of a secret key (discrete logarithm) in the Diffie–
Hellman public-key cryptosystem is k bits. The Diffie–Hellman public-key cryptosys-
tem can be broken with O(k3) biological operations proposed by Adleman [2, 30, 31]
from solution space.

Proof Refer to Algorithm 1. �

Theorem 4 Suppose that the length of a secret key (discrete logarithm) in the Diffie–
Hellman public-key cryptosystem is k bits. The Diffie–Hellman public-key cryptosys-
tem can be broken with O(2k) library strands from solution space.

Proof Refer to Algorithm 1. �

Theorem 5 Suppose that the length of a secret key (discrete logarithm) in the Diffie–
Hellman public-key cryptosystem is k bits. The Diffie–Hellman public-key cryptosys-
tem can be broken with O(1) tubes from solution space.

Proof Refer to Algorithm 1. �

Fast parallel DNA-based algorithms for molecular computation 157

Fig. 1 DNA denaturing and
annealing

Theorem 6 Suppose that the length of a secret key (discrete logarithm) in the Diffie–
Hellman public-key cryptosystem is k bits. The Diffie–Hellman public-key cryptosys-
tem can be broken with the longest library strand, O(k3), from solution space.

Proof Refer to Algorithm 1. �

8 Biological implementation

8.1 DNA structure

The genetic information of cellular organisms is encoded by DNA (deoxyribonucleic
acid) [17, 35, 36]. DNA includes polymerchains which are commonly regarded as
DNA strands. By means of an automated process, DNA strands may be synthesized
to order. Each strand may be made of a sequence of nucleotides, or bases, attached
to a sugar-phosphate “backbone”. The four DNA nucleotides are adenine, guanine,
cytosine and thymine, commonly abbreviated to A,G,C and T respectively. From
chemical convention each strand has a 5′ end and a 3′ end. Because one end of the
single strand has a free (i.e., unattached to another nucleotide) 5′ phosphate group,
and the other has a free 3′ deoxyribose hydroxyl group, therefore, any single strand
has a natural orientation [17, 35, 36].

The classical double helix of DNA is formed when two separate single strands
bond. Bonding occurs by the pairwise attraction of bases; A bonds with T and G

bonds with C. The pairs (A,T) and (G,C) are therefore known as complementary
base pairs [17, 35, 36]. Double-stranded DNA may be denatured into single strands
by heating the solution to a temperature determined by the composition of the strand
[17, 37]. Heating breaks the hydrogen bonds between complementary strands (Fig. 1)
[17]. Because a G–C pair is joined by three hydrogen bonds, the temperature required
to break it is slightly higher than that for an A–T pair, joined by only two hydro-
gen bonds [17]. This factor must be taken into account when designing sequences
to represent computational elements. Annealing is the reverse of melting, whereby
a solution of single strands is cooled, and allowing complementary strands to bind
together (Fig. 1) [17]. In double-stranded DNA, if one of the single strands contains
a discontinuity (i.e., one nucleotide is not bonded to its neighbor) then this may be
repaired by DNA ligase [38]. This allows us to create a unified strand from several
bound together by their respective complements.

From [17], we now introduce in detail how the biological operations introduced
in Sect. 3.1 might be implemented in the laboratory. Each implementation illustrates

158 W.-L. Chang et al.

only one possible way to perform the computational behavior of the biological op-
eration. Future improvements in laboratory techniques may well yield more efficient
and error resistant implementations of the basic steps of our algorithm, but this does
not diminish the theoretical power of the model. From [17], we simply offer descrip-
tions of implementation in order to show the in principle feasibility of executing our
algorithm in vitro (that is to say, every step of our algorithm is completely feasible
using existing laboratory techniques). From a biological standpoint, all sequences
generated to represent bits must be checked to ensure that the DNA strands that they
encode do not form unwanted secondary structures with one another (i.e., strands
remain separate at all times, and only bind together when this is required by the algo-
rithm). The problem of strand design for DNA-based computing has been addressed
at length, and we use the methods described in [17, 30, 31] to minimize the possibility
of unwanted binding.

8.2 Extract

Affinity purification is applied to extract any strands from T containing s. This
process applies a probe sequence, which is complementary to the target sequence
being searched for. Probes are fixed to a surface, and capture through annealing any
strands containing the target sequence. Captured strands may then be separated from
the rest of the population by placing them in a separate solution, which is heated to
break the bonds between the probes and the target sequence. The probe used is there-
fore the complementary sequence of s. Retained strands are placed in one new tube,
U = +(T , s), and the remainder are placed in another new tube, V = −(T , s).

8.3 Merge

The contents of tubes {Ti} are simply merged by pouring. Because the number of
tubes will generally be low, this is considered to be a constant-time operation.

8.4 Discard

The contents of T are discarded, and T is replaced by a new, empty tube.

8.5 Amplify

The polymerase chain reaction (PCR) is used, with its initial input being tube T . This
reaction is used to massively amplify (possibly small) amounts of DNA that begin
and end with specific primer sequences. As every strand in tube T is delimited by
these sequences, they are all copied by the reaction. The result of the PCR is then
divided equally between the specified number of tubes (the number of PCR cycles
may therefore be adjusted to ensure a constant DNA volume per tube, regardless of
the number of tubes).

Fast parallel DNA-based algorithms for molecular computation 159

Fig. 2 Concatenation process:
(a) Linker strand affixed to
surface. (b) S anneals to linker
strand. (c) T anneals to linker
strand, adjacent to S. (d) S and
T ligated to form a single
strand, which is then freed by
heating the solution

8.6 Concatenate (s1, s2)

Two strands (labeled S and T in Fig. 2) may be concatenated by the following
process: create a linker strand, which has a sequence that is the complement of S

followed by the complement of T . This linker strand is affixed to a surface with a
magnetic bead (Fig. 2(a)). Strand S is then added to the solution, and anneals with
the linker strand at the appropriate position (Fig. 2(b)). Strand T is then added to the
solution, and this also anneals with the linker strand, at a position immediately adja-
cent to strand S (Fig. 2(c)). The ligase enzyme is then added to the solution to seal
the “nick” between S and T , forming a single strand which may be freed by heating
the solution to break its bonds with the linker strand (Fig. 2(d)).

8.7 Append-head(T , s)

The implementation of the concatenate() operation defined above may easily be used
to append a specific sequence, s, to the head of each strand in a tube T . The sequence
s corresponds, in this case, to the strand S defined in Fig. 2, and strand T in Fig. 2
corresponds to the beginning sequence of every strand in the tube. In this case, only
the beginning sequence of every strand anneals to the linker strand. Clearly, then, after
a series of append-head() operations has been performed on a strand, its sequence
will be made up of a number of sequences representing bit-strings.

8.8 Detect

The tube T is run through a gel electrophoresis process, which is generally used to
sort DNA strands on length. Any DNA present in T shows up as a visible band in
the gel; if DNA strands of the appropriate length are present, the operation returns
true. If there are no visible bands corresponding to DNA of the correct length, then
the operation returns false. The length criterion is used to ensure that DNA fragments
present do not cause a false positive result. If the DNA in the band corresponding
to the contents of T is required in a subsequent processing step, the band may be
excised from the gel by cutting and then soaked to remove the strands for further use.

9 Conclusions

The number of steps any classical computer requires in order to find discrete log-
arithm of a k-bit increases exponentially with k, at least by means of using algo-

160 W.-L. Chang et al.

rithms [3] known at present. Shor’s quantum factoring and discrete logarithm algo-
rithm [39] includes that the two main components, modular exponentiation (com-
putation of ax mod n) and the inverse quantum Fourier transform (QFT) take only
O(k3) operations. In this article, Our molecular discrete logarithm algorithm demon-
strates theoretically how basic biological operations can be used to solve the problem
of discrete logarithm with O(k3) biological operations. Both of Shor’s factoring and
discrete logarithm algorithm and our discrete logarithm algorithm need to simulta-
neously deal with 21024 bit information to find the discrete logarithm of 1024 bits
used in the current Diffie–Hellman public-key cryptosystem. However, due to cur-
rent many technical difficulties, therefore, the two algorithms currently do not in fact
find the discrete logarithm of 1024 bits. This implies that if a quantum computer and
a molecular computer are really constructed in the future (perhaps after many years),
then Shor’s factoring and discrete logarithm algorithm and our discrete logarithm
algorithm have very high feasibility for solving the problem of discrete logarithm.

In [42], it is demonstrated that the difficult problem of elliptic curve discrete log-
arithms can be solved on a DNA-based computer, and the application of DNA com-
puting is proposed in another popular cryptosystem, ECC, which is more complex
and has more challenge in cryptoanalysis. In [42], solving elliptic curve discrete log-
arithm takes a series of steps that is polynomial in the input size, and it has also been
shown that humans’ complex mathematical operations can be performed directly with
basic biological operations.

Adleman [1] indicated that at a time unit 2n combination states can be simultane-
ously processed by means of biological operations, but just one state can be processed
in a digital computer. Therefore, Adleman [1] also pointed out that a digital computer
will take exponential time to complete the digital-computer simulation of biological
algorithms. This implies that the digital-computer simulation of the proposed biolog-
ical algorithms for breaking public-key cryptosystems is perhaps inefficient.

Acknowledgements The authors would like to give many thanks to Dr. Amos who is the author of the
17th reference for offering valuable information on Sect. 8 entitled “Biological Implementation”.

References

1. Feynman RP (1961) In: Gilbert DH (ed) Minaturization. Reinhold, New York, pp 282–296
2. Adleman L (1994) Molecular computation of solutions to combinatorial problems. Science

266(11):1021–1024
3. Diffie W, Hellman M (1976) New directions in cryptography. IEEE Trans Inf Theory 22(6):644–654
4. Adleman L, Rothemund PWK, Roweis S, Winfree E (1999) On applying molecular computation to

the data encryption standard. In: The 2nd annual workshop on DNA computing, Princeton University.
DIMACS: series in discrete mathematics and theoretical computer science. Am Math Soc, Providence,
pp 31–44

5. Guo M, Chang W-L, Ho M, Lu J, Cao J (2005) Is optimal solution of every NP-complete or NP-hard
problem determined from its characteristic for DNA-based computing. BioSystems 80(1):71–82

6. Muskulus M, Besozzi D, Brijder R, Cazzaniga P, Houweling S, Pescini D, Rozenberg G (2006) Cycles
and communicating classes in membrane systems and molecular dynamics. Theor Comput Sci 372(2–
3):242–266

7. Reif JH, LaBean TH (2007) Autonomous programmable biomolecular devices using self-assembled
DNA nanostructures. Commun ACM 50(9):46–53

8. Wu G, Seeman NC (2006) Multiplying with DNA. Nat Comput 5(4):427–441

Fast parallel DNA-based algorithms for molecular computation 161

9. Macdonald J, Li Y, Sutovic M, Lederman H, Pendri K, Lu W, Andrews BL, Stefanovic D, Sto-
janovic MN (2006) Medium scale integration of molecular logic gates in an automaton. Nano Lett
6(11):2598–2603

10. Ekani-Nkodo A, Kumar A, Fygenson DK (2004) Joining and scission in the self assembly of nano-
tubes from DNA tiles. Phys Rev Lett 93:268301

11. Dehnert M, Helm WE, Hütt M-Th (2006) Informational structure of two closely related eukaryotic
genomes. Phys Rev E 74:021913

12. Müller BK, Reuter A, Simmel FC, Lamb DC (2006) Single-pair FRET characterization of DNA
tweezers. Nano Lett 6:2814–2820

13. Dirks RM, Bois JS, Schaeffer JM, Winfree E, Pierce NA (2007) Thermodynamic analysis of interact-
ing nucleic acid strands. SIAM Rev 49(1):65–88

14. Lipton R (1995) DNA solution of hard computational problems. Science 268:542–545
15. Yeh C-W, Chu C-P, Wu K-R (2006) Molecular solutions to the binary integer programming problem

based on DNA computation. Biosystems 83(1):56–66
16. Guo M, Ho M, Chang W-L (2004) Fast parallel molecular solution to the dominating-set problem on

massively parallel bio-computing. Parallel Comput 30(9–10):1109–1125
17. Amos M (2005) Theoretical and experimental DNA computation. Springer, Berlin
18. Ho M, Chang W-L, Guo M, Yang LT (2004) Fast parallel solution for set-packing and clique problems

by DNA-based computing. IEICE Trans Inf Syst E-87D(7):1782–1788
19. Chang W-L, Guo M, Ho M (2004) Towards solution of the set-splitting problem on gel-based DNA

computing. Future Gener Comput Syst 20(5):875–885
20. Chang W-L, Guo M (2003) Solving the set-cover problem and the problem of exact cover by 3-sets

in the Adleman-Lipton’s model. BioSystems 72(3):263–275
21. Ho M (2005) Fast parallel molecular solutions for DNA-based supercomputing: the subset-product

problem. BioSystems 80:233–250
22. Henkel CV, Bäck T, Kok JN, Rozenberg G, Spaink HP (2007) DNA computing of solutions to knap-

sack problems. Biosystems 88(1–2):156–162
23. Chang W-L (2007) Fast parallel DNA-based algorithms for molecular computation: the set-partition

problem. IEEE Trans Nanobiosci 6(1):346–353
24. Chang W-L, Ho M, Guo M (2005) Fast parallel molecular algorithms for DNA-based computation:

factoring integers. IEEE Trans Nanobiosci 4(2):149–163
25. Boneh D, Dunworth C, Lipton RJ (1996) Breaking DES using a molecular computer. In: Proceedings

of the 1st DIMACS workshop on DNA based computers, 1995. DIMACS series in discrete mathe-
matics and theoretical computer science, vol 27. Am Math Soc, Providence, pp 37–66

26. Zhang DY, Winfree E (2008) Dynamic allosteric control of noncovalent DNA catalysis reactions.
J Am Chem Soc 130:13921–13926

27. Chang W-L, Ho M, Guo M (2004) Molecular solutions for the subset-sum problem on DNA-based
supercomputing. BioSystems 73(2):117–130

28. Seelig G, Soloveichik D, Zhang D-Y, Winfree E (2006) Enzyme-free nucleic acid logic circuits. Sci-
ence 314(5805):1585–1588

29. Kari L, Konstantinidis S, Sosík P (2005) On properties of bond-free DNA languages. Theor Comput
Sci 334(1–3):131–159

30. Braich RS, Johnson C, Rothemund PWK, Hwang D, Chelyapov N, Adleman LM (2001) Solution
of a satisfiability problem on a gel-based DNA computer. In: Proceedings of the 6th international
conference on DNA computation. Lecture notes in computer science series, vol 2054. Springer, Berlin,
pp 27–42

31. Adleman LM, Braich RS, Johnson C, Rothemund PWK, Hwang D, Chelyapov N (2002) Solution of
a 20-variable 3-SAT problem on a DNA computer. Science 296(5567):499–502

32. Koblitz N (1987) A course in number theory and cryptography. Springer, Berlin. ISBN:0387942939
33. Rivest RL, Shamir A, Adleman L (1978) A method for obtaining digital signatures and public-key

cryptosystem. Commun ACM 21:120–126
34. Blakley GR A computer algorithm for calculating product AB modulo M . IEEE Trans Comput c-

32(5):497–500
35. Adams RL, Knowler JT, Leader DP (1986) The biochemistry of the nucleic acids, 10th edn. Chapman

& Hall, London
36. Watson J, Gilman M, Witkowski J, Zoller M (1992) Recombinant DNA, 2nd edn. Scientific American

Books
37. Breslauer K, Frank R, Blocker H, Marky L (1986) Predicting DNA duplex stability from the base

sequence. Proc Natl Acad Sci 3746–3750

162 W.-L. Chang et al.

38. Brown T (1993) Genetics: a molecular approach. Chapman & Hall, London
39. Shor PW (1997) Polynomial-time algorithms for prime factorization and discrete logarithms on a

quantum computer. SIAM Comput 26(5):1484–1509
40. Kershner RJ, Bozano LD, Micheel CM, Hung AH, Fornof AR, Cha JN, Rettner CT, Bersani M,

Frommer J, Rothemund PWK, Wallraff GM (2009) Placement and orientation of individual DNA
shapes on lithographically patterned surfaces. Nat Nanotechnol 16:557–561

41. Barish RD, Schulman R, Rothemund PWK, Winfree E (2009) An information-bearing seed for nu-
cleating algorithmic self-assembly. PNAS 106:6054–6059

42. Li K, Zou S, Xv J (2008) Fast parallel molecular algorithms for DNA-based computation: solv-
ing the elliptic curve discrete logarithm problem over GF(2n). J Biomed Biotechnol 2008:518093.
doi:10.1155/2008/518093

Weng-Long Chang received the Ph.D. degree in Computer Science
and Information Engineering from National Cheng Kung University,
Taiwan, Republic of China, in 1999. He is currently a full Professor at
the Department of Computer Science and Information Engineering in
National Kaohsiung University of Applied Sciences. His researching
interests include quantum algorithms, adiabatic quantum algorithms,
DNA-based algorithms, and languages and compilers for parallel com-
puting.

Shu-Chien Huang received the Ph.D. degree in Computer Science
and Information Engineering from National Cheng Kung University,
Taiwan, Republic of China, in 1999. He is currently an assistant Pro-
fessor at the Department of Computer Science in Pingtung Univer-
sity of Education. His researching interests include image processing,
quantum algorithms, and DNA-based algorithms.

http://dx.doi.org/10.1155/2008/518093

Fast parallel DNA-based algorithms for molecular computation 163

Kawuu Weicheng Lin received the B.Sc. from the Department of
Computer Science and Information Engineering, National Taiwan
University (NTU), Taiwan, 1999, and received his Ph.D. form the De-
partment of Computer Science and Information Engineering, National
Cheng-Kung University (NCKU), Taiwan, 2006. Since August 2007,
he has been an assistant Professor at the Department of Computer Sci-
ence and Information Engineering, National Kaohsiung University of
Applied Sciences (KUAS), Taiwan. His research interests include data
mining and its applications, sensor technologies, and parallel and dis-
tributed computing. He is a member of Phi Tau Phi honorary society,
and has won the Phi Tau Phi Scholastic Honor in 2006.

Michael (Shan-Hui) Ho received his Ph.D. degree in Information
Systems and Management Science from University of Texas at Austin,
USA, in 1988. He is a full Professor of both Computer Center and In-
stitute of Electric Engineering in National Taipei University. His re-
search interests are Bioinformatics Computing, Parallel Process and
Computing, Software Engineering, and Computation.

	Fast parallel DNA-based algorithms for molecular computation: discrete logarithm
	Abstract
	Introduction
	The development of molecular computing
	Motivation and our model
	Operations
	Representation scheme

	Molecular solutions of discrete logarithms
	The introduction of discrete logarithms
	The pseudo algorithm for solving discrete logarithms
	The algorithm for computation of discrete logarithms

	Algorithm modules
	Construction of initial solution space for discrete logarithms
	Solution space for Ordern(M)
	Solution space for module n
	Solution space for a primitive root M and the result of an exponential modular operation C
	The algorithm for computation of a modular multiplication
	Solution space for the initial value for computation of a modular multiplication
	The construction of a left shifter
	The construction of a parallel comparator
	The construction of a binary parallel subtractor
	The construction of a parallel one-bit subtractor
	Reserving the result for intermediate computation of a modular multiplication
	The construction of a binary parallel adder
	The construction of a parallel one-bit adder
	The construction of an assignment operator

	The attacking plan of breaking the Diffie-Hellman public-key cryptosystem
	The power of Algorithm 2 for figuring out the secret key in the Diffie-Hellman public-key cryptosystem

	Complexity assessment
	Biological implementation
	DNA structure
	Extract
	Merge
	Discard
	Amplify
	Concatenate (s1, s2)
	Append-head(T, s)
	Detect

	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

