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Abstract In loops, some arrays are referenced with induction variables. To paral-
lelize such kind of loops, those induction variables should be substituted. Thus, those
array references that were substituted are formulated as nonlinear expressions. The
goal of data alignment is to intelligently map the computations and data onto a set

M. Guo (�) · B. Jiang
School of Information Engineering, Dalian Maritime University, Dalian, Liaoning 116026, China
e-mail: minyi@u-aizu.ac.jp

B. Jiang
e-mail: newdlhot@163.com

W.-L. Chang
Department of Computer Science and Information Engineering, National Kaohsiung University
of Applied Sciences, 415 Chien Kung Road, Kaohsiung 807, Taiwan, ROC
e-mail: changwl@cc.kuas.edu.tw

M. Guo
School of Computer Science and Engineering, The University of Aizu, Aizu-Wakamatsu City,
Fukushima 965-8580, Japan

S.-C. Huang
Department of Computer Science, National PingTung University of Education, PingTung,
Taiwan, ROC
e-mail: schuang@mail.npue.edu.tw

S.-T. Tsai
Department of Information Management, Southern Taiwan University of Technology,
Tainan County 710, Taiwan, ROC
e-mail: tsai@mail.stut.edu.tw

M.(S.-H.) Ho
Department of Information Management, School of Information Technology, Ming Chuan
University, 5, Teh-Ming Rd., Gwei-Shan, Taoyuan 333, Taiwan, ROC
e-mail: MHoInCerritos@yahoo.com

mailto:minyi@u-aizu.ac.jp
mailto:newdlhot@163.com
mailto:changwl@cc.kuas.edu.tw
mailto:schuang@mail.npue.edu.tw
mailto:tsai@mail.stut.edu.tw
mailto:MHoInCerritos@yahoo.com


Communication-free data alignment for arrays with exponential references 5

of virtual processors which are organized as a Cartesian grid (or a template in HPF
terms), and to provide data locality for parallelizing compilers so that data access
communication costs can be minimized. Most data alignment methods are mainly
devised to align the referenced arrays using linear subscripts or quadratic subscripts
with n loop index variables, and the methods are well developed. Seldom work, how-
ever, is researched on the nonlinear expressions of index variables. This paper pro-
poses a new communication-free data alignment technique to align the referenced
arrays using exponential subscripts with n loop index variables or other complex
nonlinear expressions. The experimental results using SPEC95FP Benchmarks point
out that the techniques proposed in the paper can improve the execution time of the
subroutines in these benchmarks.

Keywords Parallelizing compiler · Communication-free alignment ·
Communication optimization · Loop optimization · Data dependence analysis · Load
balancing

1 Introduction

For scientific and engineering applications, scalable parallel systems based on dis-
tributed memory multicomputers have been increasingly applied [1, 5, 16, 17, 37].
In such systems, the programmers (or compilers) must be responsible for distributing
the computations and data in a program over processors and manage communications
among tasks. Thus, carefully arranging the computations and data locality in a pro-
gram can improve its throughput. This allows us to determine which computations
are to be distributed onto which processors and what data should be stored locally
for the corresponding computations to access with little or no communication cost
[5, 32]. As the multicore architectures are being used and developed widely by ven-
dors and academia, the data alignment issues become a hot topic in multicore parallel
programming [9, 11, 12, 34, 38].

Induction variable is a scalar integer variable, which is used in a loop to simulate
do-variables: it is incremented or decremented by a constant amount with each iter-
ation. Every induction variable can be replaced by a linear or a nonlinear function
in the form of do-variables. The transformation is called induction variable substi-
tution. Consider a typical do-loop shown in Fig. 1(a), which is frequently used in
some real scientific computations such as FFT transform, where K is an induction
variable in the two-nested loop. If the induction variable substitution is performed
for K , the result after the transformation can be observed as shown in Fig. 1(b). In
Fig. 1(b), each array reference contains two raised to the power of the outer loop
index I . No existing data alignment method can be applied to solve the problem of
communication-free data alignment for the case in Fig. 1(b). Therefore, an efficient
and precise method for solving the problem of communication-free data alignment
for arrays with exponential references is highly important.

In this paper, we offer the alignment techniques to properly map the loop iteration
space that implies the computation instances, to the virtual processors. The array
elements are respectively referred using exponential subscripts of multiple loop index
variables so that no or little communication cost for data accesses is yielded. Based
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Fig. 1 A sample do-loop of a FORTRAN program

on elementary linear algebra operations, our alignment methods reduce the mapping
problem of the computations and array elements into the problem of determining a
null space basis for a matrix. By solving this null space basis, the presented methods
can readily decipher the desired mapping functions.

The rest of this paper is organized as follows: in Sect. 2, the main communication-
free data alignment notions are introduced and existing famous methods for solving
the problem of communication-free data alignment are also briefly described. The
theoretical explanations and practical applications of our data alignment techniques
are proposed in Sect. 3. The experimental results which reveal that our method can
be used to improve the execution time of the subroutines in FFT programs in TFFT2
Benchmark in SPEC95FP Benchmark [18, 29, 33] are presented in Sect. 4. Finally,
brief conclusions are drawn in Sect. 5.

2 Background

The approach to solving the problem of general communication-free data alignment
has been developed [4, 17, 20, 23, 30]. Most of the methods are based on elementary
linear algebra. Existing methods and notions of communication-free data alignment
problem are briefly introduced in this section.

2.1 Preliminary data alignment notion

To properly allocate computations and data in a program over multiple processors
usually involves two phases called alignment and distribution. First, the alignment
phase intelligently maps computations and data onto a set of virtual processors, which
are organized into a Cartesian grid (or a template in HPF term), to provide data lo-
cality in a program. The distribution phase then folds the virtual processors to the
physical processors according to feasible distribution strategies. Our primary concern
in this paper is the alignment.

In general, the complete communication-free data alignment framework consists
of three primary phases in terms of elementary linear algebra [2]. Firstly, identify the
constraints on the data mapping and computation. In this phase, the data accesses in
a program are inspected and formulated as a system of equations in which the un-
knowns can be utilized to compute the virtual processors for the computations and
data to be mapped onto. Each equation in the system is actually equal to a con-
straint on the data mapping and computation. Any solution to the system figures out
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a so-called communication-free data alignment, which enables the required data ele-
ments for a processor to perform a computation to be mapped onto its local memory.
Through this, no communication cost owing to data access occurs, and thus optimizes
the data locality in a program [32]. Different data access patterns, such as array sub-
script patterns, will produce various equation systems. Therefore, the data alignment
framework must take data access patterns into account to achieve a communication-
free data alignment.

Accordingly, the second phase of the framework is to distinguish the constraints
(or equations) that need to be intentionally left unsatisfied to reserve parallelism in the
computations. Allowing unsatisfied constraints will result in communication costs.
Hence, the constraints left unsatisfied should be those that generate as little commu-
nication as possible. Finally, in the third phase, the remaining constraints are solved
to decipher the computation and data mapping functions. Solving the remaining con-
straints in terms of linear algebra is equal to determining the null space basis for a
matrix. The programmer eventually made basis on the alignment results requirements
to provide codes ahead of the nested loops for replicating or broadcasting data onto
the processors so that no further communication is needed within the nested loops.

2.2 Existing known methods for solving the alignment problem

Many researchers over the past several years have paid attention to maximize par-
allelism and minimize the communication cost for any given program run on paral-
lel multiprocessors. For distributed memory parallel machines, the problem on data
space of communication-free partition along hyperplanes was considered by Ra-
manujam and Sadayappan [32]. For this problem, a matrix-based formulation was
proposed to identify the existence of communication-free partitions for data arrays.
An algorithm based on Gaussian elimination was introduced by Feautrier [10], which
computes a placement function for the problem of data and code distributions among
the processors. When mapping affine loop nests onto distributed memory parallel
computers, for the data and computation alignment problem, an access graph to
model affine communications more adequately was presented by Dion and Yves [7].
For a program with nested loops, data access pattern analyzing approaches was pro-
posed by Lam et al. [24, 25] and was used to enable the program to run on a paral-
lel machine in a communication-free manner with certain constraints. On the other
hand, for multidimensional redistribution, Guo et al. [13–15] focused on the auto-
matic generation of communication routines. For multistatements in perfect and im-
perfect loops, Shih et al. [35] confirmed the problem on communication-free partition
statement-iteration and data spaces along hyperplanes. The necessary and sufficient
conditions for communication-free hyperplane partitions were proposed. If the com-
munication cost for performing do-loops is larger than a threshold value, as noted
by Lee [26], it was proven that data redistribution is necessary for executing a se-
quence of do-loops. An expression-rewriting framework to produce communication
sets for arrays in loops with block-cyclic distribution was presented by Hwang and
Lee [21]. Efficient methods were offered by Hsu et al. [19, 20] and were used to
finish the block-cyclic array redistribution which allows a processor not to construct
send/receive data sets for a redistribution. Ozcan et al. proposed a memetic algorithm
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(MA) to find the best number of processors and the best data distribution method to
be used for each stage of a parallel program [28].

A linear algebra framework proposed by Kandemir et al. [22, 23] automatically
figures out the optimal data layouts expressed by hyperplanes for each array reference
in a program. An efficient method presented by Boudet et al. [3] solves the alignment
problem by considering the alignment and distribution of data arrays while at the
same time considering the preservation of parallelism for a given program. An align-
ment technique offered by Bau et al. [2] was applied to align referenced arrays using
linear subscripts with one loop index variable in a communication-free manner. New
communication-free alignment methods were proposed by Chu et al. [6] and Chang
et al. [4] and were utilized to align the referenced arrays using linear subscripts with
three loop index variables.

For array references with quadratic subscripts or linear subscripts in a general n

do-loops, two new data alignment technologies were proposed by Chang et al. [5]
and Wu et al. [36]. The techniques properly map the loop iteration space that implies
the computation instances and the array elements, which are respectively referenced
onto the virtual processors so that there is no communication cost for data access.
Moreover, the proposed alignment techniques do not consider the data dependences.
In this approach, there will be two principal advantages. First, the difficulty of align-
ment can be decreased, enabling our techniques to be applied more broadly than other
methods. Second, the original data dependences (if it existed) are likely eliminated
or reduced by the resulting alignment function because the dependent iterations and
their required data could be mapped onto the same temple element. This fact might
benefit the exploitation of parallelism in the distribution phase.

3 The proposed alignment techniques for referenced arrays with exponential
subscripts

For referenced arrays in a loop, linear expressions with constant coefficients are the
most common subscript patterns. Petersen and Padua [31] pointed out that there are
5,242 linear cases with symbolic coefficients, 6,503 nonlinear cases, and 4,304 cases
with references containing arrays in the analyzed Perfect Benchmarks. These were
obtained by counting the number of feasible directions of the potential dependences.
For data alignment, with our counting criteria for the number of exponential cases,
which is the number of the nested loops including arrays with exponential references,
it was discovered by Reilly [33], Paek [29] and Hoeflinger [18] that several important
loops in the TFFT2 programs in the SPEC95FP Benchmarks consist of arrays with
exponential references after induction variable substitution, scalar expansion trans-
formations, and/or inlining substitutions. These results indicate that the number of
arrays with exponential subscripts might be attainable to certain extent. However, no
existing method can solve the problem of communication-free data alignment for the
arrays referenced using exponential subscripts. Our communication-free data align-
ment methods for aligning the referenced arrays using exponential subscripts with
multiple loop index variables are proposed in this section. To avoid complications,
the description for our methods is restricted to formulating and solving the equation
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system. For unsatisfied constraints, however, the discussion related is not considered
in this study. The features and time complexity analysis to our techniques are pro-
vided as well.

3.1 Arrays with exponential references

Assuming that there exist q statements containing t arrays, each with one or more
(say m) dimensions, referenced using exponential subscripts enclosed with a gen-
eral n nested do-loop. In order to align the data elements for multidimensional ar-
rays, a general approach is to use one dimension among others for each array as the
alignment basis. The data alignment for multidimensional arrays is considered as the
data alignment simply for the adopted dimension of the arrays in the following dis-
cussions. Assuming that a reference function for the adopted dimension of an array
Ae for 1 ≤ e ≤ t in this common loop is RAe = ae,12I1 + · · · + ae,n2In + be,1I1 +
· · · + be,nIn + fe, where I1, I2, . . . , In are index variables of the general loop and
ae,1, . . . , ae,n, be,1, . . . , be,n are coefficients, which in general are integers or fractions
in the exponential cases, and fe is an integer constant. In treating the exponential ref-
erences, we can extend an iteration vector i as i = [2i1, . . . ,2in , i1, . . . , in]T, iv is an
index value of Iv for 1 ≤ v ≤ n and T is the transposition operation in the iteration
space of this general n nested do-loop. The alignment constraints require the proces-
sor performing iteration i, which stands for a computation instance, to own Ae(RAe).
From our proposed methods, if there exist two or more distinct references (either read
or write) to an array, each of the distinct references will be selected as the alignment
constraints respectively for this array without considering their data dependences.

Consider an example in Fig. 2, where there is a statement containing three different
one-dimensional arrays A,B , and D (i.e., t = 3 and m = 1). For an iteration vector i
(i = [2i ,2j , i, j ]T), the alignment constraint demands that the processor performing
the iteration i must own A(RA),B(RB), and D(RD), where RA = 2I + J , RB =
2I + J , and RD = 2I + J.

Assuming that C is the computation mapping function to map the loop iteration
space onto the virtual processors and DAe is the data mapping function to map the
array elements of Ae onto the virtual processors. The alignment problem can be for-
mulated as: Find C and DAe such that ∀i ∈ iteration space of this loop:

C(i) = DAe(RAe). (3.1)

To map the computations and array elements in a communication-free manner, our
alignment methods considered the array subscript patterns that are deemed here as
generalized exponential subscripts. Therefore, C and DAe will be formulated using
our technique as follows:

RAe = R′
Ae

i + fe

(
R′

Ae
= [ae,1, . . . , ae,n, be,1, . . . , be,n]

)
, (3.2)

Fig. 2 The FORTRAN do-loop
extracted from TFFT2 programs
in the SPEC95FP Benchmarks
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C(i) = C′i + c0, (3.3)

and

DAe(RAe) = D′
Ae

(RAe) + d0 = D′
Ae

(R′
Ae

i + fe) + d0. (3.4)

From (3.3) and (3.4), (3.1) can be converted into the following equation:

C′i + c0 = D′
Ae

(R′
Ae

i + fe) + d0. (3.5)

Without loss of generality, (3.5) can be reduced to (3.6):

[C′ c0 ]
[

i
1

]
= [D′

Ae
d0 ]

[
R′

Ae
fe

0 1

][
i
1

]
. (3.6)

Let C = [C′ c0], DAe = [D′
Ae

d0], FAe = [ R′
Ae

fe

0 1

]
and i′ = [ i

1

]
, (3.6) can be trans-

formed into the following equation:

Ci′ = DAeFAe i′. (3.7)

From (3.7), to determine C and DAe is to solve the equation C = DAeFAe (or C −
DAeFAe = 0) after i′ is eliminated, where 0 is a zero matrix. Such an equation can be
represented, without loss of generality, in block matrix form [2] as follows:

[C DAe ]
[

I
−FAe

]
= 0. (3.8)

Here, I is an identity matrix, and 0 (zero matrix), C,DAe and FAe are square matrices
with the same size as I. By expressing (3.8) in the form of UV = 0 and determining
a null space basis for V T, the alignment problem is therefore reduced to the standard
linear algebra problem of determining a null space basis for a matrix.

Clearly, to construct C, DAe , and FAe as square matrices for the nested do-loops
with different numbers of loop index variables, (3.3) and (3.4) have to be adjusted. For
example, suppose that there is only one index loop variable I1 for this do-loop, that
is, RAe = ae,12i1 + be,1i1 + fe, then our alignment technique originally formulates
C(i) and DAe(RAe) as follows:

C(i) = c12i1 + c2i1 + c0

and

DAe(RAe) = d1
(
ae,12i1 + be,1i1 + fe

) + d0.

However, in addition to constructing C and DAe as square matrices, our alignment
technique also considers enabling C and DAe to be easily determined by construct-
ing FAe in a form that allows the Gaussian elimination for echelon reduction to be
performed effortlessly to simplify the calculation for the aforementioned null space
basis. The above equations are subsequently adjusted as follows:

C(i) = (c1,1 + c2,1 + c3,1)2
i1 + (c1,2 + c2,2 + c3,2)i2 + (c1,3 + c2,3 + c3,3)
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and

DAe(RAe) = (d1,1 + d2,1 + d3,1)
(
ae,12i1 + be,1i1 + fe

) + (d1,2 + d2,2 + d3,2)

+ (d1,3 + d2,3 + d3,3)
(
2i1 + i1 + 1

)
.

Using our technique, the above equations are reduced to the following equation:

⎡

⎣
c1,1 c1,2 c1,3
c2,1 c2,2 c2,3
c3,1 c3,2 c3,3

⎤

⎦

⎡

⎣
2i1

i1
1

⎤

⎦ =
⎡

⎣
d1,1 d1,2 d1,3
d2,1 d2,2 d2,3
d3,1 d3,2 d3,3

⎤

⎦

⎡

⎣
ae,1 be,1 fe

0 0 1
1 1 1

⎤

⎦

⎡

⎣
2i1

i1
1

⎤

⎦ .

This makes C and DAe into 3 × 3 square matrices. Continuing with this notion, the
alignment constraint for the iteration space of this n nested do-loop can be formally
expressed, using our technique as:

Ci′ =

⎡

⎢⎢⎢
⎣

c1,1 c1,2 · · · c1,2n+1
c2,1 c2,2 · · · c2,2n+1
...

... · · · ...

c2n+1,1 c2n+1,2 · · · c2n+1,2n+1

⎤

⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎣

2i1

...

in
1

⎤

⎥⎥⎥
⎦

.

The alignment constraint for an array Ae, 1 ≤ e ≤ t , in the general loop can be repre-
sented as:

DAeFAe i′ =
⎡

⎢
⎣

d1,1 · · · d1,2n+1
...

. . .
...

d2n+1,1 · · · d2n+1,2n+1

⎤

⎥
⎦

⎡

⎢⎢⎢⎢⎢
⎣

ae,1 ae,2 · · · be,n fe

0 0 · · · 0 1
1 1 · · · 1 1
...

...
. . .

...
...

1 1 · · · 1 1

⎤

⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎣

2i1

...

in
1

⎤

⎥⎥⎥
⎦

.

Therefore, the alignment problem can be restated as: Find C and DAe such that ∀i ∈
iteration space of this loop:

Ci′ = DAeFAe i′.

Here, i′ = [i,1]T, as mentioned. The above equation can be reduced to (3.8) to deter-
mine C and DAe as described. This requires the column vector i′ on both sides of the
equation to be eliminated to make (C − DAeFAe) equal to 0 for any i′. To do this, we
require the following lemma.
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Lemma 3.1 Let Pi be a p × 1 matrix for 1 ≤ i ≤ 2n, w a p-elements column vector,
0 a p-elements zero vector, and yi a scalar variable for 1 ≤ i ≤ 2n. Then

∀yi [P1 · · ·PnPn+1 · · ·P2nw]

⎡

⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

2y1

...

2yn

y1
...

yn

1

⎤

⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

= 0 ⇐⇒ Pi = 0

for 1 ≤ i ≤ 2n, and w = 0.

Proof

[P1 · · ·PnPn+1 · · ·P2nw]

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

2y1

...

2yn

y1
...

yn

1

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

= 0

⇐⇒ ∀yi

⎡

⎢⎢⎢
⎣

p1,1 · · · pn,1 pn+1,1 · · · p2n,1 w1
p1,2 · · · pn,2 pn+1,2 · · · p2n,2 w2

...
. . .

...
...

. . .
...

...

p1,p · · · pn,p pn+1,p · · · p2n,p wp

⎤

⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢
⎣

2y1

...

2yn

y1
...

yn

1

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥
⎦

= 0

⇐⇒ ∀yi

⎡

⎢⎢⎢
⎣

2y1p1,1 + · · · + 2ynpn,1 + y1pn+1,1 + · · · + ynp2n,1 + w1
2y1p1,2 + · · · + 2ynpn,2 + y1pn+1,2 + · · · + ynp2n,2 + w2

...

2y1p1,p + · · · + 2ynpn,p + y1pn+1,p + · · · + ynp2n,p + wp

⎤

⎥⎥⎥
⎦

= 0

⇐⇒ ∀yi 2y1P1 + · · · + 2ynPn + y1Pn+1 + · · · + ynP2n + w = 0.

We have now proven that

∀yi 2y1P1 + · · · + 2ynPn + y1Pn+1 + · · · + ynP2n + w = 0

⇐⇒ P1 = · · · = Pn = Pn+1 = · · · = P2n = w = 0
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⇒) Assume that there exist certain Pi ’s �= 0 (e.g., Pq,Pr ,Ps , and Pt �= 0) and w �= 0
and some yi’s �= 0 (e.g., yq, yr , ys , and yt �= 0) such that

2yq Pq + 2yr Pr + 2ys Ps + 2yt Pt + w = 0.

Because all yi ’s can be any value, we have

2yq+1Pq + 2yr Pr + 2ys Ps + 2yt Pt + w = 0.

That is,

2yq Pq + 2yr Pr + 2ys Ps + 2yt Pt + w + 2yq Pq = 0.

This means that

Pq = 0.

This contradicts the assumption. Similarly, we have Pr = 0, Ps = 0, Pt = 0 and
w = 0. Therefore, we have

P1 = · · · = Pn = Pn+1 = · · · = P2n = w = 0.

⇐) The (if part) is trivial �

From Lemma 3.1, (3.7) can be rewritten as

C = DAeFAe . (3.9)

For 1 ≤ e ≤ t , the equation system of (3.9) can be converted into the following matrix
equation (3.10):

[CDA1 · · · DAt ]

⎡

⎢⎢⎢
⎢⎢⎢
⎣

I I · · · I
−FA1 0 · · · 0

0
. . .

...
...

. . . 0
0 0 · · · −FAt

⎤

⎥⎥⎥
⎥⎥⎥
⎦

= [0 · · · 0]. (3.10)

Here, I is a (2n+1)× (2n+1) identity matrix, 0 is a (2n+1)× (2n+1) zero matrix,
and [0 · · · 0 ] is a (2n + 1) × ((2n + 1) × t) zero matrix.

To solve the matrix equation [U ]s×m[V ]m×n = [0]s×n, in which [U ]s×m is un-
known and [V ]m×n is known, we can first transform V into a “rank-revealing” form
by performing the required rank-preserving operations—elementary row and column
operations. The notion behind this is to obtain a matrix into a form in which its rank
can be determined by inspection [2, 8]. One way to achieve this is to perform inte-
ger preserving Gaussian elimination [8, 27], wherein the matrix rows or columns are
systematically manipulated by elementary row or column operations to yield a matrix
in echelon form, thus enabling us to obtain the following factorization (suppose that
V ∈ Zm×n and rank(V ) = r):



14 M. Guo et al.

[H ]m×m[V ]m×n[P ]n×n =
[
R1,1 R1,2

0 0

]

m×n

.

Here, H is an m×m invertible matrix representing the row operations, P is an n×n

unimodular matrix representing the column operations, and R1,1 is an r × r upper
triangular invertible matrix. It is a property of this factorization that the transposition
of the last m − r rows of H spans the null space of V T. Accordingly, we can obtain
the solution for [U ]s×m as follows:

U = H(r + 1 : m,1 : m).

This means that only H , the composition of row operations, has to be determined
during the elimination.

Considering the example in Fig. 2, the alignment constraint for the iteration space
of this loop can be formally expressed as:

Ci′ =

⎡

⎢⎢⎢⎢
⎣

c1,1 c1,2 c1,3 c1,4 c1,5
c2,1 c2,2 c2,3 c2,4 c2,5
c3,1 c3,2 c3,3 c3,4 c3,5
c4,1 c4,2 c4,3 c4,4 c4,5
c5,1 c5,2 c5,3 c5,4 c5,5

⎤

⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎣

2I

2J

I

J

1

⎤

⎥⎥⎥⎥
⎦

.

The alignment constraints for arrays A,B , and D can be correspondingly represented
as:

DAFAi′ =

⎡

⎢⎢⎢
⎢
⎣

x1,1 x1,2 x1,3 x1,4 x1,5
x2,1 x2,2 x2,3 x2,4 x2,5
x3,1 x3,2 x3,3 x3,4 x3,5
x4,1 x4,2 x4,3 x4,4 x4,5
x5,1 x5,2 x5,3 x5,4 x5,5

⎤

⎥⎥⎥
⎥
⎦

⎡

⎢⎢⎢
⎢
⎣

1 0 0 1 0
0 0 0 0 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤

⎥⎥⎥
⎥
⎦

⎡

⎢⎢⎢
⎢
⎣

2I

2J

I

J

1

⎤

⎥⎥⎥
⎥
⎦

,

DBFB i′ =

⎡

⎢⎢⎢⎢
⎣

y1,1 y1,2 y1,3 y1,4 y1,5
y2,1 y2,2 y2,3 y2,4 y2,5
y3,1 y3,2 y3,3 y3,4 y3,5
y4,1 y4,2 y4,3 y4,4 y4,5
y5,1 y5,2 y5,3 y5,4 y5,5

⎤

⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎣

1 0 0 1 0
0 0 0 0 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤

⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎣

2I

2J

I

J

1

⎤

⎥⎥⎥⎥
⎦

and

DDFDi′ =

⎡

⎢
⎢⎢⎢
⎣

z1,1 z1,2 z1,3 z1,4 z1,5
z2,1 z2,2 z2,3 z2,4 z2,5
z3,1 z3,2 z3,3 z3,4 z3,5
z4,1 z4,2 z4,3 z4,4 z4,5
z5,1 z5,2 z5,3 z5,4 z5,5

⎤

⎥
⎥⎥⎥
⎦

⎡

⎢
⎢⎢⎢
⎣

1 0 0 1 0
0 0 0 0 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤

⎥
⎥⎥⎥
⎦

⎡

⎢
⎢⎢⎢
⎣

2I

2J

I

J

1

⎤

⎥
⎥⎥⎥
⎦

.
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The alignment problem can be expressed as follows: Find C, DA, DB , and DD such
that ∀(I, J ) ∈ iteration space of this loop:

⎧
⎨

⎩

C = DAFA,

C = DBFB,

C = DDFD.

(3.11)

The equation system of (3.11) can be converted into the following matrix equation:

[C DA DB DD ]

⎡

⎢⎢
⎣

I I I
−FA 0 0

0 −FB 0
0 0 −FD

⎤

⎥⎥
⎦ = [0 0 0 ]. (3.12)

Here, I is a 5×5 identity matrix and 0 is a 5×5 zero matrix. According to the above-
mentioned method, a solution matrix of (3.12) is

[C DA DB DD ]

=

⎡

⎢⎢
⎢⎢
⎣

1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
1 1 1 1 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
1 1 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

⎤

⎥⎥
⎥⎥
⎦

.

This gives us

C =

⎡

⎢⎢⎢⎢
⎣

1 0 0 1 0
0 0 0 0 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤

⎥⎥⎥⎥
⎦

, DA =

⎡

⎢⎢⎢⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥⎥⎥⎥
⎦

,

DB =

⎡

⎢⎢⎢⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥⎥⎥⎥
⎦

and DD =

⎡

⎢⎢⎢⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥⎥⎥⎥
⎦

.

We then obtain the mappings of computations and data as follows:

Ci′ =

⎡

⎢⎢⎢⎢
⎣

1 0 0 1 0
0 0 0 0 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤

⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎣

2I

2J

I

J

1

⎤

⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢
⎣

2I + J

1
2I + 2J + I + J + 1
2I + 2J + I + J + 1
2I + 2J + I + J + 1

⎤

⎥⎥⎥⎥
⎦

,
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DAFAi′ =

⎡

⎢
⎢⎢⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥
⎥⎥⎥
⎦

⎡

⎢
⎢⎢⎢
⎣

1 0 0 1 0
0 0 0 0 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤

⎥
⎥⎥⎥
⎦

⎡

⎢
⎢⎢⎢
⎣

2I

2J

I

J

1

⎤

⎥
⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎢
⎣

2I + J

1
2I + 2J + I + J + 1
2I + 2J + I + J + 1
2I + 2J + I + J + 1

⎤

⎥⎥⎥
⎥
⎦

,

DBFB i′ =

⎡

⎢⎢⎢⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎣

1 0 0 1 0
0 0 0 0 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤

⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎣

2I

2J

I

J

1

⎤

⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢
⎣

2I + J

1
2I + 2J + I + J + 1
2I + 2J + I + J + 1
2I + 2J + I + J + 1

⎤

⎥⎥⎥⎥
⎦

and

DDFDi′ =

⎡

⎢⎢⎢⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎣

1 0 0 1 0
0 0 0 0 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤

⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎣

2I

2J

I

J

1

⎤

⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢
⎣

2I + J

1
2I + 2J + I + J + 1
2I + 2J + I + J + 1
2I + 2J + I + J + 1

⎤

⎥⎥⎥⎥
⎦

.

Therefore, using our alignment, iteration (I, J ) is mapped onto the virtual processor
(2I +J ) and the corresponding A, B , and D array elements are mapped into the same
virtual processor. The Align statements adopted to describe the alignment relation for
the array elements among A, B , and D are represented as follows:

Align A
(
2I + J

)
with T

(
2I + J

)
,

Align B
(
2I + J

)
with T

(
2I + J

)
, and

Align D
(
2I + J

)
with T

(
2I + J

)
.
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Here, the virtual processors are supposed to be organized as a one-dimensional tem-
plate T . Since no loop-carried output-dependences exist for array A and that the
required data elements (the written data element of array A and the corresponding
read data element of arrays B and D) for a computation are mapped into the same
template element, this nested loop can be executed in parallel without interprocessor
communication.

3.2 Array subscripts with ae,1 ∗ J ∗ 2L−1 + ae,2 ∗ 2L−2 + ae,3 ∗ K + ae,4

Assume that there exist q statements containing t arrays of m-dimensions which
are referenced using subscripts with the patterns ae,1 ∗ J ∗ 2L−1 + ae,2 ∗ 2L−2 +
ae,3 ∗K + ae,4, where L, J , and K are loop index variables. Suppose that a reference
function for the adopted dimension of an array Ae for 1 ≤ e ≤ t in a general loop is
RAe = ae,1 ∗ J ∗ 2L−1 + ae,2 ∗ 2L−2 + ae,3 ∗ K + ae,4, where L, J , and K are index
variables of the general loop and ae,1, ae,2, and ae,3 are coefficients, which in general
are integers or fractions in the case, and ae,4 is an integer constant.

We consider that two different one-dimensional arrays (i.e., t = 2 and m = 1), ref-
erenced using nonlinear subscripts, are enclosed with a depth-four nested loop in the
example shown in Fig. 3. For an iteration vector i (i = [I, L, J, K]T), the alignment
constraints require the processor performing the iteration i to own A(RA) and B(RB).
The primary notion of our method to align referenced arrays using nonlinear sub-
scripts is the same as the previous technique in Sect. 3.1, except that C and DAe

are formulated in different patterns. However, in dealing with the nonlinear cases,
more subtle but nontrivial adjustments on (3.3) and (3.4) are required to construct
C, DAe , and FAe as square matrices for the nested do-loop with different numbers of
loop index variables. Similar to the exponential case, the alignment problem can be
described as: Find C and DAe such that ∀i ∈ iteration space of this loop:

Ci′ = DAeFAe i′.

In this case, i = [I, L, J, K]T and i′ = [J ∗ 2(L−1),2(L−2),K,1]T. The alignment
constraint for the iteration space of this general loop can be formally expressed as

Fig. 3 The FORTRAN do-loop extracted from TFFT2 programs in the SPEC95FP Benchmarks
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follows, using our alignment technique:

Ci′ =

⎡

⎢⎢
⎣

c1,1 c1,2 c1,3 c1,4
c2,1 c2,2 c2,3 c2,4
c3,1 c3,2 c3,3 c3,4
c4,1 c4,2 c4,3 c4,4

⎤

⎥⎥
⎦ ∗

⎡

⎢⎢⎢
⎣

J ∗ 2
2(L−2)

K

1

(L−1)
⎤

⎥⎥⎥
⎦

.

The alignment constraint for an array Ae,1 ≤ e ≤ t , in the general loop can be repre-
sented as:

DAeFAe i′ =

⎡

⎢⎢
⎣

d1,1 d1,2 d1,3 d1,4
d2,1 d2,2 d2,3 d2,4
d3,1 d3,2 d3,3 d3,4
d4,1 d4,2 d4,3 d4,4

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

ae,1 ae,2 ae,3 ae,4
0 0 0 1
1 1 1 1
1 1 1 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

J ∗ 2(L−1)

2(L−2)

K

1

⎤

⎥⎥
⎦ .

Similar to the discussion in the previous subsection, the column vector i′ on both
sides of the equation, Ci′ = DAeFAe i′, is required to be eliminated for any i′. For this
type of loops, we require the following lemma.

Lemma 3.2 Let Pi be a 4 × 1 matrix for 1 ≤ i ≤ 3, w be a four-element column
vector, 0 be a four-element zero vector, and yz be a scalar variable for 1 ≤ z ≤ 4.
Then

∀yz [P1 P2 P3 w ]

⎡

⎢⎢
⎣

y3 ∗ 2(y2−1)

2(y2−2)

y4
1

⎤

⎥⎥
⎦ = 0 ⇐⇒ Pi = 0

for 1 ≤ i ≤ 3, and w = 0.

Proof

[P1 P2 P3 w ]

⎡

⎢⎢
⎣

y3 ∗ 2(y2−1)

2(y2−2)

y4
1

⎤

⎥⎥
⎦ = 0

⇐⇒ ∀yz

⎡

⎢⎢
⎣

p1,1 p2,1 p3,1 w1
p1,2 p2,2 p3,2 w2
p1,3 p2,3 p3,3 w3
p1,4 p2,4 p3,4 w4

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

y3 ∗ 2(y2−1)

2(y2−2)

y4
1

⎤

⎥⎥
⎦ = 0

⇐⇒ ∀yz

⎡

⎢⎢⎢
⎣

y3 ∗ 2(y21−1) ∗ p1,1 + 2(y2−2)p2,1 + y4 ∗ p3,1 + w1

y3 ∗ 2(y21−1) ∗ p1,2 + 2(y2−2)p2,2 + y4 ∗ p3,2 + w2
...

y3 ∗ 2(y21−1) ∗ p1,4 + 2(y2−2)p2,4 + y4 ∗ p3,4 + w4

⎤

⎥⎥⎥
⎦

= 0

⇐⇒ ∀yZ y3 ∗ 2(y2−1) ∗ P1 + · · · + 2(y2−2) ∗ P2 + y4 ∗ P3 + w = 0.
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We have now proven that

∀yZ y3 ∗ 2(y2−1) ∗ P1 + 2(y2−2) ∗ P2 + y4 ∗ P3 + w = 0

⇐⇒ P1 = P2 = P3 = w = 0

⇒) Assume that there exists certain Pi ’s �= 0 (e.g., P2 and P3 �= 0) and w �= 0, and
some yz’s �= 0 (e.g., (y2 and y4 �= 0) such that

2(y2−2) ∗ P2 + y4 ∗ P3 + w = 0.

Because all yz’s can be any value, we have

2(y2−2)+1 ∗ P2 + y4 ∗ P3 + w = 0.

That is,

2(y2−2) ∗ P2 + y4 ∗ P3 + w + 2(y2−2) ∗ P2 = 0.

This means, P2 = 0, which contradicts the assumption. Similarly, we have P3 = 0
and w = 0. Therefore, we have

P1 = P2 = P3 = w = 0.

⇐) The (if part) is trivial. �

Again, similar to the linear equation, the equation system in this case can eventu-
ally be converted into the following matrix equation:

[C DA1 · · · DAt ]

⎡

⎢⎢⎢
⎣

I · · · I
−FA1 · · · 0

...
. . .

...

0 · · · −FAt

⎤

⎥⎥⎥
⎦

= [0 · · · 0 ].

Here, I is a 4×4 identity matrix, 0 is a 4×4 zero matrix, and [0 · · · 0] is a 4×((4)×t)

zero matrix. Note that in solving the above matrix equation, each row with fraction
elements in each FAe can be first multiplied by a factor so that it will only have integer
elements. In the example in Fig. 3, the alignment constraint for the iteration space of
this loop can be formally expressed as

Ci′ =

⎡

⎢⎢
⎣

c1,1 c1,2 c1,3 c1,4
c2,1 c2,2 c2,3 c2,4
c3,1 c3,2 c3,3 c3,4
c4,1 c4,2 c4,3 c4,4

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

y3 ∗ 2(y2−1)

2(y2−2)

y4
1

⎤

⎥⎥
⎦ .

The alignment constraints for arrays A and B can be respectively represented as

DAFAi′ =

⎡

⎢⎢
⎣

x1,1 x1,2 x1,3 x1,4
x2,1 x2,2 x2,3 x2,4
x3,1 x3,2 x3,3 x3,4
x4,1 x4,2 x4,3 x4,4

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

1 1 1 0
0 0 0 1
1 1 1 1
1 1 1 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

y3 ∗ 2(y2−1)

2(y2−2)

y4
1

⎤

⎥⎥
⎦



20 M. Guo et al.

and

DBFB i′ =

⎡

⎢⎢
⎣

y1,1 y1,2 y1,3 y1,4
y2,1 y2,2 y2,3 y2,4
y3,1 y3,2 y3,3 y3,4
y4,1 y4,2 y4,3 y4,4

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

1 1 1 0
0 0 0 1
1 1 1 1
1 1 1 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

y3 ∗ 2(y2−1)

2(y2−2)

y4
1

⎤

⎥⎥
⎦ .

The alignment problem can be expressed as follows: Find C,DA, and DB such that
∀(I,L,J,K) ∈ iteration space of this loop:

{
C = DAFA,

C = DBFB.
(3.13)

The equations system of (3.13) can be converted into the following matrix equation:

[C DA BB ]
⎡

⎣
I I

−FA 0
0 −FB

⎤

⎦ = [0 0 ]. (3.14)

Here, I is a 4×4 identity matrix and 0 is a 4×4 zero matrix. According to the method
stated in Sect. 3.1, a solution matrix of (3.14) is

[C DA DB ] =

⎡

⎢⎢
⎣

1 1 1 0 1 0 0 0 1 0 0 0
0 0 0 1 0 1 0 0 0 1 0 0
1 1 1 1 0 0 1 0 0 0 1 0
1 1 1 1 0 0 0 1 0 0 0 1

⎤

⎥⎥
⎦ .

This gives us

C =

⎡

⎢⎢
⎣

1 1 1 0
0 0 0 1
1 1 1 1
1 1 1 1

⎤

⎥⎥
⎦ , DA =

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ and DB =

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ .

We can obtain the mappings of computations and data as follows:

Ci′ =

⎡

⎢⎢
⎣

1 1 1 0
0 0 0 1
1 1 1 1
1 1 1 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

J ∗ 2(L−1)

2(L−2)

K

1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

J ∗ 2(L−1) + 2(L−2) + K

1
J ∗ 2(L−1) + 2(L−2) + K + 1
J ∗ 2(L−1) + 2(L−2) + K + 1

⎤

⎥⎥
⎦ ,

DAFAi′ =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 1 1 0
0 0 0 1
1 1 1 1
1 1 1 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

J ∗ 2(L−1)

2(L−2)

K

1

⎤

⎥
⎥
⎦

=

⎡

⎢⎢
⎣

J ∗ 2(L−1) + 2(L−2) + K

1
J ∗ 2(L−1) + 2(L−2) + K + 1
J ∗ 2(L−1) + 2(L−2) + K + 1

⎤

⎥⎥
⎦
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and

DBFB i′ =

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

1 1 1 0
0 0 0 1
1 1 1 1
1 1 1 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

J ∗ 2(L−1)

2(L−2)

K

1

⎤

⎥⎥
⎦

=

⎡

⎢
⎢
⎣

J ∗ 2(L−1) + 2(L−2) + K

1
J ∗ 2(L−1) + 2(L−2) + K + 1
J ∗ 2(L−1) + 2(L−2) + K + 1

⎤

⎥
⎥
⎦ .

Hence, using our alignment, iteration (I,L,J,K) is mapped into the virtual proces-
sor (J ∗ 2 ∗ ∗(L − 1) + 2 ∗ ∗(L − 2) + K) and the corresponding A and B array
elements are mapped onto the same virtual processor. The Align statements adopted
to describe the alignment relation for the array elements of both A and B are repre-
sented as follows:

Align A
(
J ∗ 2 ∗ ∗(L − 1) + 2 ∗ ∗(L − 2) + K

)

with T
(
J ∗ 2 ∗ ∗(L − 1) + 2 ∗ ∗(L − 2) + K

)
and

Align B
(
J ∗ 2 ∗ ∗(L − 1) + 2 ∗ ∗(L − 2) + K

)

with T
(
J ∗ 2 ∗ ∗(L − 1) + 2 ∗ ∗(L − 2) + K

)
.

Here, the virtual processors are supposedly organized as a one-dimensional tem-
plate T .

3.3 Features of the proposed techniques

In principle, our techniques have the following features.

Theorem 3.1 If the alignment function of the template and the reference functions of
the written arrays are in common form, i.e., the multiple of the nonconstant items of
the former is equal to the multiple of the nonconstant items of the latter, then there
are no distributed data updates for writing these arrays.

Proof We provide the proof for the exponential cases and similarly, the proof for
other nonlinear cases can be obtained. We first propose the condition for two de-
pendent iterations to be mapped onto the same template element. Let the alignment
constraint for the iteration space of an n nested do-loop be expressed as

Ci′ =

⎡

⎢⎢⎢
⎣

c1,1 c1,2 · · · c1,2n+1
c2,1 c2,2 · · · c2,2n+1
...

... · · · ...

c2n+1,1 c2n+1,2 · · · c2n+1,2n+1

⎤

⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢
⎣

2i1

...

2in

i1
...

in
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥
⎦

.
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And the alignment constraint for the written array Ae in the general loop can be
represented as

DAeFAe i′ =
⎡

⎢
⎣

d1,1 · · · d1,2n+1
...

. . .
...

d2n+1,1 · · · d2n+1,2n+1

⎤

⎥
⎦

⎡

⎢⎢⎢⎢⎢
⎣

ae,1 ae,2 · · · be,n fe

0 0 · · · 0 1
1 1 · · · 1 1
...

...
. . .

...
...

1 1 · · · 1 1

⎤

⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

2i1

...

2in

i1
...

in
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

And Ci′ = DAeFAe i′. Take any element of Ci′ for example, ck,1 ∗ 2i1 + · · · + ck,n ∗
2in + ck,n+1 ∗ in+1 + · · · + ck,2n ∗ i2n + ck,2n+1 for 1 ≤ k ≤ (2 ∗ n + 1), as the
template alignment function by which the template elements are determined for
the corresponding iterations (computations) and their required data to be mapped
onto, then two dependent iterations, i1 = [2i1,1 , . . . ,2i1,n , i1,n+1, . . . , i1,2n,1] and
i2 = [2i2,1 , . . . ,2i2,n , i2,n+1, . . . , i2,2n,1], which both access to the same element of
array Ae, will be mapped onto the same template array element.

It is obvious that two iterations i1 = [2i1,1, . . . ,2i1,n , i1,n+1, . . . , i1,2n,1] and
i2 = [2i2,1 , . . . ,2i2,n , i2,n+1, . . . , i2,2n,1] can be mapped onto the same template ele-
ment if and only if ck,1 ∗ 2i1,1 + · · · + ck,n ∗ 2i1,n + ck,n+1 ∗ i1,n+1 + · · · + ck,2n ∗
i1,2n + ck,2n+1 = ck,1 ∗ 2i2,1 + · · · + ck,n ∗ 2i2,n + ck,n+1 ∗ i2,n+1 + · · · + ck,2n ∗
i2,2n + ck,2n+1 for 1 ≤ k ≤ (2 ∗ n + 1). Due to Ci′ = DAeFAe i′, for two iterations
i1 = [2i1,1, . . . ,2i1,n , i1,n+1, . . . , i1,2n,1] and i2 = [2i2,1, . . . ,2i2,n , i2,n+1, . . . , i2,2n,1],
if ae,1 ∗ 2i1,1 + · · ·+ ae,n ∗ 2i1,n + be,1 ∗ i1,n+1 + · · ·+ be,n ∗ i1,2n + fe = ae,1 ∗ 2i2,1 +
· · · + ae,n ∗ 2i2,n + be,1 ∗ i2,n+1 + · · · + be,n ∗ i2,2n + fe, then ck,1 ∗ 2i1,1 + · · · +
ck,n ∗ 2i1,n + ck,n+1 ∗ i1,n+1 + · · · + ck,2n ∗ i1,2n + ck,2n+1 = ck,1 ∗ 2i2,1 + · · · + ck,n ∗
2i2,n + ck,n+1 ∗ i2,n+1 + · · · + ck,2n ∗ i2,2n + ck,2n+1. For two dependent iterations
i1 = [2i1,1, . . . ,2i1,n , i1,n+1, . . . , i1,2n,1] and i2 = [2i2,1, . . . ,2i2,n , i2,n+1, . . . , i2,2n,1],
they access to the same data element of array Ae, that is, ae,1 ∗ 2i1,1 + · · · + ae,n ∗
2i1,n + be,1 ∗ i1,n+1 + · · · + be,n ∗ i1,2n + fe = ae,1 ∗ 2i2,1 + · · · + ae,n ∗ 2i2,n +
be,1 ∗ i2,n+1 + · · · + be,n ∗ i2,2n + fe. Therefore, the two dependent iterations,
i1 = [2i1,1, . . . ,2i1,n , i1,n+1, . . . , i1,2n,1] and i2 = [2i2,1, . . . ,2i2,n , i2,n+1, . . . , i2,2n,1],
will be mapped onto the same template array element. Similarly, for other nonlinear
cases, the steps of proof are the same. Thus, it is inferred that two dependent iter-
ations, wherein both write the same element of array Ae, will be mapped onto the
same template array element to avoid the distributed data updates in writing the same
data element of array Ae . �

From Theorem 3.1, it is apparent that our proposed techniques are not one-to-one
mappings but rather many-to-one mappings because dependent iterations with the
properties described in Theorem 3.1 will be mapped onto the same template element.
Thus, the size of the template array could have a smaller order than the iteration
space. On the other hand, the mappings of the read-only arrays will not inflect the
correctness of the execution; it is generally helpful to replicate multiple copies of a
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read-only data element onto the processors requiring that data element for computa-
tion, so that no further inter-processor communication is required within the nested
loops.

As mentioned, our proposed alignment techniques do not consider the data depen-
dences. In this approach, there are two principal advantages. First, the difficulty of
alignment can be decreased, enabling our techniques to be more broadly applicable
than other methods. Second, the original data dependences (if it existed) are likely
eliminated or reduced by the resulting alignment function because the dependent it-
erations and its required data could be mapped onto the same temple element. This
fact might benefit the exploitation of parallelism in the distribution phase.

3.4 Time complexity

The proposed alignment techniques reduce the problem of mapping the computations
and data in a program to the standard linear algebra problem of determining a null
space basis for a matrix. This includes three main phases: The first phase involves
determining, according to the alignment constraints, the value for each element in the
matrix V . The second phase involves applying Gaussian elimination to determine a
basis for UT, the null space of V T. The third phase involves extracting the solution
matrices U .

Suppose that V is an m×n matrix and its rank is r , where r is at most the minimal
value of m and n. The worst-case time complexity to determine the values for all
of the elements of V is O(m × n). Determining a null space basis for V T using
Gaussian elimination requires O(r × m × n + r3) arithmetic operations. The worst-
case time complexity to determine a basis for UT is accordingly O(r × m × n + r3).
Since U = H(r +1 : m,1 : m), the worst-case time complexity to extract the solution
matrices U from H is clearly O(m2 − r ×m). Hence, the worst-case time complexity
for the presented techniques is O(m × n + r × m × n + r3 + m2 − r × m), which is
similar to the method proposed by Bau et al. [2].

4 Experimental results

We have experimented with the proposed alignment techniques on certain codes
extracted from the TFFT2 programs in the SPEC95FP Benchmarks on our PC-
cluster environment. Our PC-cluster includes a master, a PC with one P4 (Pentium 4)
1.8 GHz CPU and 256 MB main memory, and 10 slaves, wherein each has one P4
1.5 GHz CPU and 128 MB main memory. The operating system is RedHat Linux
7.1 with the installed parallel software package—MPI-1.2.2.2. We hand-coded these
extracted code segments in MPI (Message Passing Interface) with C language and
executed them sequentially and in parallel with our MPI environment, respectively.

The code segments extracted from the TFFT2 programs in the SPEC95FP Bench-
marks contain referenced arrays using exponential subscripts and other complex non-
linear subscripts, as shown respectively in Tables 1 and 2. The code segment in Ta-
ble 1 contains three do-loops. The first do-loop in Table 1 is only used for evaluating
the performance of every machine tested, so it is not considered in searching for align-
ment functions for those arrays in statements S1 and S2. Those arrays in statements
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Table 1 The extracted code segment and the data alignments with our technique in Sect. 3.1

DO P = 1,N,1
. . .

DO I = 1,M,1
DO J = 1,2I ,1
. . .

S1: A(2 ∗ ∗I + J ) = r1 ∗ s1 − r2 ∗ s2 + COS(ti)

S2: B(2 ∗ ∗I + J ) = r2 ∗ s1 + r1 ∗ s2 + SIN(ti)

. . .

ENDDO
ENDDO
. . .

ENDDO

Align A(2 ∗ ∗I + J ) with T (2 ∗ ∗I + J ).
Align B(2 ∗ ∗I + J ) with T (2 ∗ ∗I + J ).

Table 2 The extracted code segment and the data alignments with our technique in Sect. 3.2

DO I = 0,2 ∗ ∗(M − 1)

. . .

DO L = 1, (1 + M)/2
DO J = 0,2 ∗ ∗((1 + M − L) − 1)

DO K = 1,2 ∗ ∗(L − 2)

. . .

S1: A(K + J ∗ 2 ∗ ∗(L − 1) + 2 ∗ ∗(L − 2)) = t1 + t2 − sin(pi)

S2: B(K + J ∗ 2 ∗ ∗(L − 1) + 2 ∗ ∗(L − 2)) = t3 − t4 + cos(pi)

. . .

ENDDO
ENDDO

ENDDO
ENDDO

Align A(K +J ∗2∗∗(L−1)+2
∗∗(L− 2)) with T (K +J ∗ 2 ∗∗
(L − 1) + 2 ∗ ∗(L − 2)).
Align B(K +J ∗2∗∗(L−1)+2
∗∗(L− 2)) with T (K +J ∗ 2 ∗∗
(L − 1) + 2 ∗ ∗(L − 2)).

S1 and S2 for the second do-loop and the third do-loop have no data dependence such
that they can intrinsically be executed in parallel. Our proposed method in Sect. 3.1
can align the arrays of this code segment in a communication-free manner which does
not cause interprocessor communication.

On the other hand, the code segment in Table 2 contains four do-loops. The first
do-loop in Table 2 is also only used to evaluate the performance of every machine
tested. Hence, it is not considered in searching for alignment functions for those
arrays in statements S1 and S2. Those arrays in statements S1 and S2 for the second
do-loop, the third do-loop, and the fourth do-loop have no data dependence such that
they can intrinsically be executed in parallel. Our proposed method in Sect. 3.2 can
align the arrays of this code segment in a communication-free manner which does
not cause interprocessor communication.

The corresponding sequential and parallel run times for the code segments in
Tables 1 and 2 are shown correspondingly in Figs. 4, 5, and 6. Figures 4 to 6 re-
veal that the difference between the sequential and parallel run time is significant.
This is because these tested code segments are computation-intensive such that the
cost for finally receiving the computed results appears less significant. Generally,
a computation-intensive nested loop which can be aligned in a communication-free
manner should well benefit from parallelism.
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Fig. 4 The overall sequential and parallel run times for the extracted code segment in Table 1

Fig. 5 The overall sequential and parallel run times for the extracted code segment in Table 2

Fig. 6 The overall sequential and parallel run times for the extracted code segment in Table 2

5 Conclusions

Generally, a single nested loop is the main program section to be parallelized. The
data alignment, which reduces the interprocessor communication to avoid undermin-
ing the benefits of parallelism, is often discussed on a single nested loop basis. On the
other hand, to reduce the communication for a program with multiple parallelizable
nested loops, a data alignment focusing on the whole program may be essential. How-
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ever, the alignment entirely based on the whole program is extremely complicated
because various factors, e.g., data dependences across the nested loops, the iteration
spaces for different nested loops, and the data access patterns for each nested loop,
etc., have to be considered. Alternatively, an intuitive way for aligning data arrays
over multiple nested loops is to align the data arrays with the proposed techniques
for each individual single nested loop. It is possible that large amounts of communi-
cation will occur in this way because the data arrays might have to be remapped onto
the template elements and redistributed over the processors across the nested loops.
Nevertheless, whether the time to run the program in the above approach is benefi-
cial or not might depend on the characteristics of the program. For example, if the
program computation is enormous, the communication cost might become relatively
less significant for the program execution. The executed program can perhaps obtain
an effective speedup.

For the referenced arrays, linear expressions appeared with the most frequency
and most data alignment methods were used mainly to align the array references with
linear subscripts. Based on the study of Reilly [33], Paek [29] and Hoeflinger [18] and
our survey, the number of arrays with exponential subscripts or other complex non-
linear subscripts might be attained to a certain extent. However, the data alignments
for the arrays with exponential subscripts or other complex nonlinear subscripts were
previously rarely discussed. In this paper, we propose two alignment techniques to
properly map, in a communication-free manner, the computations and array refer-
ences with exponential subscripts or other complex nonlinear subscripts onto the
virtual processors. Our alignment techniques, which are based on elementary lin-
ear algebra, reduce the alignment problem to the problem of determining a null space
basis for a matrix. By simplifying the process of solving the null space basis, the pro-
posed techniques can easily determine the desired mapping functions. Apparently,
many different mapping functions can be obtained by different linear combinations
of the null space basis. Furthermore, because dependent iterations with the proper-
ties described in Theorem 3.1 will be mapped onto the same template element, the
proposed techniques are not one-to-one mappings.
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