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Quantum Algorithms for Biomolecular Solutions of
the Satisfiability Problem on a Quantum Machine

Weng-Long Chang*, Ting-Ting Ren, Jun Luo, Mang Feng, Minyi Guo, Senior Member, IEEE,
and Kawuu Weicheng Lin

Abstract—In this paper, we demonstrate that the logic compu-
tation performed by the DNA-based algorithm for solving gen-
eral cases of the satisfiability problem can be implemented more
efficiently by our proposed quantum algorithm on the quantum
machine proposed by Deutsch. To test our theory, we carry out
a three-quantum bit nuclear magnetic resonance experiment for
solving the simplest satisfiability problem.

Index Terms—Molecular algorithms, quantum algorithms, the
NP-complete problems, the satisfiability problem.

I. INTRODUCTION

S INCE the publication of Deutsch’s [1] and Adleman’s [2]
seminal articles, various quantum algorithms and DNA-

based algorithms have been, respectively, proposed for many
computational problems. So far, the most frequently cited quan-
tum algorithms are Shor’s algorithms for solving factoring inte-
gers and discrete logarithm [3] and Grover’s search algorithm [4]
for unsorted databases. On the other hand, famous DNA-based
algorithms are used to solve factoring integers [5] and the set-
partition problem [6].

II. QUANTUM ALGORITHMS FOR BIOMOLECULAR SOLUTIONS

OF THE SATISFIABILITY PROBLEM

A. All of the Possible Solutions to the Satisfiability Problem

A clause is a formula of the form un ∨ un−1 · · · ∨ u2 ∨ u1 ,
where each uk for 1 ≤ k ≤ n is a Boolean variable or its nega-
tion. In general, a satisfiability problem includes a Boolean
formula of the form C1 ∧ C2 · · · ∧ Cm , where each Cj for
1 ≤ j ≤ m is a clause. Then, the question is to find values
of the variables so that the whole formula has the value 1.

Assume that U is a set of 2n possible choices and equal
to {un un−1 · · ·u2u1 |∀uk ∈ {0, 1} for 1 ≤ k ≤ n} and each
element represents one of 2n combinational states for n
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Boolean variables. For the sake of presentation, we sup-
pose that u0

k is used to denote the value of uk to be zero
and u1

k means value of uk to be one. The jth element
in U can be represented as a unique computational state
vector |u1〉 = �u1,1 u1,2 · · · u1,2n�T

1×2n , where u1,j =
1 ∀ u1,h = 0 for 1 ≤ h 	= j ≤ 2n . The corresponding compu-
tational state vector for the first element, u0

n u0
n−1 · · ·u0

2 u0
1 ,

in U is [ 1 0 · · · 0 ]T1×2n , and the corresponding compu-
tational state vector for the last element, u1

n u1
n−1 · · ·u1

2 u1
1 ,

in U is [ 0 0 · · · 1 ]T1×2n . For the sake of presentation,
we assume that B is the set of the corresponding com-
putational state vectors to the elements in U and B =
{[ 1 0 · · · 0 ]T1×2n · · · [ 0 0 · · · 1 ]T1×2n }. Because each
component in B is a coordinated vector, we span B =
C2n

[1, 3, 4], where C2n
is a Hilbert space. This implies that

the set B is an orthonormal basis in a Hilbert space.

B. Computational Space of Molecules for the Satisfiability
Problem

The following biomolecular operations cited from [2] will be
used to construct computational space of molecules for solv-
ing the satisfiability problem with m clauses and n Boolean
variables.

Definition 2.1: Given a set U = {un un−1 · · ·u2 u1 |∀uk ∈
{0, 1} for 1 ≤ k ≤ n} and a Boolean variable uj , the
biomolecular operation, “Append-Head,” appends uj onto
the head of every element in the set U . The for-
mal representation is written as Append-Head (U, uj ) =
{uj un un−1 · · ·u2 u1 |∀uk ∈ {0, 1} for 1 ≤ k ≤ n and uj ∈
{0, 1}}.

Definition 2.2: Given a set U = {un un−1 · · ·u2 u1 |∀uk ∈
{0, 1} for 1 ≤ k ≤ n} and a Boolean variable uj , the
biomolecular operation, “Append-Tail,” appends uj onto the end
of every element in the set U . The formal representation is writ-
ten as Append-Tail(U, uj ) = {un un−1 · · ·u2 u1 uj |∀uk ∈
{0, 1} for 1 ≤ k ≤ n and uj ∈ {0, 1}}.

Definition 2.3: Given a set U = {un un−1 · · ·u2 u1 |∀uk ∈
{0, 1} for 1 ≤ k ≤ n}, the biomolecular operation, “Discard
(U )” sets U to be an empty set.

Definition 2.4: Given a set U = {un un−1 · · ·u2 u1 |∀uk ∈
{0, 1} for 1 ≤ k ≤ n}, the biomolecular operation “Amplify
(U, {Ui})” creates a number of identical copies, Ui , of the set
U , and then discard(U ).

Definition 2.5: Given a set U = {un un−1 · · ·u2 u1 |∀uk ∈
{0, 1} for 1 ≤ k ≤ n} and a Boolean variable, uj , if
the value of uj is equal to one, then the biomolecular
extract operation creates two new sets, + (U, u1

j ) =
{un un−1 · · · u1

j · · ·u2 u1 |∀uk ∈ {0, 1} for 1 ≤ k 	= j ≤ n}
1536-1241/$25.00 © 2008 IEEE
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and −(U, u1
j ) = {un un−1 · · · u0

j · · · u2 u1 |∀uk ∈ {0, 1} for
1 ≤ k 	= j ≤ n}. Otherwise, it produces another two new sets,
+ (U, u0

j ) = {un un−1 · · ·u0
j · · ·u2 u1 |∀uk ∈ {0, 1} for 1 ≤

k 	= j ≤ n} and −(U, u0
j ) = {un un−1 · · ·u1

j · · ·u2 u1 |∀uk ∈
{0, 1} for 1 ≤ k 	= j ≤ n}.

Definition 2.6: Given m sets U1 · · ·Um , the biomolecular
merge operation, ∪(U1 , . . . , Um ) = U1 ∪ · · · ∪ Um .

Definition 2.7: Given a set U = {un un−1 · · ·u2 u1 |∀uk ∈
{0, 1} for 1 ≤ k ≤ n}, the biomolecular operation “Detect
(U )” returns a true if U 	= ∅. Otherwise, it returns a false.

Definition 2.8: Given a set U = {un un−1 · · ·u2 u1 |∀uk ∈
{0, 1} for 1 ≤ k ≤ n}, the biomolecular operation “Read(U )”
performs an arbitrary element in U . Even if U contains many
different elements, the biomolecular operation can give an ex-
plicit description of exactly one of them.

For solving the satisfiability problem with m clauses and n
Boolean variables, the following biomolecular algorithm can
be used to create all of the 2n possible choices. A set U is an
empty set and is regarded as the input set of the DNA-based
algorithm. The second parameter n in CombinationalStates(U ,
n) is to represent the number of Boolean variables.

Procedure CombinationalStates(U , n)
(0a)Append-Tail(U1 , u1

n ).
(0b) Append-Tail(U2 , u0

n ).
(0c) U = ∪(U1 , U2).
(1) For k = n − 1 downto 1

(1a) Amplify(U,U1 , U2).
(1b) Append-Tail(U1 , u1

k ).
(1c) Append-Tail(U2 , u0

k ).
(1d) U = ∪(U1 , U2).

End For
End Procedure

Lemma 2.1: For solving the satisfiability problem with m
clauses and n Boolean variables, 2n possible choices created
from the DNA-based algorithm, CombinationalStates(U , n),
form an orthonormal basis of a Hilbert space (i.e., a complex
vector space, C2n

).

C. Computational Space of Quantum Mechanical Solution for
the Satisfiability Problem

A quantum bit (qubit) has two “computational basis vectors”
|0〉 and |1〉 of the 2-D Hilbert space corresponding to the classi-
cal bit values 0 and 1 [1], [3], [4], and an arbitrary state |ϕ〉 of
a qubit is a linearly weighted combination of the computational
basis vectors (2.1): |ϕ〉 = l1 · |0〉 + l2 · |1〉, where the weighted
factors l1 and l2 ∈ C2 are the so-called probability amplitudes,
with |l1 |2 + |l2 |2 = 1. A collection of n qubits is called a quan-
tum register (qregister) of size n. It may include any of the
2n -D computational basis vectors, n qubits of size, or arbitrary
superposition of these vectors [1], [3], [4].

D. Lipton’s DNA-Based Algorithms for Solving the Satisfiabil-
ity Problem

Lipton’s DNA-based algorithm [7] for solving the satisfiabil-
ity problem is described next. The symbol |Cj | in the following

algorithm is applied to represent the number of Boolean vari-
ables and their negations in the jth clause in a formula.

Algorithm 2.1: Lipton’s DNA-based algorithm for solving the
satisfiability problem.

(1) CombinationalStates(U, n)
(2) For j = 1 to m do begin
(3) For i = 1 to |Cj | do begin
(4) If the ith element in the jth clause is one of n Boolean

variables uk , Then
(5) Ui = +(U, u1

k ) and U = −(U, u1
k )

(6) Else
(7) Ui = +(U, u0

k ) and U = −(U, u0
k )

(8) End If
(9) End For
(10) Discard(U )
(11) For i = 1 to |Cj | do begin
(12) U = ∪(U, Ui)
(13) End For
(14) End For
(15) If (Detect(U ) = = true) Then

(15a) Read(U )
End If

(16) End Algorithm

Lemma 2.2: Algorithm 2.1, Lipton’s DNA-based algorithm,
can be applied to solve the satisfiability problem with m clauses
and n Boolean variables.

E. Introduction of Quantum Gates for Solving the Satisfiability
Problem

The time evolution of the states of quantum registers can be
modeled by means of unitary operators that are often referred
to as quantum gates [1], [3], [4]. Therefore, a quantum gate can
be regarded as an elementary quantum-computing device that
performs a fixed unitary operation on selected qubits during a
fixed period of time. The NOT gate is a one-qubit gate and sets the
only (target) bit to its negation. The CNOT (controlled NOT) gate
is a two-qubit gate and flips the second qubit (the target qubit) if
and only if the first qubit (the control qubit) is one. The CCNOT

(controlled-controlled-NOT) gate is a three-qubit gate and flips
the third qubit (the target qubit) if and only if the first qubit and
second qubit (the two control qubits) are both one.

F. Constructing Quantum Networks for Solving the Satisfiabil-
ity Problem

The operations OR and AND are implemented by quantum
circuits in Figs. 1 and 2, respectively. For evaluating a clause
with the form un ∨ un−1 · · · ∨ u2 ∨ u1 , three quantum regis-
ters |un · · ·u1〉 , |yn · · · y1〉 , and |rnrn−1 · · · r1r0〉 are needed.
Therefore, its evaluating computationis equal to (2.2)

|rnrn−1 · · · r1〉|r0〉|yn · · · y1〉|un · · ·u1〉 → |(rn ⊕ ȳn • r̄n−1)

· · · (r1 ⊕ ȳ1 • r̄0)〉|r0〉|yn · · · y1〉|un · · ·u1〉

where • denotes operation AND of their negations of two Boolean
variables {ȳk , r̄k−1} for 1 ≤ k ≤ n. The first bit, r0 , in the third
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Fig. 1. OR operation of two Boolean variables.

Fig. 2. AND operation of two Boolean variables.

quantum register is initially prepared in state |0〉, and the other
n bits in the third quantum register are initially prepared in
state |1〉 . The (n + 1)th quantum bit, rn , in the third register is
employed to store the final result of the evaluating computation.

Then, in order to evaluate the AND operation of the previ-
ous clause and the current clause, the fourth quantum register
|cm cm−1 · · · c1c0〉 is needed. The first bit, c0 , in the fourth quan-
tum register is initially prepared in state |1〉 , and the other m bits
in the quantum register are initially in state |0〉 . The (m + 1)th
quantum bit, cm , in the fourth register is employed to store the
final result of evaluating computation for all of the clauses. The
full network, quantum evaluating circuit (QEC, for checking
whether the current clause is true or not), is illustrated in Fig. 3
and can be understood as follows:

1) We compute the (n + 1)th bit of the third quantum reg-
ister to the final result of evaluating a clause. This step
requires computing all the OR operations through the re-
lation rk ← rk ⊕ (ȳk • r̄k−1) for 1 ≤ k ≤ n. Then, we
compute the AND operation of the previous clause and the
current clause through the relation cj ← cj ⊕ (cj−1 • rn )
for 1 ≤ j ≤ m.

2) Subsequently, we reverse all those OR operations in order
to restore every quantum bit of each quantum register to
its initial state. This enables us to reuse the same quan-
tum registers, should the problem, for example, require
repeated OR operation.

Subsequently, we reverse all those operations (NOT or CNOT)
on the second quantum register to restore every quantum bit of
the second quantum register to its initial state. This enables us
to reuse the same second quantum register to evaluate the next
clause.

G. Quantum Algorithms of Lipton’s DNA-Based Algorithms for
Solving the Satisfiability Problem

Based on Algorithm 2.1 in Section II-D, the following quan-
tum algorithm is proposed to work on the physical quantum
computer proposed by Deutsch [1]. For convenience of our fol-

lowing presentation, we suppose that c1
j denotes the value of cj

to be 1 and c0
j defines the value of cj to be 0 for 1 ≤ j ≤ m.

We also assume that r1
k denotes the value of rk to be 1 and

r0
k defines the value of rk to be 0 for 0 ≤ k ≤ n. Similarly, y1

k

denotes the value of yk to be 1 and y0
k defines the value of yk to

be 0. Moreover, the notations used in Algorithm 2.2 next have
been denoted in previous sections.

Algorithm 2.2: Quantum algorithms of Lipton’s DNA-based
algorithm for solving the satisfiability problem with m clauses
and n Boolean variables.
(1) For an input |Φ〉 = (⊗1

s=m

∣∣c0
s

〉
) ⊗ (

∣∣c1
0
〉
) ⊗ (⊗1

q=n

∣∣r1
q

〉
) ⊗

(
∣∣r0

0
〉
) ⊗ (⊗1

q=n

∣∣y0
q

〉
) ⊗ (⊗1

q=n

∣∣u0
q

〉
), 2n possible choices

of n bits (including all of the possible choices)
are |ϕ1,0〉 = (⊗1

s=m I2×2) ⊗ (I2×2) ⊗ (⊗1
q=nI2×2) ⊗ (I2×2) ⊗

(⊗1
q=nI2×2) ⊗ H⊗n |Φ〉 = 1√

2n
(⊗1

s=m

∣∣c0
s

〉
)⊗(

∣∣c1
0
〉
)⊗ (⊗1

q=n∣∣r1
q

〉
) ⊗ (

∣∣r0
0
〉
) ⊗ (⊗1

q=n

∣∣y0
q

〉
) ⊗ (⊗1

q=n (
∣∣u0

q

〉
+

∣∣u1
q

〉
)).

(2) For j = 1 to m do begin
(3) For i = 1 to |Cj | do begin
(4) If the ith element in the jth clause is one of n Boolean
variables uk , Then
(5) |ϕj,i〉 = (⊗1

s=m I2×2)⊗(I2×2) ⊗(⊗1
q=nI2×2)⊗(I2×2) ⊗

(⊗k+1
p=nI2×2) ⊗ (

∣∣y0
k ⊕ (u0

k + u1
k )

〉
) ⊗ (⊗1

p=k−1I2×2) ⊗ (⊗1
q=n

I2×2) |ϕj,i−1〉 = 1√
2n

(⊗j
s=m

∣∣c0
s

〉
)⊗(⊗1

s=j−1 |cs〉) ⊗ (
∣∣c1

0
〉
) ⊗

(⊗1
q=n

∣∣r1
q

〉
) ⊗ (

∣∣r0
0
〉
)⊗ (⊗k+1

p=n

∣∣y0
p

〉
)⊗(

∣∣y0
k + y1

k

〉
)⊗(⊗1

p=k−1∣∣y0
p

〉
) ⊗ (⊗1

q=n (
∣∣u0

q

〉
+

∣∣u1
q

〉
)), where cs = cs ⊕ (cs−1 • rn )

for j − 1 ≥ s ≥ 1.
(6) Else
(7) |ϕj,i〉 = (⊗1

s=m I2×2)⊗(I2×2) ⊗(⊗1
q=nI2×2) ⊗ (I2×2) ⊗

(⊗k+1
p=nI2×2) ⊗ (|(( 0 1

1 0
)2×2y

0
k ) ⊕ (u0

k + u1
k )〉) ⊗ (⊗1

p=k−1

I2×2) ⊗ (⊗1
q=nI2×2)|ϕj,i−1〉 = 1√

2n
(⊗j

s=m

∣∣c0
s

〉
) ⊗ (⊗1

s=j−1

|cs〉) ⊗ (
∣∣c1

0
〉
) ⊗ (⊗1

q=n

∣∣r1
q

〉
)⊗ (

∣∣r0
0
〉
)⊗ (⊗k+1

p=n

∣∣y0
p

〉
)⊗ (|y1

k +
y0

k 〉) ⊗ (⊗1
p=k−1

∣∣y0
p

〉
) ⊗ (⊗1

q=n (
∣∣u0

q

〉
+

∣∣u1
q

〉
)), where cs = cs

⊕ (cs−1 • rn ) for j − 1 ≥ s ≥ 1.
(8) End If
(9) End For
(10) |ϕj+1,−1〉=QEC⊗(⊗1

q=nI2×2)
∣∣ϕj,|Cj |

〉
= 1√

2n
(⊗j+1

s=m∣∣c0
s

〉
) ⊗ (|cj ⊕ (cj−1 • rn )〉)⊗ (⊗1

s=j−1 |cs〉 ⊗ (
∣∣c1

0
〉
)⊗ (⊗1

q=n∣∣r1
q

〉
) ⊗ (

∣∣r0
0
〉
)(⊗1

q=n |Yq 〉) ⊗ (⊗1
q=n (

∣∣u0
q

〉
+

∣∣u1
q

〉
)), where

QEC is for checking whether the current clause is true or not
in Fig. 3, cs = cs ⊕ (cs−1 • rn ) for j − 1 ≥ s ≥ 1, and

Yq =
{

y0
q + y1

q if it is a Boolean variable

y1
q + y0

q if it is a negation.

(11) |ϕj+1,0〉 = (⊗1
s=m I2×2)⊗ (I2×2)⊗ (⊗1

q=nI2×2)⊗ (I2×2)
⊗ (⊗1

q=nVq ) ⊗ (⊗1
q=nI2×2)⊗|ϕj+1,−1〉= 1√

2n
(⊗j+1

s=m

∣∣c0
s

〉
) ⊗

(⊗1
s=j |cs〉) ⊗ (

∣∣c1
0
〉
) ⊗ (⊗1

q=n

∣∣r1
q

〉
) ⊗ (

∣∣r0
0
〉
)(⊗1

q=n

∣∣y0
q

〉
) ⊗

(⊗1
q=n (

∣∣u0
q

〉
+

∣∣u1
q

〉
)), where cs = cs ⊕ (cs−1 • rn ) for j ≥

s ≥ 1 and

Vq =




I2×2 : no appearance in the clause

Yq ⊕ (u0
q + u1

q ) : a Boolean variable(
0 1
1 0

)
2×2

(Yq ⊕ (u0
q + u1

q )) : its negation.
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Fig. 3. Full network is the QEC to check whether the current clause is true or not.

(12) End For
(13) We obtain the final result, |ϕm+1,1〉, after a measurement
of |ϕm+1,0〉 .

End Algorithm
Lemma 2.3: Algorithm 2.2 is a quantum treatment for

Lipton’s DNA-based algorithm, which can be used to solve the
satisfiability problem with m clauses and n Boolean variables.

Proof:
Because there are 2n possible choices for the satisfiability

problem with m clauses and n Boolean variables, a quantum
register of n bits (⊗1

q=n |uk 〉) is employed to represent 2n

choices with initial state (⊗1
q=n

∣∣u0
q

〉
). The satisfiability prob-

lem with m clauses and n Boolean variables is to evaluate
whether the whole formula has the value 1, so three auxiliary
quantum registers are needed. The initial states of these auxil-
iary quantum registers are (⊗1

q=n

∣∣y0
q

〉
), (⊗1

q=n

∣∣r1
q

〉
) ⊗ (

∣∣r0
0
〉
)

and (⊗1
s=m

∣∣c0
m

〉
) ⊗ (

∣∣c1
0
〉
), respectively. Therefore, the to-

tal Hilbert space is (⊗1
s=m C2) ⊗ C2 ⊗ (⊗1

q=nC2) ⊗ C2 ⊗
(⊗1

q=nC2) ⊗ (⊗1
q=nC2).

From the execution of Step (1), an initial vector |Φ〉 =
(⊗1

s=m

∣∣c0
m

〉
) ⊗ (

∣∣c1
0
〉
)⊗ (⊗1

q=n

∣∣r1
q

〉
)⊗ (

∣∣r0
0
〉
)⊗ (⊗1

q=n

∣∣y0
q

〉
)

⊗ (⊗1
q=n

∣∣u0
q

〉
) starts the quantum computation of the sat-

isfiability problem. H⊗n that stands for the joined n-qubit
Hadamard gate is applied to the part of choices of the
initial vector |Φ〉 . Then, the resulting state vector be-
comes |ϕ1,0〉 = 1√

2n
(⊗1

s=m

∣∣c0
m

〉
) ⊗ (

∣∣c1
0
〉
) ⊗ (⊗1

q=n

∣∣r1
q

〉
) ⊗

(
∣∣r0

0
〉
) ⊗ (⊗1

q=n

∣∣y0
q

〉
) ⊗ (⊗1

q=n (
∣∣u0

q

〉
+

∣∣u1
q

〉
)).

Step (2) is the outer loop of the main loop and is to judge
whether each clause in m clauses is true or not. Step (3) is the
first inner loop of the main loop and is used to test whether the
jth clause with 1 ≤ j ≤ m is true or not. On each execution of
Step (4), if the ith element in the jth clause is one of n Boolean
variables uk , then this implies that those choices with the value
1 of uk satisfy the jth clause, and thus, the operation CNOT

(i.e.,
∣∣y0

k ⊕ (u0
k + u1

k )
〉
) corresponds to the implementation of

Step (5) in Algorithm 2.1. Otherwise, from each execution of
Step (6), the ith element in the jth clause is its negation and this
implies that those choices with the value 0 of uk satisfy the jth

clause, and hence, the operation NOT and CNOT

(i .e., |(( 0 1
1 0

)2×2y
0
k ) ⊕ (u0

k + u1
k )〉)

corresponds to the implementation of Step (7) in Algorithm 2.1.
After repeating the Steps (4)–(7), we have

∣∣ϕj,|Cj |
〉
, including

those choices that satisfy the jth clause and those illegal choices
that dissatisfy the jth clause.

Next, each execution of Step (10) works as the unitary oper-
ator, QEC, i.e., the quantum circuit in Fig. 3 to judge whether
the jth clause is true or not and whether both the (j − 1)th
clause and the jth clause are true or not. On each execution of
Step (11), the initial state of the first auxiliary quantum register
is reset to be (⊗1

q=n

∣∣y0
q

〉
). This implies that Step (10) through

Step (13) in Algorithm 2.1 have been done. After repeating
each operation embedded in the main loop, we get the resulting
state vector |ϕm+1,0〉 , including those choices that satisfy the
whole formula and those illegal choices that dissatisfy the whole
formula.

Finally, based on
∣∣c1

m

〉
, the execution of Step (13) is for a

measurement to find the answer to the satisfiability problem with
m clauses and n Boolean variables. Therefore, Algorithm 2.2,
i.e., the quantum algorithm of Lipton’s DNA-based algorithm,
can also be used to solve the satisfiability problem with m
clauses and n Boolean variables. �

III. QUANTUM IMPLEMENTATION OF BIOMOLECULAR

COMPUTING ON A QUANTUM MACHINE

The following lemmas are introduced to show that the
biomolecular computer proposed by Adleman [2] can be im-
plemented on the quantum machine proposed by Deutsch [1].

Lemma 3.1: For any NP-complete problem, 2n possible so-
lutions on the biomolecular computer proposed by Adleman [2]
can be implemented on the quantum machine proposed by
Deutsch [6], where n is the number of bits for input size of
the problem.

Proof:
From Lemma 2.1, 2n possible solutions, U = {un un−1 · · ·

u2 u1 |∀uk ∈ {0, 1} for 1 ≤ k ≤ n}, for any NP-complete
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problem are created from the DNA-based algorithm,
CombinationalStates(U, n). From Lemma 2.1, 2n possible solu-
tions form an orthonormal basis of a Hilbert space (a complex
vector space, C2n

). Similarly, 2n possible quantum solutions
for the same problem are

|φ〉 = H⊗n |00 · · · 0〉 =
1√
2n

2n −1∑
i=0

|i〉

and also form an orthonormal basis of a Hilbert space (a complex
vector space, C2n

). Therefore, from the previous statements, we
may conclude that for any NP-complete problem, 2n possible
solutions on the biomolecular computer proposed by Adleman
[2] can be implemented on the quantum machine proposed by
Deutsch [1]. �

Lemma 3.2: The biomolecular operation, Append-Head
(U, uj )= {uj un un−1 · · ·u2 u1 |∀uk ∈ {0, 1} for 1 ≤ k ≤ n
and uj ∈ {0, 1}}, denoted in Definition 2.1 can be imple-
mented by the corresponding quantum operator |Φ〉 = |0〉 ⊗
(H⊗n |000 · · · 0〉) = |0〉 ⊗ ( 1√

2n

∑2n −1
i=0 |i〉) or |Φ〉 = |1〉 ⊗

(H⊗n |000 · · · 0〉) = |1〉 ⊗ ( 1√
2n

∑2n −1
i=0 |i〉).

Proof:
From Definition 2.1, for 2n possible solutions, U = {un un−1

· · ·u2 u1 |∀uk ∈ {0, 1} for 1 ≤ k ≤ n}, and a Boolean vari-
able uj , the biomolecular operation, “Append-Head,” ap-
pends uj onto the head of the elements in the set U ,
that is, Append-Head(U, uj ) = {uj un un−1 · · ·u2 u1 |∀uk ∈
{0, 1} for 1 ≤ k ≤ n and uj ∈ {0, 1}}. If the value for uj is
equal to 0, then from Lemma 3.1, the action of the biomolecular
operation “Append-Head” can be implemented by

|Φ〉 = |0〉 ⊗ (H⊗n |000 · · · 0〉) = |0〉 ⊗
(

1√
2n

2n −1∑
i=0

|i〉
)

.

Otherwise, the action of the biomolecular operation “Append-
Head” can be implemented by

|Φ〉 = |1〉 ⊗ (H⊗n |000 · · · 0〉) = |1〉 ⊗
(

1√
2n

2n −1∑
i=0

|i〉
)

.

�
Lemma 3.3: The biomolecular operation, Append-Tail

(U, uj ) = {un un−1 · · ·u2 u1 uj |∀uk ∈ {0, 1} for 1 ≤ k ≤ n
and uj ∈ {0, 1}}, denoted in Definition 2.2 can be im-
plemented by |Φ〉 = (H⊗n |000 · · · 0〉) ⊗ |0〉 = ( 1√

2n

∑2n −1
i=0

|i〉) ⊗ |0〉 or |Φ〉 = (H⊗n |000 · · · 0〉) ⊗ |1〉 = ( 1√
2n

∑2n −1
i=0

|i〉) ⊗ |1〉.
Proof: Refer to Lemma 3.2. �
Lemma 3.4: The biomolecular extract operation, +(U, u1

j ) =
{un un−1 · · · u1

j · · · u2 u1 |∀uk ∈ {0, 1} for 1 ≤ k 	= j ≤ n}
and −(U, u1

j ) = {un un−1 · · ·u0
j · · · u2 u1 |∀uk ∈ {0, 1} for

1 ≤ k 	= j ≤ n}, denoted in Definition 2.5 can be implemented
by CNOT.

Proof: Refer to Algorithm 2.2. �
Lemma 3.5: The biomolecular extract operation, +(U, u0

j ) =
{un un−1 · · · u0

j · · · u2 u1 |∀uk ∈ {0, 1} for 1 ≤ k 	= j ≤ n}
and −(U, u0

j ) = {un un−1 · · ·u1
j · · ·u2 u1 |∀uk ∈ {0, 1} for

1 ≤ k 	= j ≤ n}, denoted in Definition 2.5 can be implemented
by NOT and CNOT.

Proof: Refer to Algorithm 2.2. �
Lemma 3.6: Assume that U = {un un−1 · · ·u2 u1 |∀uk ∈

{0, 1} for 1 ≤ k ≤ n} and W is a subset of U and Ua is also
a subset of U for 1 ≤ a ≤ m. From Definitions 2.3 and 2.6,
the biomolecular merge operation and discard operation, i.e.,
∪(U1 , . . . , Um ) = U1 ∪ · · · ∪ Um and Discard(W ) = �, per-
form logic computation of the satisfiability problem that can
be implemented by NOT, CNOT, and CCNOT.

Proof: Refer to Algorithm 2.2. �
Lemma 3.7: Assume that U = {un un−1 · · ·u2 u1 |∀uk ∈

{0, 1} for 1 ≤ k ≤ n}. From Definitions 2.7 and 2.8, the
biomolecular detect operation and read operation, i.e.,
Detect(U ) and Read(U ), to find the answer to the satisfiabil-
ity problem can be implemented by means of measurements.

Proof: Refer to Algorithm 2.2. �
Theorem 3.1: The biomolecular computer proposed by

Adleman [2] is a subset of the quantum machine proposed by
Deutsch [1] and can be implemented on the quantum machine.

Proof:
From Lemmas 3.1 through 3.7, it is very clear that biomolec-

ular computational space for any NP-complete problem can be
constructed on a quantum machine, and the biomolecular op-
erations proposed by Adleman [2] can also be implemented by
quantum gates (NOT, CNOT, and CCNOT). Therefore, it is inferred
that the biomolecular computer proposed by Adleman [2] is a
subset of the quantum machine proposed by Deutsch [1] and
can be implemented on the quantum machine. �

Theorem 3.2: For those famous NP-complete problems that
had been solved on a biomolecular computer, their correspond-
ing DNA-based algorithms can be fully implemented on a quan-
tum machine.

Proof:
From Theorem 3.1, it is very obvious that a biomolecular com-

puter can be implemented on a quantum machine. Therefore, it
is derived at once that the DNA-based algorithms for solving
those famous NP-complete problems can all be implemented on
a quantum machine. �

IV. COMPLEXITY ASSESSMENT

The following lemmas could be used to show the time
complexity and space complexity of Algorithm 2.2 for solv-
ing the satisfiability problem with m clauses and n Boolean
variables

Lemma 4.1: Time complexity for solving the satisfiability
problem with m clauses and n Boolean variables is O(n)
Hadamard gates, O(10 × m × n) NOT gates, O(2 × m × n)
CNOT gates, O(2 × m × n + m) CCNOT gates, and O(1) projec-
tive operators.

Proof:
In Step (1) of Algorithm 2.2, n Hadamard gates are per-

formed. Next, Steps (5) and (7) of Algorithm 2.2 are em-
bedded in the main loop, corresponding to the implementa-
tion of at most (m × n) NOT gates and (m × n) CNOT gates.
From Step (10) of Algorithm 2.2, we have (8 × m × n)
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NOT gates and (2 × m × n + m) CCNOT gates performed
and Step (11) leads to at most (m × n) NOT gates and
(m × n) CNOT gates. Finally, Step (13) of Algorithm 2.2 is a
one projective operator. So, time complexity is O(n) Hadamard
gates, O(10 × m × n) NOT gates, O(2 × m × n) CNOT

gates, O(2 × m × n + m) CCNOT gates, and O(1) projective
operators. �

Lemma 4.2: Space complexity of solving the satisfiability
problem with m clauses and n Boolean variables is O(m + 3 ×
n + 2) quantum bits.

Proof:
From Step (1) in Algorithm 2.2, it is indicated that the

total Hilbert space is (⊗1
s=m C2) ⊗ C2 ⊗ (⊗1

q=nC2) ⊗ C2 ⊗
(⊗1

q=nC2) ⊗ (⊗1
q=nC2). So, the space complexity is O(m +

3 × n + 2) quantum bits. �

V. EXAMPLE OF THREE-QUBIT SOLUTION FOR THE

SATISFIABILITY PROBLEM

Consider the formula: F = (u1), the simplest case of the
satisfiability problem. It contains one clause “(u1),” and one
Boolean variable u1 . The following algorithm, i.e., Algorithm
5.1, is the reduced version of Algorithm 2.2 in Section II-F and
is employed to find the answer to the satisfiability problem of
the clause, F = (u1).

Algorithm 5.1: Solving the satisfiability problem of the
clause, F = (u1).
(1) For an input |Φ〉 =

∣∣c0
1
〉
⊗

∣∣y0
1
〉
⊗

∣∣u0
1
〉
, two choices

are |ϕ1,0〉 = (I2×2) ⊗ (I2×2)⊗ (H) |Φ〉= 1√
2
(
∣∣c0

1
〉
)⊗ (

∣∣y0
1
〉
)⊗

(
∣∣u0

1
〉

+
∣∣u1

1
〉
).

(2) |ϕ1,1〉 = (I2×2) ⊗ (
∣∣y0

1 ⊕ (u0
1 + u1

1)
〉
) ⊗ (I2×2) |ϕ1,0〉 =

1√
2
(
∣∣c0

1
〉
) ⊗ (

∣∣y0
1 + y1

1
〉
) ⊗ (

∣∣u0
1
〉

+
∣∣u1

1
〉
).

(3) |ϕ2,−1〉 = (
∣∣c0

1 ⊕ (y0
1 + y1

1 )
〉
) ⊗ (I2×2) ⊗ (I2×2) |ϕ1,1〉 =

1√
2
(
∣∣(c0

1 + c1
1)

〉
) ⊗ (

∣∣y0
1 + y1

1
〉
) ⊗ (

∣∣u0
1
〉

+
∣∣u1

1
〉
).

(4) |ϕ2,0〉 = (I2×2) ⊗ (
∣∣(y0

1 ⊕ u0
1) + (y1

1 ⊕ u1
1)

〉
) ⊗ (I2×2)

|ϕ2,−1〉 = 1√
2
(
∣∣(c0

1 + c1
1)

〉
) ⊗ (

∣∣y0
1
〉
) ⊗ (

∣∣u0
1
〉

+
∣∣u1

1
〉
).

(5) We obtain the final result, |ϕ2,1〉, after a measurement of
|ϕ2,0〉.
End Algorithm

So, from Step (1) of Algorithm 5.1, for an input
|Φ〉 =

∣∣c0
1
〉
⊗

∣∣y0
1
〉
⊗

∣∣u0
1
〉
, 21 possible choices are |ϕ1,0〉 =

1√
2
(
∣∣c0

1
〉 ∣∣y0

1
〉 ∣∣u0

1
〉

+
∣∣c0

1
〉 ∣∣y0

1
〉 ∣∣u1

1
〉
). Then, in the first clause,

the first Boolean variable is u1 . Therefore, after Step (2) of
Algorithm 5.1 is performed, we have |ϕ1,1〉 = 1√

2
(
∣∣c0

1
〉 ∣∣y0

1
〉∣∣u0

1
〉

+
∣∣c0

1
〉 ∣∣y1

1
〉 ∣∣u1

1
〉
). Because only a clause and a Boolean

variable are involved in the example, we could use the
CNOT gate to replace QEC in Fig. 3 to evaluate whether
the only clause with the only Boolean variable is true or
not. Hence, the implementation of Steps (3) and (4) in Algo-
rithm 5.1 yields |ϕ2,−1〉 = 1√

2
(
∣∣c0

1
〉 ∣∣y0

1
〉 ∣∣u0

1
〉

+
∣∣c1

1
〉 ∣∣y1

1
〉 ∣∣u1

1
〉
)

and |ϕ2,0〉 = 1√
2
(
∣∣c0

1
〉 ∣∣y0

1
〉 ∣∣u0

1
〉

+
∣∣c1

1
〉 ∣∣y0

1
〉 ∣∣u1

1
〉
). Step (5) of

Algorithm 5.1 is for a measurement on |ϕ2,0〉 to find
∣∣c1

1
〉
, i.e., the

answer to the satisfiability problem for the formula: F = (u1).
The measurement yields |ϕ2,1〉 =

∣∣c1
1
〉 ∣∣y0

1
〉 ∣∣u1

1
〉
, and the corre-

Fig. 4. Quantum circuit of the aforesaid example.

sponding quantum circuit of the aforesaid example is shown in
Fig. 4.

NMR approach has been widely employed for quantum infor-
mation processing over the past several years due to its mature
and well-controllable technology. Although the quantum infor-
mation processing by NMR is made on ensembles of nuclear
spins, instead of individual spins, NMR has remained to be the
most convenient experimental tool to demonstrate quantum in-
formation processing. We here also adopt this technology to
check our theory.

Our experiment is carried out on a Varian INOVA 600
NMR spectrometer. The sample is 13C-labeled alanine with
formula 13

1 CH3–13
2 CH(NH2)–13

3 COOH, where the three car-
bons 13

1 C, 13
2 C, 13

3 C correspond to the qubits I1 , I2 , I3 , respec-
tively. The J-coupling constants are J12 = 34.79 Hz, J23 =
54.01 Hz, J13 = 1.20 Hz. Selective excitation was achieved by
using soft pulses.

The experiment has three main steps as follows:
Step 1 is for initialization. Before the algorithm is car-

ried out, the initial state, i.e., the pseudopure state, must be
well prepared. There have been many methods to do this
job, among which the spatial averaging method proposed by
Cory et al. is most commonly used. So, in our experiment,
we have also employed this technique to prepare the three-
qubit pseudopure state for which the detailed pulse sequence
can be found in [8]. The states of the input qubits are pre-
pared by following operation E + I1z + I2z + I3z + 2I1z I2z +
2I2z I3z + 2I1z I3z + 4I1z I2z I3z , where E is the unity operator

with the form of E = ( 1 0
0 1

), and Iiz = 1
2 σz , with i = 1, 2,

and 3, being the ith spin angular momentum operator in the

z-direction, and σz is the Pauli matrixσz = ( 1 0
0 −1

).
Step 2 translates the quantum gates into NMR pulses. We had

to connect and optimize the pulses to construct the total NMR
pulse sequence. The Hadamard gate can be achieved by a single
π/2 pulse with phase x. The CNOT gate can be implemented by
NMR pulses as follows

[π/2]2y → (1/4J) → [π]1,2
x → (1/4J) → [π]1,2

x → [π/2]2x
where the flip angle of the pulse and the time of delay are
written in square brackets and in round brackets, respectively.
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Fig. 5. Experimental spectra (a)–(c) of the three-qubit solution for the satisfia-
bility problem after the readout on the first, second, and third qubits, respectively.

The subscripts are the phases (i.e., along the x or y axis) of the
pulse, and the superscripts are the nuclei to which the pulses
are applied. Then, we could obtain the total pulse sequence by
connecting and optimizing the aforesaid pulses according to the
quantum circuit.

Step 3 is the measurement, where a readout pulse is applied
to each qubit to obtain the spectra.

Note that in NMR measurements, the frequencies and phases
of NMR signals could clearly indicate the state the system

evolved to after the readout pulses had been applied. In our
experiment, the phases of the reference of 13C spectra from
a thermal equilibrium were adjusted to be in absorption (i.e.,
to be positive), and then the same phase corrections were
used to determine the absolute phases of the experimental
spectra of 13C after the algorithm was accomplished. In our
case, the final state was (|000〉123 + |101〉123)/

√
2 = (|00〉13 +

|11〉13)|0〉2/
√

2 which means the first and the third qubits are
entangled. As the readout by NMR is a weak measurement, we
have no state collapse after the measurement. Besides, only sin-
gle quantum coherence can be detected in NMR. As a result,
we have to employ some additional operations for detecting the
output state (|000 > +|101 >)/

√
2. We may detect the second

qubit directly by applying a π/2 readout pulse along the x-axis,
yielding Fig. 5 (b). But for the first and third qubits, we need to
disentangle them before measurement. To this end, we apply a
CNOT gate, respectively, on the first and second qubits followed
by another CNOT gate, respectively, on the second and first qubits
to get the state (|000 > +|011 >)/

√
2. Then the first qubit can

be read out by a single π/2 pulse along the x-axis, as shown in
Fig. 5 (a). Similar steps applied to the third qubit result in the
spectrum in Fig. 5 (c). It is evident that the experimental results
are in good agreement with our theoretical prediction.

Therefore, due to the fact that NMR quantum operations are
not made on individual nuclear spins, but on spin ensemble,
there is a difference in the operation between Fig. 4 and our
experiment. Some remarks must be addressed. First of all, the
three-qubit NMR experiment that we have carried out suffices
to make a comprehensive test for our theory, because we have
achieved the key aspects of our theory. Although the simple case
with three qubits did not reflect the efficiency of quantum com-
putation for the SAT problem, we argue that, with more variables
and clauses involved, the quantum computing efficiency would
be more and more evident, which has been reflected in our pre-
vious discussion about the computational complexity. Second,
DNA computation does not involve entanglement, whereas en-
tanglement does appear in our quantum treatment. The necessity
of additional operations to disentangle the output qubits is not
the intrinsic characteristic of our quantum mechanical treatment,
but due to the unique feature of the NMR technique. Anyway,
those additional operations have not changed the essence of our
implementation.

VI. CONCLUSION

By using the mature technique of NMR, we have carried out a
solution for the simplest satisfiability problem. The experimen-
tal results are in good agreement with the theoreticalprediction.
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