
346 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 6, NO. 4, DECEMBER 2007

Fast Parallel DNA-Based Algorithms for Molecular
Computation: The Set-Partition Problem

Weng-Long Chang

Abstract—This paper demonstrates that basic biological opera-
tions can be used to solve the set-partition problem. In order to
achieve this, we propose three DNA-based algorithms, a signed par-
allel adder, a signed parallel subtractor and a signed parallel com-
parator, that formally verify our designed molecular solutions for
solving the set-partition problem.

Index Terms—DNA-based computing, the NP-complete prob-
lems, the NP-hard problems.

I. INTRODUCTION

I N 1994 Adleman [1] succeeded in solving an instance of
the Hamiltonian path problem in a test tube by handling

DNA strands. From [7], it was indicated that optimal solution
of every NP-complete or NP-hard problem is determined from
its characteristic. DNA-based algorithms had been offered to
solve many computational problems, and these contained the
set-splitting problem [8], the set-cover problem and the problem
of exact cover by 3-sets [9], the dominating-set [10], the in-
dependent-set problem [11], and the binary integer program-
ming problem [12]. Potentially significant area of application
for DNA algorithms is the breaking of encryption schemes [2],
[3] and the constructing of DNA databases [13].

The paper is organized as follows: Section II introduces DNA
models of computation proposed by Adleman and his coau-
thors in detail. Section III introduces the DNA program to solve
the set-partition problem from solution spaces of DNA strands.
Conclusions are drawn in Section IV.

II. BACKGROUND

A. DNA Manipulations

Tube from [1]–[5] is a set of molecules of DNA (a multiset
of finite strings over the alphabet A, C, G, T). Given a tube,
one can perform the following operations.

i. Extract. Given a tube P and a short single strand of
DNA, S, the operation produces two tubes (P, S) and

(P, S), where (P, S) is all of the molecules of DNA in
P which contain as a substrand and (P, S) is all of the
molecules of DNA in P which do not contain .

ii. Merge. Given tubes P and , yield P , P), where
(P , P) = P P .

Manuscript received November 24, 2004; revised October 3, 2006. This work
was supported in part by the R.O.C. National Science Council under Grant
95-2221-E-151-034-.

The author is with the Department of Computer Science and Information En-
gineering, National Kaohsiung University of Applied Sciences, Kaohsiung 807,
Taiwan, R.O.C. (e-mail: changwl@cc.kuas.edu.tw).

Digital Object Identifier 10.1109/TNB.2007.909012

iii. Detect. Given a tube P, if P includes at least one DNA
molecule, then we have “yes.” Otherwise, we have “no.”

iv. Discard. Given a tube P, the operation will discard P.
v. Amplify. Given a tube P, the operation Amplify(P P P)

will produce two new tubes P and P so that P and P
are totally a copy of P (P and P are now identical) and
P becomes an empty tube.

vi. Append. Given a tube P containing a short strand of DNA,
Z, the operation will append Z onto the end of every
strand in P.

vii. Append-head. Given a tube P containing a short strand
of DNA, Z, the operation will append Z onto the head of
every strand in P.

viii. Read. Given a tube P, the operation is used to describe a
single molecule, which is contained in tube P.

III. MOLECULAR SOLUTIONS OF THE SET-PARTITION PROBLEM

A. The Introduction of the Set-Partition Problem

Assume that a finite set is , where is the
th element for . Also suppose that every element

in is a positive integer. Assume that is the number of
elements in and is equal to . The set-partition problem
is to determine whether there is a subset such that

where and .
Suppose that a finite set is . Eight subsets, , of

are and .
The corresponding eight subsets, to are

and . The
sum for each pair (is, subsequently,

and . So the solution of the
set-partition problem for is and .

B. A Pseudoalgorithm for Solving the Set-Partition Problem

From definition of the set-partition problem in Section III-A,
the form of an expression, , can be trans-
formed into another form .
The following pseudoalgorithm is used to solve the set-partition
problem.

Method 1: Solving the set-partition problem.

(1) Every computation of for each
pair is simultaneously performed on a molecular
computer.

(2) On a molecular computer, search the answer,
, from the result generated by

Step (1).

EndMethod

1536-1241/$25.00 © 2007 IEEE

CHANG: FAST PARALLEL DNA-BASED ALGORITHMS FOR MOLECULAR COMPUTATION: THE SET-PARTITION PROBLEM 347

C. A Library for Solving the Set-Partition Problem

Assume that an -bit binary number, , is applied
to represent elements in a finite set , where the value of
each bit is either 1 or 0 for 1 . From [6], for
every bit representing the th element in a finite set to
1 , two distinct 15 base value sequences are designed.
For the sake of convenience in our presentation, assume that

denotes the value of to be 1 and defines the value of
to be 0. Each of the 2 different values encoding each pair

(was represented by a library sequence of bases
including the concatenation of one value sequence for each bit.
Library sequences are also termed library strands and a combi-
natorial pool containing library strands is termed a library. The
following algorithm is used to construct a library to solve the
set-partition problem.

Procedure Init

(1) For to

(1a) Amplify .

(1b) Append-head .

(1c) Append-head .

(1d) .

EndFor

EndProcedure

Lemma 1: A library for solving the set-partition problem can
be constructed from the algorithm Init .

Proof: Each time Step (1a) is used to amplify tube and
to generate two new tubes, and , which are copies of ,
and tube becomes empty. Then, on each execution of Step
(1b), it is applied to append a DNA sequence, representing the
value 1 for , onto the head of every strand in tube . This
means that the th element in a finite set appears in tube
and it is in a subset of but not in the corresponding subset

. Each time Step (1c) is also employed to append a DNA se-
quence, representing the value 0 for , onto the head of every
strand in tube . That implies that the th element in a finite
set does not appear in tube and it is not in a subset of

but in the corresponding subset . Next, on each execution
of Step (1d), it is used to pour tube and into tube . This
indicates that DNA strands in tube include DNA sequences
of and . After repeating execution of Steps (1a)
through (1d), it finally produces tube that consists of li-
brary sequences encoding pairs (.

D. Solution Space of the Value for Every Element of Each
Subset for Solving the Set-Partition Problem of a Finite Set

The value of an element for 1 in an -ele-
ment finite set can be represented as a signed binary number,

. The bit is a signed bit, the value 0,
for it is used to represent positive sign and the value 1 to it is
employed to represent negative sign. The bit is the highest
order bit and the bit is the lowest order bit. From [6], for
every bit to 1 , two distinct DNA sequences

are designed. For the sake of convenience in our presentation,
assume that denotes the value of to be 1 and de-
fines the value of to be 0. The following algorithm is pro-
posed to construct library sequences encoding the value of each
element in every subset from tube , generated by the algo-
rithm, Init .

Procedure Value

(1) For to

(1a) and .

(1b) For to

(1c) Append-head .

(1d) Append-head .

EndFor

(1e) Append-head .

(1f) Append-head .

(1g) .

EndFor

EndProcedure

Lemma 2: Library sequences encoding the value of each el-
ement in every subset to a finite set can be constructed from
the algorithm Value .

Proof: Refer to Lemma 1.

E. A Library Sequence of an Initial Value to Computation of
the Sum for Elements in Each Subset in a Finite Set

From definition of the set-partition problem denoted in Sec-
tions III-A and III-B, it is indicated that adder and subtractor
of times are used to perform computation of the sum for
elements in each subset in an -element finite set . Assume
that is used to represent the sum of elements in each subset
in an -element finite set . Also suppose that the length of

is bits and is represented as a -bit binary
number, , where the value of each bit
is either 1 or 0 for and . The
bit is a signed bit, the value 0, for it is used to represent
positive sign and the value 1 to it is employed to represent
negative sign. The bits and are employed to represent
the most significant bit and the least significant bit for , re-
spectively. If updating of the th time for is finished through
an adder, then two binary numbers
and are used to represent the
augend and the sum of the th updating, respectively. If
updating of the th time for is finished through a sub-
tractor, then two binary numbers and

are applied to represent the min-
uend and the difference of the th updating, respectively. From
[6], for every bit , two distinct 15 base value sequences
are designed. For the sake of convenience in our presentation,
assume that denotes the value of to be 1 and
defines the value of to be 0. The following algorithm is

348 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 6, NO. 4, DECEMBER 2007

used to construct a library sequence to encode an initial value
to computation of the sum for elements in every pair (
to a finite set .

Procedure InitialValue

(1) For to

(1a) Append-head .

EndFor

EndProcedure

Lemma 3: Library strands for initial values to computation
of the sum for elements in every pair (to a finite set
can be constructed from the algorithm, InitialValue . Proof:
Similar to Lemma 1.

F. The Construction of a Parallel One-Bit Comparator

The following algorithm, OneBitComparator
, is presented to finish the

function of a one-bit parallel comparator.

Procedure OneBitComparator(,

(1) and .

(2) and .

(3) and .

(4) and .

(5) and .

(6) and .

(7)

(8) .

(9) .

(10) .

(11) .

(12) .

EndProcedure

Lemma 4: The algorithm OneBitComparator
can be applied to finish the

function of a one-bit parallel comparator.
Proof: The execution for Steps (1) through (3) employs

the extract operations to form six test tubes. Tube includes
library sequences that have , tube consists of
library strands that have , tube includes library
sequences that have and , tube consists
of library strands that have and , tube
includes library sequences that have and
and tube consists of library strands that have
and . Next, the execution for Steps (4) through (6)
applies also the extract operations to form six test tubes. Tube

includes library sequences that have , tube
consists of library strands that have , tube includes
library sequences that have and , tube
consists of library strands that have and ,
tube includes library sequences that have and

, and tube consists of library strands that have
and . The execution to Steps (7) through (12)

uses the merge operations to pour tubes and into
tube , to pour tubes and into tube , to pour
tube into tube , to pour tube into tube , to
pour tube into tube and to pour tube into tube

.
From the algorithm OneBitComparator

, it takes six extract operations, six
merge operations, and 18 test tubes to perform the function of
a one-bit parallel comparator.

G. The Construction of a Signed Parallel Comparator

The following algorithm, ParallelComparator
is proposed to perform the

function of a -bit signed parallel comparator.

Procedure ParallelComparator

(1) and .

(2) and .

(3) and .

(4) For to 1

(4a) OneBitComparator
.

(4b) If ((Detect “no”) and (Detect “no”))
then

(4c) Terminate the execution of the loop.

EndIf

EndFor

(5) .

(6) .

EndProcedure

Lemma 5: The algorithm ParallelComparator
can be used to finish the

function of a -bit signed parallel comparator.
Proof: The execution for Steps (1) through (3) employs

the extract operations to form six test tubes. Tube includes
library sequences that have , tube consists of
library strands that have , tube includes library
sequences that have and , tube
consists of library strands that have and ,
tube includes library sequences that have and

, and tube consists of library strands that have
and . The only loop is used to implement

the function of a -bit signed parallel comparator. The

CHANG: FAST PARALLEL DNA-BASED ALGORITHMS FOR MOLECULAR COMPUTATION: THE SET-PARTITION PROBLEM 349

TABLE I
TRUTH TABLE OF A ONE-BIT ADDER

first execution of Step (4a) calls the algorithm OneBitCom-
parator to finish
the comparative result of a bit. On the first execution of Step
(4b), it uses the detect operations to check whether there is
any DNA sequence in tubes and . If the two detect
operations both return a “no,” then the execution of Step (1c)
will terminate the execution of the loop. Otherwise, Repeat
execution of Steps (4a) through (4b) until every bit is processed.
Finally, the execution for Steps (5) through (6) uses the merge
operations to pour tube into tube and to pour tube

into tube .

H. The Construction of a Parallel One-Bit Adder

A one-bit adder is to perform the arithmetic sum of three input
bits. It includes three inputs and two outputs. Two of the input
bits are used to represent augend and addend bits to be added,
respectively. The third input represents the carry from the pre-
vious lower significant position. The first output gives the value
of the sum for augend and addend bits to be added. The second
output gives the value of the carry to augend and addend bits to
be added. The truth table of a one-bit adder is shown in Table I.

Suppose that two one-bit binary numbers denoted in Sec-
tion III-E, and , represent the first input of a one-bit
adder for and , and the first
output of a one-bit adder, respectively, a one-bit binary number
denoted in Section III-D, , represents the second input of a
one-bit adder for and , and two
one-bit binary numbers, and , represent the second
output and the third input of a one-bit adder, respectively. Two
distinct DNA sequences are designed to encode the value “0”
or “1” for every bit and to and

. For the sake of convenience in our presenta-
tion, assume that contains the value of to be 1 and
contains the value of to be 0. Also suppose that de-
notes the value of to be 1 and defines the value of

to be 0. Similarly, assume that contains the value
of to be 1 and contains the value of to be

0. The following algorithm is proposed to perform the function
of a parallel one-bit adder.

Procedure ParallelOneBitAdder

(1) and .

(2) and .

(3) and .

(4) and .

(5) and .

(6) and .

(7) and .

(8) Append-head and Append-head .

(9) Append-head and Append-head .

(10) Append-head and Append-head .

(11) Append-head and
Append-head .

(12) Append-head and
Append-head .

(13) Append-head and
Append-head .

(14) Append-head and
Append-head .

(15) Append-head and
Append-head .

(16) .

EndProcedure

Lemma 6: The algorithm ParallelOneBitAdder
can be applied to finish the function of a parallel

one-bit adder.
Proof: Refer to Lemma 1 through Lemma 5.

I. The Construction of a Signed Binary Parallel Adder

The one-bit adder introduced in Section III-H figures out the
sum and the carry of two input bits and a previous carry. Two
signed -bit binary numbers each can be added by means
of this one-bit adder. A signed binary parallel adder is to finish
the arithmetic sum for two signed -bit binary numbers.
The following algorithm is proposed to finish the function of a
signed binary parallel adder.

Procedure BinaryParallelAdder

(0) If (Detect “yes”) then

(1) Append-head .

(2) .

(3) For to

(3a) ParallelOneBitAdder .

350 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 6, NO. 4, DECEMBER 2007

EndFor

(4) .

(5) Append-head .

EndIf

(5a) If (Detect “yes”) then

(6) Append-head .

(7) .

(8) For to

(8a) ParallelOneBitAdder .

EndFor

(9) .

(10) Append-head .

EndIf

EndProcedure

Lemma 7: The algorithm BinaryParallelAdder
can be applied to finish the function of a signed binary par-

allel adder.
Proof: Refer to Lemma 1 through Lemma 5.

J. The Construction of a Parallel One-Bit Subtractor for the
Absolute Value of the First Operand Greater Than or Equal to
the Absolute Value of the Second Operand

A one-bit subtractor is to finish the arithmetic subtraction of
three input bits. It consists of three inputs and two outputs. Two
of the input bits represent minuend and subtrahend bits to be
subtracted. The third input represents the borrow bit from the
previous lower significant position. The first output gives the
value of the difference for minuend and subtrahend bits to be
subtracted. The second output gives the value of the borrow bit
to minuend and subtrahend bits to be subtracted. The truth table
of a one-bit subtractor is shown in Table II.

Suppose that the two one-bit binary numbers and
denoted in Subsection in Section III, represent the first input
and the first output of a one-bit subtractor for
and . Also suppose a one-bit binary number

denoted in Section III-D, represents the second input of a
one-bit subtractor for and , and two
one-bit binary numbers and denoted in Subsection

in Section III represent the second output and the third input
of a one-bit subtractor. The following algorithm is proposed to
finish the function of a parallel one-bit subtractor.

Procedure ParallelOneBitSubtractorGE

(1) and .

(2) and .

(3) and .

(4) and .

TABLE II
TRUTH TABLE OF A ONE-BIT SUBTRACTOR

(5) and .

(6) and .

(7) and .

(8) Append-head and Append-head .

(9) Append-head and Append-head .

(10) Append-head and Append-head .

(11) Append-head and
Append-head .

(12) Append-head and
Append-head .

(13) Append-head and
Append-head .

(14) Append-head and
Append-head .

(15) Append-head and
Append-head .

(16) .

EndProcedure

Lemma 8: The algorithm ParallelOneBitSubtractor-
GE can be applied to finish the function of a
parallel one-bit subtractor for that the absolute value of the first
operand is greater than or equal to the absolute value of the
second operand.

Proof: Refer to Lemma 1 through Lemma 5.

K. The Construction of a Signed Binary Parallel Subtractor
for the Absolute Value of the First Operand Greater Than or
Equal to the Absolute Value of the Second Operand

The one-bit subtractor introduced in Section III-J figures out
the difference bit and the borrow bit for two input bits and a

CHANG: FAST PARALLEL DNA-BASED ALGORITHMS FOR MOLECULAR COMPUTATION: THE SET-PARTITION PROBLEM 351

previous borrow. Two signed - bit binary numbers can
finish subtractions of times by means of this one-bit sub-
tractor. A signed binary parallel subtractor is to finish arith-
metic subtraction for two signed -bit binary numbers.
The following algorithm is proposed to finish the function of a
signed binary parallel subtractor for that the absolute value of
the first operand is greater than or equal to the absolute value of
the second operand.

Procedure BinaryParallelSubtractorGE

(1) If (Detect “yes”) then

(2) Append-head .

(3) .

(4) For to

(4a) ParallelOneBitSubtractorGE .

EndFor

(5) .

(6) Append-head .

EndIf

(7) If (Detect “yes”) then

(8) Append-head .

(9) .

(10) For to

(10a) ParallelOneBitSubtractorGE .

EndFor

(11) .

(12) Append-head .

EndIf

EndProcedure

Lemma 9: The algorithm BinaryParallelSubtractor-
GE can be applied to finish the function of a
signed binary parallel subtractor for that the absolute value of
the first operand is greater than or equal to the absolute value
of the second operand.

Proof: Refer to Lemma 1 through Lemma 5.

L. The Construction of a Parallel One-Bit Subtractor for the
Absolute Value of the First Operand Less Than the Absolute
Value of the Second Operand

Because the absolute value of the first operand is less than the
absolute value of the second operand, suppose that two one-bit
binary numbers and denoted in Section III-E are
used to represent the second input and the first output of a
one-bit subtractor for and , a
one-bit binary number denoted in Section III-D is applied
to represent the first input of a one-bit subtractor for
and and two one-bit binary numbers and

denoted in Section III-H are employed to represent the
second output and the third input of a one-bit subtractor. The
following algorithm is proposed to finish the function of a
parallel one-bit subtractor for that the absolute value of the first
operand is less than the absolute value of the second operand.

Procedure ParallelOneBitSubtractorLT

(1) and).

(2) and .

(3) and .

(4) and).

(5) and .

(6) and .

(7) and .

(8) Append-head and Append-head .

(9) Append-head and Append-head .

(10) Append-head and Append-head .

(11) Append-head and
Append-head .

(12) Append-head and
Append-head .

(13) Append-head and
Append-head .

(14) Append-head and
Append-head .

(15) Append-head and
Append-head .

(16) .

EndProcedure

Lemma 10: The algorithm ParallelOneBitSubtractor-
LT can be applied to finish the function of a
parallel one-bit subtractor for that the absolute value of the first
operand is less than the absolute value of the second operand.

Proof: Refer to Lemma 1 through Lemma 5.

M. The Construction of a Binary Parallel Subtractor for the
Absolute Value of the First Operand Less Than the Absolute
Value of the Second Operand

The following algorithm is proposed to finish the function of
a binary parallel subtractor for that the absolute value of the first
operand is less than the absolute value of the second operand.

Procedure BinaryParallelSubtractorLT

(1) If (Detect “yes”) then

(2) Append-head .

(3) .

352 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 6, NO. 4, DECEMBER 2007

(4) For to

(4a) ParallelOneBitSubtractorLT .

EndFor

(5) .

(6) Append-head .

(7) If (Detect “yes”) then

(8) Append-head .

(9) .

(10) For to

(10a) ParallelOneBitSubtractorLT .

EndFor

(11) .

(12) Append-head .

EndIf

EndProcedure

Lemma 11: The algorithm BinaryParallelSubtractor-
LT can be applied to finish the function of a
binary parallel subtractor for that the absolute value of the first
operand is less than the absolute value of the second operand.

Proof: Refer to Lemma 1 through Lemma 5.

N. The Algorithm for Solving the Set-Partition Problem

The following DNA algorithm is applied to solve the set-par-
tition problem.

Algorithm 1: Solve the set-partition problem

(1) Init .

(2) Value .

(3) InitialValue .

(4) For to

(4a) ParallelComparator
.

(4b) BinaryParallelAdder .

(4c) BinaryParallelSubtractorGE .

(4d) BinaryParallelSubtractorLT .

(4e) .

EndFor

(5)For to

(5a) and .

(5b) Discard .

EndFor

(6) If (Detect “yes”) then

(6a) Read .

EndIf

EndAlgorithm

Theorem 1: From those steps in Algorithm 1, the set-partition
problem to a finite -element set can be solved.

Proof: On the execution of Step (1), it calls Init to
construct library sequences for 2 pairs of subsets, (for
the set-partition problem to a finite -element set, . This means
that tube includes library sequences encoding 2 possible
solutions for the set-partition problem to a finite -element set,

. Next, the execution of Step (2) calls Value to perform
to encode the value of every element in each pair . This
implies that the value of every element in each pair is
encoded by library sequences in tube . On the execution of
Step (3), it calls InitialValue to encode an initial value of
the sum for every element in each pair . This indicates
that tube contains library sequences encoding an initial value
of the sum for every element in each pair .

Next, Step (4) is a single loop and is mainly used to per-
form computation of the sum for every element in each pair

. On each execution of Step (4a), it calls ParallelCom-
parator to classify
library sequences in tube into six classes from their values.
Two operands of an addition encoded by library sequences in
tube are positive integers and two operands of an addition
encoded by library sequences in tube are negative integers.
Two operands of an addition encoded by library sequences in
tube are, subsequently, a positive integer and a negative
integer and the absolute value of the first operand is greater
than or equal to the absolute value of the second operand.
Two operands of an addition encoded by library sequences in
tube are, subsequently, a positive integer and a negative
integer and the absolute value of the first operand is less than
the absolute value of the second operand. Two operands of
an addition encoded by library sequences in tube are,
subsequently, a negative integer and a positive integer and the
absolute value of the first operand is greater than or equal to
the absolute value of the second operand. Two operands of
an addition encoded by library sequences in tube are,
subsequently, a negative integer and a positive integer and the
absolute value of the first operand is less than the absolute
value of the second operand. Next, on each execution of Step
(4b), it calls BinaryParallelAdder to perform
computation of addition for library sequences in tube and
in tube . Each execution for Step (4c) calls BinaryPar-
allelSubtractorGE to perform computation
of subtraction for library sequences in tube and in tube

. Next, on each execution of Step (4d), it calls BinaryPar-
allelSubtractorLT to perform computation of
subtraction for library sequences in tube and in tube .
Next, each execution of Step (4e) uses the merge operations to
pour tubes and into tube .
After repeating execution of Steps (4a) through (4e), it finally

CHANG: FAST PARALLEL DNA-BASED ALGORITHMS FOR MOLECULAR COMPUTATION: THE SET-PARTITION PROBLEM 353

produces library sequences in tube that perform computation
of the sum for 2 pairs of subsets, .

Next, Step (5) is a single loop and is mainly used to find the
answer for the set-partition problem to a finite -element set .
On each execution of Step (5a), it applies the extract operation to
form two tubes: and . Tube contains library sequences
that have and Tube includes library sequences
that have . Next, each execution for Step (5b) uses
the discard operation to discard tube . After repeating exe-
cution of Steps (5a) through (5b), it finally produces library se-
quences in tube that encode any answer for the set-partition
problem to a finite -element set . Then, the execution for Step
(6) employs the detect operation to check if tube contains any
library sequence or not. If it returns a “yes,” then the execution
for Step (6a) uses the read operation to read the solution for the
set-partition problem to a finite -element set, . Therefore, any
solution for the set-partition problem to a finite -element set
can be computed from those steps in Algorithm 1.

O. The Complexity of Solving the Set-Partition Problem to
a Finite N-element Set

Theorem 2: The set-partition problem for a finite -element
set can be solved with) biological operations,)
library sequences, tubes, and the longest library strand

from solution space of library sequences, where the
number of bits for the value of each element in is
bits.

Proof: Refer to Algorithm 1.

IV. CONCLUSION

In this paper, the first DNA algorithm of a signed parallel
adder, the first DNA algorithm of a signed parallel subtractor,
and the first DNA algorithm of a signed parallel comparator are
proposed to perform the function of signed parallel addition,
the function of signed parallel subtraction, and the function of
signed parallel comparator. Currently the future of molecular
computers is unclear. It is possible that in the future molecular
computers will be the clear choice for performing massively
parallel computations. However, there are still many technical
difficulties to overcome before this becomes a reality. We hope

that this paper helps to demonstrate that molecular computing
is a technology worth pursuing.

REFERENCES

[1] L. Adleman, “Molecular computation of solutions to combinatorial
problems,” Science, vol. 266, pp. 1021–1024, 1994.

[2] W.-L. Chang, M. Guo, and M. Ho, “Fast parallel molecular algo-
rithms for DNA-based computation: Factoring integers,” IEEE Trans.
Nanobiosci., vol. 4, no. 2, pp. 149–163, Jun. 2005.

[3] W.-L. Chang, M. Ho, and M. Guo, “Molecular solutions for the
subset-sum problem on DNA-based supercomputing,” BioSystems,
vol. 73, no. 2, pp. 117–130, 2004.

[4] W.-L. Chang and M. Guo, “Solving the set-cover problem and the
problem of exact cover by 3-sets in the Adleman-Lipton model,”
BioSystems, vol. 72, no. 3, pp. 263–275, 2003.

[5] G. Paun, G. Rozenberg, and A. Salomaa, DNA Computing: New Com-
puting Paradigms. New York: Springer-Verlag, 1998.

[6] L. M. Adleman, R. S. Braich, C. Johnson, P. W. K. Rothemund, D.
Hwang, and N. Chelyapov, “Solution of a 20-variable 3-SAT problem
on a DNA computer,” Science, vol. 296, no. 5567, pp. 499–502, 2002.

[7] M. Guo, W.-L. Chang, M. Ho, J. Lu, and J. Cao, “Is optimal solution
of every NP-complete or NP-hard problem determined from its char-
acteristic for DNA-based computing,” Biosystems, vol. 80, no. 1, pp.
71–82, 2005.

[8] W.-L. Chang, M. Guo, and M. Ho, “Towards solution of the set-split-
ting problem on gel-based DNA computing,” Future Gener. Comput.
Syst., vol. 20, no. 5, pp. 875–885, Jun. 15, 2004.

[9] W.-L. Chang and M. Guo, “Solving the set-cover problem and the
problem of exact cover by 3-sets in the Adleman-Lipton’s model,”
BioSystems, vol. 72, no. 3, pp. 263–275, 2003.

[10] W.-L. Chang, M. Ho, and M. Guo, “Fast parallel molecular solution
to the dominating-set problem on massively parallel bio-computing,”
Parallel Comput., vol. 30, no. 9–10, pp. 1109–1125, 2004.

[11] W.-L. Chang, M. Guo, and J. Wu, “Solving the independent-set
problem in a DNA-based supercomputer model,” Parallel Process.
Lett., vol. 15, no. 4, pp. 469–480, Dec. 2005.

[12] C.-W. Yeh, C.-P. Chu, and K.-R. Wu, “Molecular solutions to the
binary integer programming problem based on DNA computation,”
Biosystems, vol. 83, no. 1, pp. 56–66, Jan. 2006.

[13] A. Schuster, “DNA databases,” BioSystems, vol. 81, pp. 234–246, 2005.

Weng-Long Chang received the Ph.D. degree in
computer science and information engineering from
National Cheng Kung University, Taiwan, R.O.C.,
in 1999.

He is currently an Associated Professor at Na-
tional Kaohsiung University of Applied Sciences,
Kaosiung, Taiwan. His research interests include
the design of DNA-based algorithms on molecular
computing, and languages and compilers for parallel
computing.

