
The Journal of Supercomputing, 31, 111–135, 2005
C© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

A Polynomial-Time Dependence Test for Determining
Integer-Valued Solutions in Multi-Dimensional Arrays
Under Variable Bounds

WENG-LONG CHANG
Department of Information Management, Southern Taiwan University of Technology, Tainan County,
Taiwan 710, Republic of China

CHIH-PING CHU chucp@csie.ncku.edu.tw
JIA-HWA WU
Department of Computer Science and Information Engineering, National Cheng Kung University,
Tainan, Taiwan 701, Republic of China

Abstract. Multi-dimensional arrays with linear subscripts occur quite frequently in real programs. For multi-
dimensional linear arrays under variable bounds as well as any given direction vectors, the generalized Lambda
test is an efficient and precise data dependence method to check whether there exist real-valued solutions. In
this paper, we propose a multi-dimensional generalized interval test—a polynomial-time dependence test that can
be applied towards testing whether there are integer-valued solutions for multi-dimensional linear arrays under
variable limits and any given direction vectors. Experimental results with benchmark showing the effects of the
multi-dimensional generalized interval test over the generalized Lambda test are also presented.

Keywords: parallelizing/vectorizing compiler, data dependence analysis, loop parallelization, loop vectorization

1. Introduction

The question of whether multi-dimensional array references with linear subscripts may
be parallelized/vectorized depends upon the resolution of those multi-dimensional array
aliases. The resolution of multi-dimensional array aliases is to ascertain whether two ref-
erences to the same multi-dimensional array within a general loop may refer to the same
element of that multi-dimensional array. If the two references to the same multi-dimensional
array within a general loop do not refer to the same element, then the general loop can be
executed in parallel. Otherwise, it will be executed sequentially. This problem in general
case can be reduced to that of checking whether a system of m linear equations with n
unknown variables has a simultaneous integer solution, which satisfies the constraints for
each variable in the system. It is assumed that m linear equations in a system are written as

a1,1 X1 + a1,2 X2 + · · · + a1,n−1 Xn−1 + a1,n Xn = a1,0

... (1.1)

am,1 X1 + am,2 X2 + · · · + am,n−1 Xn−1 + am,n Xn = am,0,

112 CHANG, CHU AND WU

Figure 1. A nested do-loop in Fortran language.

where each ai, j is a constant integer for 1 ≤ i ≤ m and 0 ≤ j ≤ n. It is postulated that the
constraints to each variable in (1.1) are represented as

Pr,0 +
r−1∑
s=1

Pr,s Xs ≤ Xr ≤ Qr,0 +
r−1∑
s=1

Qr,s Xs, (1.2)

where Pr,0, Qr,0, Pr,s and Qr,s are constant integers for 1 ≤ r ≤ n. That is, the bounds for
each variable Xr are variable.

If each of Pr,s and Qr,s is zero in the limits of (1.2), then (1.2) will be reduced to

Pr,0 ≤ Xr ≤ Qr,0, where 1 ≤ r ≤ n. (1.3)

That is, the bounds for each variable Xr are constants. Let us use an example to make clear
the illustrations stated above. Consider the nested do-loop in Figure 1.

The lower and upper bounds of the first (outer) loop and the second (inner) loop are,
respectively, 1 and 10. Therefore, the bounds of the do-loop are constants. This do-loop
executes 100 iterations by consecutively assigning the values 1, 2, . . . , 10 to J and I and
executing the body (the statement S) exactly once in each iteration. The net effect of the
do-loop execution is then the ordered execution of the statements:

A(1, 1) = B(1, 1)

A(2, 2) = B(2, 2)

. . .

A(100, 100) = B(100, 100).

To ascertain whether two references to the multi-dimensional array A may refer to the same
element of A we have to check if the following two linear equations

10 × X1 − 10 × X2 + X3 − X4 = 0

10 × X1 − 10 × X2 + X3 − X4 = 0

have a simultaneous integer solution under the constant bounds 1 ≤ X1, X2 ≤ 10, and
1 ≤ X3,X4 ≤ 10.

A POLYNOMIAL-TIME DEPENDENCE TEST 113

There are several well-known data dependence analysis algorithms applicable for one-
dimensional arrays under constant bounds or variable bounds: the GCD test [1–3, 30],
Banerjee’s method [1–3], the I test and the direction vector I test [17, 20, 23–25], the
extended I test and the generalized direction vector I test [5, 7] and the interval reduction test
[15]. There are also several well-known data dependence analysis algorithms applicable for
multi-dimensional arrays under constant bounds or variable bounds: the generalized GCD
test [1–3], the Lambda test [19], the generalized Lambda test [8], the multi-dimensional I
test [9], the Power test [31] and the Omega test [26]. There are several well-known data
dependence analysis algorithms applicable for arrays with linear subscripts with symbolic
coefficients or with non-linear subscripts under symbolic bounds: the infinity Banerjee test
[3, 22], the Range test [4], the infinity Lambda test [6] and the access range test [13, 21].

In this paper, the extended I test and the generalized direction vector I test [5, 7],
the Lambda test and the generalized Lambda test are integrated to check whether m lin-
ear Eq. (1.1) under variable bounds and any given direction vectors have integer-valued
solutions (A dependence testing method determining if there exist integer-valued solu-
tions is more precise than that determining if there exist real-valued solutions). A the-
oretical analysis explains that we take advantage of the trapezoidal shape of the con-
vex sets derived from m linear equations under variable limits and any given direction
vectors in a data dependence testing. An algorithm called the multi-dimensional gen-
eralized interval test has been implemented and several measurements have also been
performed.

The rest of this paper is proffered as follows. In Section 2, the summary accounts of the
extended I test and the direction vector I test, the Lambda test and the generalized Lambda
test are presented. In Section 3, the theoretical aspects and the worst-case time complexity of
the multi-dimensional generalized interval test are described. Experimental results showing
the advantages of the multi-dimensional generalized interval test are given in Section 4.
Finally, brief conclusions are drawn in Section 5.

2. Background

The summary accounts of the extended I test and the direction vector I test, the Lambda
test and the generalized Lambda test are introduced briefly in this section.

2.1. The extended I test and the generalized direction vector I test

A linear equation with the bounds of (1.2) as well as any give direction vectors will be
said to be integer solvable if the equation has an integer solution satisfying the bounds of
each variable. Definitions 2.1 and 2.2, respectively, define direction vectors and interval
equations [3, 17].

Definition 2.1 A vector of the form �θ = (θ1, . . . , θd) is termed as a direction vector. The
direction vector (θ1, . . . , θd) is said to be the direction vector from S1(�i) to S2(�j) if for

114 CHANG, CHU AND WU

1 ≤ k ≤ d, ikθk jk, i.e., the relation θk is defined by

θk =

< if ik< j k,

= if ik = jk,

> if ik > jk,

∗ the relation of ik and jk can be ignored, i.e., can be any one of {<, =, >}.

Definition 2.2 Let a1, . . . , an−1, an , L and U be integers. A linear equation

a1 X1 + a2 X2 + · · · + an−1 Xn−1 + an Xn = [L , U], (2.1)

which is referred to as an interval equation, will be used to denote the set of ordinary
equations consisting of:

a1 X1 + a2 X2 + · · · + an−1 Xn−1 + an Xn = L

a1 X1 + a2 X2 + · · · + an−1 Xn−1 + an Xn = L + 1
...

a1 X1 + a2 X2 + · · · + an−1 Xn−1 + an Xn = U.

In the following, Definition 2.3 states the definition of the set of all integer intervals.
Definition 2.4 describes the definition of the set of all interval equations. Definition 2.5
introduces the definition of the set for the length of the right-hand side interval on every
interval equation in the set of all interval equations.

Definition 2.3 Suppose that the constraints of Xr for 1 ≤ r ≤ n are equal to the bounds of
(1.2). Let [b0 +∑n

r=1 br Xr , c0+
∑n

r=1 cr Xr] represent the set of all the integer intervals for
every Xr to satisfy the bounds of (1.2), where b0, c0, br and cr for 1 ≤ r ≤ n are integers.
The set of all the integer intervals, A, is denoted to be equal to

{[
b0 +

n∑
r=1

br yr , c0 +
n∑

r=1

cr yr

] ∣∣∣∣∣ Pr,0 +
r−1∑
s=1

Pr,s ys ≤ yr ≤ Qr,0

+
r−1∑
s=1

Qr,s ys for 1 ≤ r ≤ n

}
.

Definition 2.4 Suppose that the constraints of Xr for 1 ≤ r ≤ n are equal to the bounds
of (1.2). Let

L = b0 +
n∑

r=1

br Xr and U = c0 +
n∑

r=1

cr Xr ,

A POLYNOMIAL-TIME DEPENDENCE TEST 115

where L ≤ U, and b0, c0, br and cr for 1 ≤ r ≤ n are integers. Let a1, . . . , an−1, an be
integers. The following interval equation

a1 X1 + a2 X2 + · · · + an−1 Xn−1 + an Xn = [L , U], (2.2)

which is referred to as a variable interval equation, will be used to denote the set of all the
interval equations inferred from every variable Xr under the bounds of (1.2). The set of all
the interval equations � is denoted to be equal to

{
a1 y1 + · · · + an yn =

[
b0 +

n∑
r=1

br yr , c0 +
n∑

r=1

cr yr

] ∣∣∣∣∣
Pr,0 +

r−1∑
s=1

Pr,s ys ≤ yr ≤ Qr,0 +
r−1∑
s=1

Qr,s ys for 1 ≤ r ≤ n

}
.

Definition 2.5 Suppose that the constraints of Xr for 1 ≤ r ≤ n are equal to the bounds
of (1.2). Let K represent the left-hand-side expression

∑n
r=1 ar Xr , L = b0 + ∑n

r=1 br Xr

and U = c0 + ∑n
r=1 cr Xr in the Eq. (2.2), where L ≤ K ≤ U, and b0, c0, ar , br and cr

for 1 ≤ r ≤ n are integers. The set � for the length of the right-hand side interval on every
interval equation in the Eq. (2.2) is denoted to be equal to

{
1 + (c0 − b0) +

n∑
r=1

(cr − br)yr)

∣∣∣∣∣ Pr,0 +
r−1∑
s=1

Pr,s ys ≤ yr ≤ Qr,0

+
r−1∑
s=1

Qr,s ys for 1 ≤ r ≤ n

}
.

A variable interval Eq. (2.2) will be said to be integer solvable if one of the equations
in the set, which it defines, is integer solvable. The immediate way to determine this is
to test if an integer in between L and U is divisible by the GCD of the coefficients of the
left-hand-side terms. If each of br and cr is zero for 1 ≤ r ≤ n, then the set of all the
interval equations � only contains one interval equation. The set � will be said to be integer
solvable if one of the interval equations in the set � is integer solvable. If

b0 +
n∑

r=1

br yr > c0 +
n∑

r=1

cr yr

in every interval equation in the set �, then there are no integer solutions for the set �. If

n∑
r=1

ar yr < b0 +
n∑

r=1

br yr or
n∑

r=1

ar yr > c0 +
n∑

r=1

cr yr

116 CHANG, CHU AND WU

in every interval equation in the set �, then there are no integer solutions for the set �. If the
expression of the left-hand side for one of the interval equations in the set � is zero items,
then the set � will be said to be integer solvable if and only if

b0 +
n∑

r=1

br yr ≤ 0 ≤ c0 +
n∑

r=1

cr yr .

It is easy to see that a linear Eq. (1.1) is integer solvable if and only if the only interval
equation in the set

a1 X1 + a2 X2 + · · · + an−1 Xn−1 + an Xn = [a0, a0]}
is integer solvable.

In light of the extended I test [5] and the generalized direction vector I test [7], if there
is the coefficient ak for one item in a variable interval Eq. (2.2) with a small enough value
to justify the movement of the item to the right, then the item is moved to the right and
the value of the right-side interval is changed. Repeat the processing until the number of
the item in the left-side in the variable interval Eq. (2.2) is reduced to zero. The two tests
generate three possible results when they are used to determine integer solutions of the
variable Eq. (2.2). The first generated result of ‘yes’ means that the variable Eq. (2.2) has
integer solutions, and the second generated result of ‘no’ means that there are no integer
solutions for the variable Eq. (2.2). The third generated value of ‘maybe’, on the other hand,
shows that the variable Eq. (2.2) has a solution which satisfies the limits on all the variables
which the two tests have managed to move to the right-hand side of the variable Eq. (2.2),
and might still have a solution which satisfies the limits on the rest of the variables.

2.2. The Lambda test and the generalized Lambda test

Coupled references are groups of reference positions sharing one or more index variables
[19, 31]. Geometrically, each linear equation in (1.1) defines a hyperplane π in Rn spaces.
The intersection S of m hyperplanes corresponds to the common solutions to all linear
equations in (1.1). Obviously, if S is empty then there is no data dependence. Inspecting
whether S is empty is trivial in linear algebra [3]. In general, the Banerjee inequalities and
the Banerjee Algorithm [5] are, respectively, first applied to test each hyperplane in (1.1)
under the bounds of (1.3) or in (1.1) with the bounds of (1.2). If every hyperplane intersects
V, then the Lambda test or the generalized Lambda test are employed to simultaneously
check every hyper-plane with bounds of (1.3) or (1.2), respectively. The tests form linear
combinations of coupled references that eliminate one or more instances of index variables
when direction vectors are not considered. While direction vectors are considered, the two
methods generate new linear combinations that use a pair of relative index variables.

3. The multi-dimensional generalized interval test

Given the data dependence problem of multi-dimensional arrays with linear subscripts
with variable bounds and any given direction vectors, we propose a multi-dimensional

A POLYNOMIAL-TIME DEPENDENCE TEST 117

generalized interval test (generalized I test and generalized direction vector I test). The
multi-dimensional generalized interval I test examines a system of linear equations and
deduces whether the system has integer-valued solutions. The linear equations have to be
first transformed by the multi-dimensional generalized interval test to their corresponding
variable interval equations. It is straightforward that the linear equations are integer solvable
if and only if its corresponding variable interval equations are integer solvable.

Assume that there are m variable interval equations written as

a1,1 X1 + a1,2 X2 + · · · + a1,n−1 Xn−1 + a1,n Xn

=
[

b(1)
0 +

r=n∑
r=1

b(1)
r Xr , c(1)

0 +
r=n∑
r=1

c(1)
r Xr

]
(3.1)

am,1 X1 + am,2 X2 + · · · + am,n−1 Xn−1 + am,n Xn

=
[

b(m)
0 +

r=n∑
r=1

b(m)
r Xr , c(m)

0 +
r=n∑
r=1

c(m)
r Xr

]
,

where each ai,r , b(i)
0 , b(i)

r , c(i)
0 and c(i)

r is a constant integer for 1 ≤ i ≤ m and 1 ≤ r ≤ n.

The constraints to each variable in (3.1) are postulated to be

Pr,0 +
r−1∑
s=1

Pr,s Xs ≤ Xr ≤ Qr,0 +
r−1∑
s=1

Qr,s Xs, (3.2)

where Pr,0 and Qr,0 are constant integers for 1 ≤ r ≤ n, and X2k−1 and X2k satisfy
constraints of direction vectors for for 1 ≤ k ≤ d, where d is the number of common
loops. Let Fi be the i-th variable interval equation in (3.1). Geometrically, Fi consists of
1 + (c(i)

0 − b(i)
0) + ∑n

r=1 (c(i)
r − b(i)

r)yr linear equations, where

Pr,0 +
r−1∑
s=1

Pr,s ys ≤ yr ≤ Qr,0 +
r−1∑
s=1

Qr,s ys for 1 ≤ r ≤ n,

in which each linear equation is parallel each other. Hence, Fi contains 1 + (c(i)
0 − b(i)

0) +∑n
r=1 (c(i)

r − b(i)
r)yr hyperplanes in which each hyperplane is parallel each other. The in-

tersection S of m variable interval equations corresponds to the common solutions to all
variable interval equations in (3.1). Obviously, if S is empty then there is no data depen-
dence. The bounds of (3.2) and any given direction vectors define a bounded convex set V
in Rn. If any of variable interval equations in (3.1) does not intersect V, then obviously S
can not intersect V. However, even if every variable interval equation in (3.1) intersects V, it
is still possible that S and V are disjoint. It is assumed that two variable interval equations in
(3.1), respectively, intersect V. But the intersection of them is outside of V. If one can find a
new variable interval equation which contains S but is disjoint from V, then it immediately
follows that S and V do not intersect. The following theorem is an extension of Theorem 1 in
[6] and guarantees that if S and V are disjoint, then there must be a variable interval equation

118 CHANG, CHU AND WU

which consists of S and is disjoint from V. Furthermore, this variable interval equation is
a linear combination of equations in (3.1). On the other hand, if S and V intersect, then no
such linear combination exists.

Theorem 3.1 S ∩V = � if and only if there exists one variable interval equation, β, only
consisting of one linear equation, which corresponds to a linear combination of equations
in (3.1) :

〈
m∑

i=1

λi ∗ �ai , �X
〉

=
[

m∑
i=1

λi ∗ ai,0,

m∑
i=1

λi ∗ ai,0

]
,

where

b(i)
0 +

r=n∑
r=1

b(i)
r Xr ≤ ai,0 ≤ c(i)

0 +
r=n∑
r=1

c(i)
r Xr for1 ≤ i ≤ m,

such that β ∩ V = � · 〈�ai , �X〉 denotes the inner product of �ai = (ai,1, . . . , ai,n) and
⇀

X = (X1, . . . , Xn).

Proof: (⇐) The variable interval equation, β, contains S and is disjoint from V. So we
can immediately derive that S is disjoint from V.

(⇒) For the convenience of the proof, (3.1) are rewritten as A ∗ ⇀

Y = O,

where

A =

−a1,0 a1,1 · · · a1,n

...
...

...
...

−am,0 am,1 · · · am,n

(m)∗(n+1)

, �Y =

1

X1

...

Xn

(n+1)∗1

,

O is a m ∗ 1 zero matrix, and

b(i)
0 +

r=n∑
r=1

b(i)
r Xr ≤ ai,0 ≤ c(i)

0 +
r=n∑
r=1

c(i)
r Xr

for 1 ≤ i ≤ m. We can let

S = {(X1, . . . , Xn) : A �Y = O}, V = {(X1, . . . , Xn) : Pr,0

+
r−1∑
s=1

Pr,s Xs ≤ Xr ≤ Qr,0 +
r−1∑
s=1

Qr,s Xs for 1 ≤ r ≤ n and X2k−1 and X2k

A POLYNOMIAL-TIME DEPENDENCE TEST 119

satisfy constraints of direction vectors for for 1 ≤ k ≤ d, where d is the number of com-
mon loops}, S′ = {(1, X1, . . . , Xn) : ∀(X1, . . . , Xn) ∈ S}, and V ′ = {(1, X1, . . . , Xn) :
∀(X1, . . . , Xn) ∈ V}. Because S ∩ V = �, we can infer S′ ∩ V ′ = �.

We let α = Span(�b1, . . . , �bm), where �bi = (−ai,0, ai,1, . . . , ai,n).∀ �C ∈ α and �D ∈ S′,
we can obtain the inner product of �C and �D as follows

〈 �C, �D〉 =
〈

m∑
i=1

λi ∗ �bi , �D
〉

= λ1(−a1,0 + a1,1 X1 + · · · + a1,n Xn)

+ · · · + λm(−am,0 + am,1 X1 + · · · + am,n Xn)

= λ1(0) + · · · + λm(0)

= 0.

Therefore, we can at once derive that α is the orthogonal complementary space of S′. For
any �Z in V ′, consider �P Z , the projection of �Z on S′. Since ‖ �P Z − �Z‖ is a continuous
function on V ′ and V ′ is bounded, there must be exist �Z0 in V ′ such that ‖ �P Z0 − �Z0‖ =
min �Z∈V ′ ‖ �P Z − �Z‖. This is the minimum distance between S′ and V ′. Since �Z0 − �P Z0

is orthogonal to S′, it must be in α. Hence, the equation 〈 �Z0 − �P Z0 ,
�D〉 = 0 is a linear

combination of equations in (3.1), i.e., �Z0 − �P Z0 = λ1 ∗ �b1 + · · · + λm ∗ �bm . The equation
〈 �Z0 − �P Z0 ,

�D〉 = 0 is actually equal to〈
m∑

i=1

λi ∗ �ai , �X
〉

=
m∑

i=1

λi ∗ ai,0.

Therefore, the equation,

〈
m∑

i=1

λi ∗ �ai , �X
〉

=
m∑

i=1

λi ∗ ai,0,

is transformed to one new variable interval equation,

〈
m∑

i=1

λi ∗ �ai , �X
〉

=
[

m∑
i=1

λi ∗ ai,0,

m∑
i=1

λi ∗ ai,0

]
.

Let β be the new variable interval equation. Hence, we can immediately conclude that the
new variable interval equation, β, which contains S. Since 〈 �Z0 − �P Z0 ,

�Z〉 > 0 for any �Z in
V ′ (Refer to [6].), so each element �X in V satisfies

〈
m∑

i=1

λi ∗ �ai , �X
〉

>

m∑
i=1

λi ∗ ai,0.

Therefore, we can at once derive β ∩ V = �.

120 CHANG, CHU AND WU

An array (λ1, . . . , λm) in Theorem 3.1 determines one variable interval equation that
contains S. There are infinite number of such variable interval equations. The tricky part
in the multi-dimensional generalized interval test is to examine as few variable interval
equations as necessary to determine whether S and V intersect. We start from the case of m
= 2, both for convenience of presentation and for practical importance of two-dimensional
arrays [12].

3.1. The case of two dimensional array references

In the case of two dimensional array references, two variable interval equations in (3.1) are

F1 =
[

b(1)
0 +

r=n∑
r=1

b(1)
r Xr , c(1)

0 +
r=n∑
r=1

c(1)
r Xr

]

and

F2 =
[

b(2)
0 +

r=n∑
r=1

b(2)
r Xr , c(2)

0 +
r=n∑
r=1

c(2)
r Xr

]

where Fi = ai,1 X1 + · · · + ai,n Xn for 1 ≤ i ≤ 2. An arbitrary linear combination of the
two variable interval equations can be written as λ1 F1 + λ2 F2 = [λ1 ∗ a1,0 + λ2 ∗ a2,0, λ1 ∗
a1,0 + λ2 ∗ a2,0], where

b(1)
0 +

r=n∑
r=1

b(1)
r Xr ≤ a1,0 ≤ c(1)

0 +
r=n∑
r=1

c(1)
r Xr and

b(2)
0 +

r=n∑
r=1

b(2)
r Xr ≤ a2,0 ≤ c(2)

0 +
r=n∑
r=1

c(2)
r Xr .

The domain of (λ1, λ2) is the whole R2 space. Let Fλ1,λ2 = λ1 F1 + λ2 F2 = [λ1 ∗ a1,0 +
λ2 ∗ a2,0, λ1 ∗ a1,0 + λ2 ∗ a2,0], that is Fλ1,λ2 = −(λ1a1,0 + λ2a2,0) + (λ1a1,1 + λ2a2,1)X1 +
· · · + (λ1a1,n + λ2a2,n)Xn = 0. By [19], Fλ1,λ2 is viewed in two ways. With (λ1, λ2)
fixed, Fλ1,λ2 is a linear function of (X1, . . . ,Xn) in Rn. With (X1, . . . ,Xn) fixed, it is a
linear function of (λ1, λ2) in R2. Furthermore, the coefficient of each variable in Fλ1,λ2 is
a linear function of (λ1, λ2) in R2, i.e.,
 (i) = λ1a1,i + λ2a2,i for 1 ≤ i ≤ n or �(i) =
λ1(a1,2i−1 + a1,2i) + λ2(a2,2i−1 + a2,2i) for 1 ≤ i ≤ d. The equation
 (i) = 0, 1 ≤ i ≤ n,

is called a
 line in R2. The equation �(i) = 0, 1 ≤ i ≤ d, is called a � line in R2.

A nonempty set C ⊂ Rm is a cone if ε�λ ∈ C for each �λ ∈ C and ε ≥ 0 [30]. It is
obvious that each cone contains the zero vector. Moreover, a cone that includes at least one
nonzero vector �λ must consist of the“ray”of �λ, namely {ε�λ | ε ≥ 0.}. Such cones can clearly
be viewed as the union of rays. By [19], there are at most n
 lines and n/2� lines which
together divide R2 into at most 3n regions. Each region contains the zero vector. Any one
nonzero element �λ and the zero vector in the region form the ray of �λ, namely {ε�λ | ε ≥ 0}.

A POLYNOMIAL-TIME DEPENDENCE TEST 121

Therefore, each region can be viewed as the union of the rays. It is very obvious from the
definition of cone that each region is a cone [30].

In the following, Lemmas 3.1 to 3.6 are extended from [5, 7, 8, 17, 19]. Definitions 3.1
to 3.2 are cited from [19] directly.

Lemma 3.1 Suppose that a bounded convex set V is defined simply by the limits of (3.2).
(The dependence directions will later be taken account of.) If Fλ1 ,λ2 = [λ1 ∗ a1,0 + λ2 ∗
a2,0, λ1 ∗ a1,0 + λ2 ∗ a2,0] is (Pr,0 + ∑r−1

s=1 Pr,s Xs ≤ Xr ≤Qr,0 + ∑r−1
s=1 Qr,s Xs for 1 ≤

r ≤ 2n)—integer solvable for every (λ1, λ2) in every
 line, then Fλ1 ,λ2 = [λ1 ∗ a1,0 +
λ2 ∗ a2,0, λ1 ∗ a1,0 + λ2 ∗ a2,0] is also (Pr,0 + ∑r−1

s=1 Pr,s Xs ≤ Xr ≤Qr,0 + ∑r−1
s=1 Qr,s Xs for

1 ≤ r ≤ n)—integer solvable for every (λ1, λ2) in R2.

Proof:

1. From the extended I test in [5], becauseFλ1 ,λ2 = [λ1 ∗ a1,0 + λ2 ∗ a2,0, λ1 ∗ a1,0 + λ2 ∗
a2,0] is (Pr,0 + ∑r−1

s=1 Pr,s Xs ≤ Xr ≤Qr,0 + ∑r−1
s=1 Qr,s Xs for 1 ≤ r ≤ n)—integer

solvable for every (λ1, λ2) in every
 line, there must be at least one element in V such
that Fλ1 ,λ2 − (λ1 ∗ a1,0 + λ2 ∗ a2,0) = 0.

2. We have that Fλ1 ,λ2 − (λ1 ∗ a1,0 + λ2 ∗ a2,0) = 0 for any point (λ1, λ2) on every
 line
according to the assumption of the lemma. It is immediately concluded that Fλ1 ,λ2 =
[λ1 ∗ a1,0 +λ2 ∗ a2,0, λ1 ∗ a1,0 +λ2 ∗ a2,0] is (Pr,0 + ∑r−1

s=1 Pr,s Xs ≤ Xr ≤ Qr,0 + ∑r−1
s=1

Qr,s Xs for 1 ≤ r ≤ n)—integer solvable for every point (λ1, λ2) on the boundaries of
each cone.

3. Every point in each cone can be expressed as a linear combination of some points on the
boundary of the same cone, as being a well-known fact in the convex theory. Any point
(λ5, λ6) in a cone is assumed to be capable of being represented as (ελ1+τλ3, ελ2 + τλ4),
where (λ1, λ2) and (λ3, λ4) are points in the boundary of the cone and ε ≥ 0 and τ ≥ 0.

Because

Fλ5,λ6 (X1, . . . , Xn) − (λ5a1,0 + λ6a2,0) = Fελ1+τλ3,ελ2+τλ4 (X1, . . . , Xn)

− (ελ1 + τλ3)a1,0 − (ελ2 + τλ4)a2,0

= ε ∗ (
Fλ1,λ2 (X1, . . . , Xn) − (λ1a1,0 + λ2a2,0)

) + τ ∗ (
Fλ3,λ4 (X1, . . . , Xn)

− (λ3a1,0 + λ4a2,0)
)

= ε ∗ 0 + τ ∗ 0

= 0,

we thus secure that Fλ5 ,λ6 = [λ5 ∗ a1,0 + λ6 ∗ a2,0, λ5 ∗ a1,0 + λ6 ∗ a2,0] is (Pr,0 +∑r−1
s=1 Pr,s Xs ≤ Xr ≤Qr,0 + ∑r−1

s=1 Qr,s Xs for 1 ≤ r ≤ n)—integer solvable for any
point (λ5, λ6) in each cone. Of course it is also true in the whole R2 space. Therefore,
for any point (λ1, λ2) in R2 space, Fλ1 ,λ2 = [λ1 ∗ a1,0 + λ2 ∗ a2,0, λ1 ∗ a1,0 + λ2 ∗ a2,0]
is (Pr,0 + ∑r−1

s=1 Pr,s Xs ≤ Xr ≤ Qr,0 + ∑r−1
s=1 Qr,s Xs for 1 ≤ r ≤ n)—integer solvable

in Rn space.

122 CHANG, CHU AND WU

Lemma 3.2 Suppose that a bounded convex set V is defined by the limits of (3.2) and any
given direction vectors. If Fλ1 ,λ2 = [λ1 ∗ a1,0 + λ2 ∗ a2,0, λ1 ∗ a1,0 + λ2 ∗ a2,0] is (P2k,0 ≤
X2k−1θk X2k ≤ Q2k,0 for 1 ≤ k ≤ d, and Pr,0 ≤ Xr ≤ Qr,0, for 2d +1 ≤ r ≤ n)—integer
solvable for every (λ1, λ2) in every � line, then Fλ1 ,λ2 = [λ1 ∗ a1,0 + λ2 ∗ a2,0, λ1 ∗ a1,0 +
λ2 ∗ a2,0] is also (P2k,0 ≤ X2k−1θk X2k ≤ Q2k,0 for 1 ≤ k ≤ d, and Pr,0 ≤ Xr ≤ Qr,0, for
2d + 1 ≤ r ≤ n)—integer solvable for every (λ1, λ2) in R2.

Proof: Similar to Lemma 3.1.

It is indicated from Lemmas 3.1 to 3.2 that variables in one variable interval equation
can be moved to the right if the coefficients of variables have small enough values to
justify the movement. If all coefficients for variables in one variable interval equation have
no sufficiently small values to justify the movements, then Lemmas 3.1 to 3.2 can not
be applied. While every variable in a variable interval equation can not be moved to the
right, Lemmas 3.3 to 3.6 describe a transformation using the GCD test which may enable
additional variables to be moved.

Lemma 3.3 Suppose that a bounded convex set V is defined simply by the limits of (3.2).
Let g = gcd(λ1a1,1 + λ2a2,1, . . . , λ1a1,n + λ2a2,n). If (1/g) ∗ Fλ1 ,λ2 = [�(λ1 ∗ a1,0 + λ2 ∗
a2,0)/g�, �(λ1 ∗ a1,0 + λ2 ∗ a2,0)/g�] is (Pr,0 + ∑r−1

s=1 Pr,s Xs ≤ Xr ≤Qr,0 + ∑r−1
s=1 Qr,s Xs

for 1 ≤ r ≤ n)—integer solvable for every (λ1, λ2) in every
 line, then (1/g) ∗
Fλ1 ,λ2 = [�(λ1 ∗ a1,0 + λ2 ∗ a2,0)/g�, �(λ1 ∗ a1,0 + λ2 ∗ a2,0)/g�] is also (Pr,0 +∑r−1

s=1 Pr,s Xs ≤ Xr ≤Qr,0 + ∑r−1
s=1 Qr,s Xs for 1 ≤ r ≤ n)—integer solvable for every

(λ1, λ2) in R2.

Proof: Similar to Lemma 3.1.

Lemma 3.4 Suppose that a bounded convex set V is defined by the limits of (3.2) and
any given direction vectors. Let g = gcd(λ1a1,1 + λ2a2,1, . . . , λ1a1,n + λ2a2,n). If (1/g) ∗
Fλ1 ,λ2 = [�(λ1 ∗a1,0 +λ2 ∗a2,0)/g�, �(λ1 ∗ a1,0 + λ2 ∗ a2,0)/g�] is (P2k,0 ≤ X2k−1θk X2k ≤
Q2k,0 for 1 ≤ k ≤ d, and Pr,0 ≤ Xr ≤ Qr,0, for 2d + 1 ≤ r ≤ n)—integer
solvable for every (λ1, λ2) in every � line, then (1/g) ∗ Fλ1 ,λ2 = [�(λ1 ∗ a1,0 + λ2 ∗
a2,0)/g�, �(λ1 ∗ a1,0 + λ2 ∗ a2,0)/g�] is also (P2k,0 ≤ X2k−1θk X2k ≤ Q2k,0 for 1 ≤ k ≤ d,

and Pr,0 ≤ Xr ≤ Qr,0, for 2d + 1 ≤ r ≤ n)—integer solvable for every (λ1, λ2) in R2.

Proof: Similar to Lemma 3.1.

Lemma 3.5 Suppose that a bounded convex set V is denoted simply by the limit of
(3.2). Let g = gcd(λ1a1,1 + λ2a2,1, . . . , λ1a1,n + λ2a2,n). Given a line in R2 cor-
responding to an equation aλ1 + bλ2 = 0, if Fλ1 ,λ2 = [λ1 ∗ a1,0 + λ2 ∗ a2,0, λ1 ∗
a1,0 +λ2 ∗ a2,0] or (1/g) ∗ Fλ1 ,λ2 = [�(λ1 ∗ a1,0 + λ2 ∗a2,0)/g�, �(λ1 ∗ a1,0 + λ2 ∗ a2,0)/g�]
is (Pr,0 + ∑r−1

s=1 Pr,s Xs ≤ Xr ≤Qr,0 + ∑r−1
s=1 Qr,s Xs for 1 ≤ r ≤ n)—integer solvable

A POLYNOMIAL-TIME DEPENDENCE TEST 123

in Rn space for any fixed point (λ0
1, λ

0
2) �= (0, 0) in the line, then for every (λ1, λ2)

in the line, Fλ1 ,λ2 = [λ1 ∗ a1,0 + λ2 ∗ a2,0, λ1 ∗ a1,0 + λ2 ∗ a2,0] or (1/g) ∗ Fλ1 ,λ2 =
[�(λ1∗a1,0+λ2∗a2,0)/g�, �(λ1 ∗ a1,0 + λ2 ∗ a2,0)/g��] is also (Pr,0+∑r−1

s=1 Pr,s Xs ≤ Xr ≤
Qr,0 + ∑r−1

s=1 Qr,s Xs for 1 ≤ r ≤ n)—integer solvable in Rn space

Proof: Similar to Lemma 3.1.

Lemma 3.6 Suppose that a bounded convex set V is denoted by the limit of (3.2) and any
given direction vectors. Let g = gcd(λ1a1,1 + λ2a2,1, . . . , λ1a1,n + λ2a2,n). Given a line in
R2 corresponding to an equation aλ1 + bλ2 = 0, if Fλ1 ,λ2 = [λ1 ∗ a1,0 + λ2 ∗ a2,0, λ1 ∗
a1,0 + λ2 ∗ a2,0] or (1/g) ∗ Fλ1 ,λ2 = [�(λ1 ∗ a1,0 + λ2 ∗ a2,0)/g�, �(λ1 ∗ a1,0 + λ2 ∗
a2,0)/g�] is (P2k,0 ≤ X2k−1θk X2k ≤ Q2k,0 for 1 ≤ k ≤ d, and Pr,0 ≤ Xr ≤ Qr,0, for
2d + 1 ≤ r ≤ n)—integer solvable in Rn space for any fixed point (λ0

1, λ
0
2) �= (0, 0) in the

line, then for every (λ1, λ2) in the line, Fλ1 ,λ2 = [λ1 ∗ a1,0 + λ2 ∗ a2,0, λ1 ∗ a1,0 + λ2 ∗ a2,0]
or (1/g) ∗ Fλ1 ,λ2 = [�(λ1 ∗ a1,0 +λ2 ∗ a2,0)/g�, �(λ1 ∗ a1,0 + λ2 ∗ a2,0)/g�] is also (P2k,0 ≤
X2k−1θk X2k ≤ Q2k,0 for 1 ≤ k ≤ d, and Pr,0 ≤ Xr ≤ Qr,0, for 2d + 1 ≤ r ≤ n)—integer
solvable in Rn space

Proof: Similar to Lemma 3.1.

Definition 3.1 Given an equation of the form aλ1 + bλ2 = 0 where a, b are not zero
simultaneously, a canonical solution of the equation is defined as follows:

(λ1, λ2) = (1, 0), if a = 0;

(λ1, λ2) = (0, 1), if b = 0;

(λ1, λ2) = (b, −a), if neither of a, b is zero.

(λ1, λ2) = (1, 1), if both of a and b are zero.

Definition 3.2 The set is denoted to be the set of all canonical solutions to
 equations
and � equations. Each element, (λ1, λ2), in the set corresponds to one variable interval
equation Fλ1 ,λ2 = [λ1 ∗ a1,0 + λ2 ∗ a2,0, λ1 ∗ a1,0 + λ2 ∗ a2,0].

By [19], there are at most n
 equations and n
2 � equations if V is denoted by the bounds

of (3.2) and any given direction vectors. Each of
 and � equations generates a canonical
solution according to Definition 3.1. Each canonical solution forms a new variable interval
equation, only containing the only linear equation in light of Definition 3.2. Obviously, new
variable interval equations tested are at most 3×n

2 if V is defined by the constraints of (3.2)
and any given direction vectors.

The multi-dimensional generalized interval test is employed to simultaneously check
every variable interval equation. It examines the subscripts from two dimensions, and then
figures out the set from
 and � equations. Each element in the set determines a new
variable interval equation. The new variable interval equation is tested to see if it intersects
V, by moving variables in one variable interval equation as done in the generalized direction
vector I test [7] for testing each single dimension.

124 CHANG, CHU AND WU

We now use an example to explain how the multi-dimensional generalized interval I test
works. Consider the following equations

X1 + X2 = 10

X1 − X2 = −2

subject to the bounds and given direction vectors

1 ≤ X1 ≤ 100, 1 ≤ X2 ≤ 100 and X1 < X2.

According to in Definition 2.1, the constraints for X1 and X2 will be redefined by 1 ≤
X1 ≤ 99, and 1 + X1 ≤ X2 ≤ 100. According to Definition 3.1, the � equations have one
canonical solutions (0, 1). According to Definition 3.2, one canonical solution (0, 1) yields
the following variable interval equations:

X1 − X2 = [−2, −2] (Ex1)

According to Definition 2.4, the set of all the interval equations
 for the variable interval
equation (Ex1) is equal to

{X1 − X2 = [−2, −2]|every variableXr satisfies its bounds for1 ≤ r ≤ 2}.

The set � for the length of the right-hand side interval on every variable interval equation
in the set � is {1}. Therefore, the maximum element in the set � is one. It is obvious from
Definition 2.4 that the set � is integer solvable if the only variable interval equation in the
set � is integer solvable. The coefficient for X2 satisfies the assumption of the extension
of the direction vector I test [7]: (1) −1 < 0, (2) −1 ≤ 0 ≤ 0, (3) −1 ≤ 0 ≤ 0 and (4) the
absolute value of the coefficient is equal to one. The extension of the direction vector I test
is applied towards moving the term X2 to the right-hand side of the only variable interval
equation in the set �. The new set �1 in light of the extension of the direction vector I test
and Definition 2.4 is

{X1 = [X1 − 1, 98]|every variable Xr satisfies its bounds for 1 ≤ r ≤ 1}.

Now the set �1 for the length of the right-hand side interval on every interval equation
in the set �1 is equal to {100 − X1|1 ≤ X1 ≤ 99}. The maximum element computed by the
Banerjee algorithm [1] in the set �1 is 99. When the maximum element is 99, the value for
X1 is equal to 1. Because X1 = 1 and 1 ≤ X1 ≤ 99, so X1 −1 ≤ X1 ≤ 98 hold. Therefore,
there exists a constant interval equation in the set �1 satisfying the given limitations. The
coefficient for X1 satisfies the assumption of the extension of the direction vector I test: (1)
1 > 0, (2)1 ≥ 1 ≥ 0, (3)1 ≥ 0 ≥ 0, and (4) the value of the coefficient is less than 99.

A POLYNOMIAL-TIME DEPENDENCE TEST 125

The extension of the direction vector I test is employed toward moving the term −X1 to the
right. The new set �2 is

{0 = [−1, 98 − X1] | 1 ≤ X1 ≤ 99}.

The expression of the left-hand side on the variable interval equation in the set �2 is reduced
to zero items. The variable interval equation in the set �2 is integer solvable because
−1 ≤ 0 ≤ 98 − X1 hold for 1 ≤ X1 ≤ 99. Therefore, the multi-dimensional generalized
interval test in light of Lemmas 3.1 to 3.6 infers that there is integer-valued solution.

3.2. The case of multi-dimensional array references

We take account of m interval equations in (3.1) with m > 2 for generalizing the multi-
dimensional generalized interval test. All m variable interval equations are assumed to be
connected; otherwise they can be partitioned into smaller systems. As stated before, we can
hypothesize that there are no redundant equations. An arbitrary linear combination of m
variable interval equations in (3.1) can be written as

Fλ1,...,λm =
〈

m∑
i=1

λi ∗ �ai , �X
〉

=
[

m∑
i=1

λi ∗ ai,0,

m∑
i=1

λi ∗ ai,0

]
,

where

b(i)
0 +

r=n∑
r=1

b(i)
r Xr ≤ ai,0 ≤ c(i)

0 +
r=n∑
r=1

c(i)
r Xr for 1 ≤ i ≤ m and 〈�ai , �X〉

denotes the inner product of �ai = (ai,1, . . . , ai,n) and
⇀

X = (X1, . . . , Xn).
Assume that

g = gcd

(
m∑

i=1

λi ∗ ai,1, . . . ,

m∑
i=1

λi ∗ ai,n

)
.

It is to be determined whether

Fλ1,...,λm =
[

m∑
i=1

λi ∗ ai,0,

m∑
i=1

λi ∗ ai,0

]

or

(1/g) ∗ Fλ1,...,λm =
[⌈(

m∑
i=1

λi ∗ ai,0

)/
g

⌉
,

⌊(
m∑

i=1

λi ∗ ai,0

)/
g

⌋]

126 CHANG, CHU AND WU

is (Pr,0 + ∑r−1
s=1 Pr,s Xs ≤ Xr ≤Qr,0 + ∑r−1

s=1 Qr,s Xs for 1 ≤ r ≤ 2n)—integer solvable in
Rn space for arbitrary (λ1, . . . , λm),or it is to be tested if

Fλ1,...,λm =
[

m∑
i=1

λi ∗ ai,0,

m∑
i=1

λi ∗ ai,0

]

or

(1/g) ∗ Fλ1,...,λm =
[⌈(

m∑
i=1

λi ∗ ai,0

)/
g

⌉
,

⌊(
m∑

i=1

λi ∗ ai,0

)/
g

⌋]

is (P2k,0 ≤ X2k−1θk X2k ≤ Q2k,0 for 1 ≤ k ≤ d, and Pr,0 ≤ Xr ≤ Qr,0, for 2d + 1 ≤
r ≤ n)—integer solvable in Rn space for arbitrary (λ1, . . . , λm). By [19], the coefficient
of each variable in Fλ1,...,λm is a linear function of (λ1, . . . , λm) in Rm, which is
 (i) =∑m

j=1 λ j a j,i for 1 ≤ i ≤ n and �(i) = ∑m
j=1 λ j (a j,2i−1 + a j,2i) for 1 ≤ i ≤ d. The

equation
(i) = 0, 1 ≤ i ≤ n, is called a
 equation (also called λ line). The equation
�(i) = 0, 1 ≤ i ≤ d, is called a � equation (also called λ line).

The following Lemmas are extended from [5, 7, 8, 17, 19].

Lemma 3.7 Suppose that a bounded convex set V is defined simply by the limits of (3.2).
Let

g = gcd

(
m∑

i=1

λi ∗ ai,1, . . . ,

m∑
i=1

λi ∗ ai,n

)
.

If

Fλ1,...,λm =
[

m∑
i=1

λi ∗ ai,0,

m∑
i=1

λi ∗ ai,0

]

or

(1/g) ∗ Fλ1,...,λm =
[⌈(

m∑
i=1

λi ∗ ai,0

)/
g

⌉
,

⌊(
m∑

i=1

λi ∗ ai,0

)/
g

⌋]

is (Pr,0 + ∑r−1
s=1 Pr,s Xs ≤ Xr ≤Qr,0 + ∑r−1

s=1 Qr,s Xs for 1 ≤ r ≤ n)—integer solvable for
every (λ1, . . . , λm) in every λ line, then

Fλ1,...,λm =
[

m∑
i=1

λi ∗ ai,0,

m∑
i=1

λi ∗ ai,0

]

A POLYNOMIAL-TIME DEPENDENCE TEST 127

or

(1/g) ∗ Fλ1,...,λm =
[⌈(

m∑
i=1

λi ∗ ai,0

)/
g

⌉
,

⌊(
m∑

i=1

λi ∗ ai,0

)/
g

⌋]

is also (Pr,0 + ∑r−1
s=1 Pr,s Xs ≤ Xr ≤Qr,0 + ∑r−1

s=1 Qr,s Xs for 1 ≤ r ≤ n)—integer solvable
for every (λ1, . . . , λm) in Rm space.

Proof: Similar to Lemma 3.1.

Lemma 3.8 Suppose that a bounded convex set V is defined by the limits of (3.2) and any
given direction vectors. Let

g = gcd

(
m∑

i=1

λi ∗ ai,1, . . . ,

m∑
i=1

λi ∗ ai,n

)
.

If

Fλ1,...,λm =
[

m∑
i=1

λi ∗ ai,0,

m∑
i=1

λi ∗ ai,0

]

or

(1/g) ∗ Fλ1,...,λm =
[⌈(

m∑
i=1

λi ∗ ai,0

)/
g

⌉
,

⌊(
m∑

i=1

λi ∗ ai,0

)/
g

⌋]

is (P2k,0 ≤ X2k−1θk X2k ≤ Q2k,0 for 1 ≤ k ≤ d, and Pr,0 ≤ Xr ≤ Qr,0, for 2d + 1 ≤ r ≤
n)—integer solvable for every (λ1, . . . , λm) in every λ line, then

Fλ1,...,λm =
[

m∑
i=1

λi ∗ ai,0,

m∑
i=1

λi ∗ ai,0

]

or

(1/g) ∗ Fλ1,...,λm =
[⌈(

m∑
i=1

λi ∗ ai,0

)/
g

⌉
,

⌊(
m∑

i=1

λi ∗ ai,0

)/
g

⌋]

is also (P2k,0 ≤ X2k−1θk X2k ≤ Q2k,0 for 1 ≤ k ≤ d, and Pr,0 ≤ Xr ≤ Qr,0, for
2d + 1 ≤ r ≤ n)—integer solvable for every (λ1, . . . , λm) in Rm space.

128 CHANG, CHU AND WU

Proof: Similar to Lemma 3.1.

Lemma 3.9 Suppose that a bounded convex set V is defined simply by the limits of (3.2).
Given a line in Rm which crosses the origin of the coordinates and let

g = gcd

(
m∑

i=1

λi ∗ ai,1, . . . ,

m∑
i=1

λi ∗ ai,n

)
.

If

Fλ1,...,λm =
[

m∑
i=1

λi ∗ ai,0,

m∑
i=1

λi ∗ ai,0

]

or

(1/g) ∗ Fλ1,...,λm =
[⌈(

m∑
i=1

λi ∗ ai,0

)/
g

⌉
,

⌊(
m∑

i=1

λi ∗ ai,0

)/
g

⌋]

is (Pr,0 +∑r−1
s=1 Pr,s Xs ≤ Xr ≤ Qr,0 +∑r−1

s=1 Qr,s Xs for 1 ≤ r ≤ n)—integer solvable in Rn

space for any fixed point (λ0
1, . . . , λ

0
m) �= (0, . . . , 0) in the line, then for every (λ1, . . . , λm)

in the line,

Fλ1,...,λm =
[

m∑
i=1

λi ∗ ai,0,

m∑
i=1

λi ∗ ai,0

]

or

(1/g) ∗ Fλ1,...,λm =
[⌈(

m∑
i=1

λi ∗ ai,0

)/
g

⌉
,

⌊(
m∑

i=1

λi ∗ ai,0

)/
g

⌋]

is also (Pr,0 + ∑r−1
s=1 Pr,s Xs ≤ Xr ≤Qr,0 + ∑r−1

s=1 Qr,s Xs for 1 ≤ r ≤ n)—integer solvable
in Rn space

Proof: Similar to Lemma 3.3.

Lemma 3.10 Suppose that a bounded convex set V is defined by the limits of (3.2) and
any given direction vectors. Given a line in Rm which crosses the origin of the coordinates
and let

g = gcd

(
m∑

i=1

λi ∗ ai,1, . . . ,

m∑
i=1

λi ∗ ai,n

)
.

A POLYNOMIAL-TIME DEPENDENCE TEST 129

If

Fλ1,...,λm =
[

m∑
i=1

λi ∗ ai,0,

m∑
i=1

λi ∗ ai,0

]

or

(1/g) ∗ Fλ1,...,λm =
[⌈(

m∑
i=1

λi ∗ ai,0

)/
g

⌉
,

⌊(
m∑

i=1

λi ∗ ai,0

)/
g

⌋]

is (P2k,0 ≤ X2k−1θk X2k ≤ Q2k,0 for 1 ≤ k ≤ d, and Pr,0 ≤ Xr ≤ Qr,0, for 2d + 1 ≤ r ≤
n)—integer solvable in Rn space for any fixed point (λ0

1, . . . , λ
0
m) �= (0, . . . , 0) in the line,

then for every (λ1, . . . , λm) in the line,

Fλ1,...,λm =
[

m∑
i=1

λi ∗ ai,0,

m∑
i=1

λi ∗ ai,0

]

or

(1/g) ∗ Fλ1,...,λm =
[⌈(

m∑
i=1

λi ∗ ai,0

)/
g

⌉
,

⌊(
m∑

i=1

λi ∗ ai,0

)/
g

⌋]

is also (P2k,0 ≤ X2k−1θk X2k ≤ Q2k,0 for 1 ≤ k ≤ d, and Pr,0 ≤ Xr ≤ Qr,0, for
2d + 1 ≤ r ≤ n)—integer solvable in Rn space.

Proof: Similar to Lemma 3.3.

The details of the multi-dimensional generalized interval test in the general case is not
considered here since the discussion is similar to the case of m = 2.

3.3. The algorithm

For convenience of presentation, the extended I test [5] and the extended direction vector I
test [7] are called as the extended interval test. We now summarize the illustration into an
algorithm. The algorithm is described below.

Input: M interval equations (3.1), the constraints (3.2) to each variable in (3.1) and a set of
λ values (λ1, . . . , λm).

Output:

no: Equations (3.1) under the constraints (3.2) have no integer-valued solutions.
yes: Equations (3.1) under the constraints (3.2) have integer-valued solutions.

maybe: The proposed method cannot conclude whether Eqs. (3.1) under the constraints
(3.2) have integer-valued solutions.

130 CHANG, CHU AND WU

Method:

Step 1. According to (λ1, . . . , λm), we can obtain a new interval equation,

Fλ1,...,λm =
〈

m∑
i=1

λi ∗ �ai , �X
〉

=
[

m∑
i=1

λi ∗ ai,0,

m∑
i=1

λi ∗ ai,0

]
,

where 〈�ai , �X〉 denotes the inner product of �ai = (ai,1, . . . , ai,n) and
⇀

X = (X1, . . . , Xn).
Step 2. The extended interval test is applied to deal with the new interval equation.
Step 3. If the extended interval test finds there exists an integer solution, then a result of yes

is returned and the processing is terminated. Otherwise, go to Step 4.
Step 4. If the extended interval test determines there exist no integer solutions, then a result

of no is returned and the processing is terminated. Otherwise, go to Step 5.
Step 5. The extended interval test cannot be applied to determine if there exists an integer

solution. A result of maybe is returned and the processing is terminated.

If the proposed method returns a result of yes or no, then that result is accurate; i.e., a
returned value of yes means that the equations have integer-valued solutions and a returned
value of no means that the equations have no integer-valued solutions. A returned value of
maybe, on the other hand, means that the proposed method does not derive whether the
equations have integer-valued solutions.

3.4. Time complexity

The main phases for the multi-dimensional interval test include (1) calculating λ values and
(2) examining each variable interval equation. λ values are easily determined according to

equations, � equations and Definition 3.1. It is clear that the time complexity to computing
a λ value is O (y) from Definition 3.1, where y is a constant. Each λ value corresponds to
one variable interval equation. Each variable interval equation is tested to see if it intersects
V, by moving variables in left-hand side of one variable interval equation to right-hand
side of the variable interval equation as done in the generalized I test and the generalized
direction vector I test for one single dimension [5, 7]. The worst-case time complexity for
them is O(n3 + y ∗ n2 + n2) [5, 7], where n is the number of variables in variable interval
equations. Hence, the time complexity of for the multi-dimensional generalized interval
test examining one variable interval equation is derived to be O(n3 + y ∗ n2 + n2 + y).
The number of variable interval equations checked in the multi-dimensional generalized
interval test is at most

m∏
i=1

(Ui − Li + 1) ∗
(

n

m − 1

)
,

A POLYNOMIAL-TIME DEPENDENCE TEST 131

where m is the number of original coupled references and Li and Ui are lower and upper
bounds in right-hand side of original variable interval equations for 1 ≤ i ≤ m, in light of
statements in Sections 3.1 and 3.2 and [19]. Therefore, the worst-case time complexity for
the multi-dimensional generalized interval test is immediately inferred to be

O

([
n

m − 1

]
∗ (n3 + y ∗ n2 + n2 + y) ∗

(
m∏

i=1

(Ui − Li + 1)

))
.

Two-dimensional arrays with linear subscripts appear quite frequently in real programs
[27]. As the lower and upper bounds are initially the same in right-hand side of an initial
variable interval equations in coupled references in real programs, therefore, the number
of variable interval equations examined in each two-dimensional array tested is at most 3n

2
according to statements in Section 3.1. If the multi-dimensional generalized interval test is
applied to deal with two-dimensional arrays, then their worst-case time complexity is

O

(
3n

2
∗ (n3 + n2 ∗ y + n2 + y)

)
.

The worst-case time complexity for the Lambda test and the generalized Lambda test dealing
with the same array is, respectively,

O

(
3n

2
∗

(
n + y

))
and O

(
3n

2
∗

(
n2 + y

))
.

However, in general, the efficiency of the multi-dimensional generalized interval test is only
slightly poorer than that of the generalized Lambda test, the Lambda test, the extended I
test and the generalized direction vector I test because the number of variables, n, in the
variable interval equations tested is generally very small.

4. Experimental results

We tested the multi-dimensional generalized interval test and performed experiments on
Personal Computer Intel Pentium IV through the benchmark codes cited from [11, 18, 28].
515 pairs of array references were observed to have linear subscripts. Meanwhile, it is also
noticed that all of the loop lower bounds are constants and all of the loop upper bounds are
variable bounds having at least one symbolic constant (unknown at compile time). Therefore,
in order to test the multi-dimensional generalized interval test those symbolic constants are
assumed to be constants 100. The choice of 100 is arbitrary. In [22] it is reported that,
for the Perfect Benchmarks, data dependence testing results (i.e., number of dependences,
independences and unanalyzable subscripts existed in the codes) obtained for the original
symbolic constant bounds are quite close to that for the assumed constant bounds. This means
that our assumption to the constant, 100, does not change the dependence results (features)
existed in the original benchmark codes. The multi-dimensional generalized interval test is
only applied to test those arrays with linear subscripts and under variable bounds.

132 CHANG, CHU AND WU

Table 1. Testing capability of the multi-dimensional generalized interval test and the generalized Lambda test
for 515 pairs of linear benchmark array references

Pairs of The number of The number of
arrays integer-valued non-integer-valued Accuracy

Testing method tested solutions solutions Maybe∗ rate

The proposed method 515 6 36 473 8.1%
The generalized Lambda test 515 0 36 479 7.0%

Maybe∗: The testing methods can not generate definitive results for these arrays tested.

The results obtained (Table 1) reveal the multi-dimensional generalized interval test
determined that there were 36 integer-valued solutions and 6 non-integer-valued solutions.
This implies that there were definitive results for 42 pairs of linear arrays. The “accuracy
rate” in Table 1 refers to, when given a set of linear subscripts with variable bounds, how
often the multi-dimensional generalized interval test detects a case where there is a definitive
solution. Let b be the number of the coupled subscripts with variable bounds found in our
experiments, and let c be the number that is detected to have definitive solutions. Thus
the accuracy rate is denoted to be equal to c/b. In our experiments, 515 pairs of array
references checked were found to have linear subscripts with variable bounds, and 42 of
them were found to have definitive solutions. So the accuracy rate for the multi-dimensional
generalized interval test was about 8.1%.

We also implemented the generalized Lambda test based on [8] to compare their effects
with that of the proposed method. The generalized Lambda test was applied to resolve
the same 515 pairs of multi-dimensional coupled arrays. It is very clear from the result
shown in Table 1 that the generalized Lambda test determined that there were definitive
solutions for 36 pairs of linear coupled arrays. Let d be the number of the coupled sub-
scripts with variable bounds found in our experiments, and let e be the number that is
detected by the proposed method and is not checked by the generalized Lambda test to
have definitive solutions. Thus, the improvement rate is denoted to be equal to e/d. In
our experiments, 515 pairs of array references were found to have linear subscripts with
variable bounds, and 6 of them were found by the proposed method and were not found
by the generalized Lambda test to have definitive solutions. So the improvement rate of
the multi-dimensional generalized interval test over the generalized Lambda test was about
1.2%. In our experiments, 6 of them are from six different subroutines. This implies that
the speedup of the six different programs can be significantly improved by the proposed
method.

5. Discussions and conclusions

The study in [26] stated that (1) the cost of scanning array subscripts and loop bounds to build
a dependence problem was typically 2 to 4 times of the copying cost (the cost of building a
system of dependence equations) for the problem, and (2) the dependence analysis cost for
more than half of simple arrays tested was typically 2 to 4 times of the copying cost, but the

A POLYNOMIAL-TIME DEPENDENCE TEST 133

dependence analysis cost for other simple arrays and all of the regular, convex and complex
arrays tested was more than 4 times of the copying cost. Based on such results we can figure
out that, for simple arrays, the analysis cost of data dependence for parallelizing/vectorizing
compilation occupies generally about 29% to 57% of total compiling time. But, for complex
arrays the analysis cost of dependence testing takes more than 57% of total compiling
time. Therefore, enhancing on dependence testing performance may result in significant
improvement on compiling performance of a parallelizing/vectorizing compiler.

For finishing dependence analysis of a pair of arrays tested with different direction
vectors, the number of the execution to the proposed method is 3n , where n is the number of
common loops in a general loop. For the other testing methods, the number of the execution
for dealing with the same problem is also 3n . In real programs, the number of arrays checked
is very huge. This indicates that compiling time for finishing dependence analysis of a real
program is to exponentially increase.

When testing multi-dimensional array references with linear subscripts and constant or
variable bounds, the Lambda test and the generalized Lambda test can determine whether
real-valued solutions exist. As we know in dependence analysis a testing strategy concluding
the existence of real-valued solutions may sometimes lose the precision and results in
false dependency. In this paper we propose the multi-dimensional generalized interval
test. The multi-dimensional generalized interval test can ascertain whether integer-valued
solutions exist for array references with linear subscripts and variable bounds and any given
direction vectors. Obviously, the significance of the multi-dimensional generalized interval
test lies in that it enhances the testing precision, eliminates the possible false dependency
and exploits the degree of loop parallelization and vectorization. This is to say that after
false dependency are removed in a program from the proposed method a compiler can
generate efficient optimized codes for improving the efficiency of the execution for the
program.

The Power test is a combination of Fourier-Motzkin variable elimination with an exten-
sion of Euclid′s GCD algorithm [31]. The Omega test combines new methods for eliminating
equality constraints with an extension of Fourier-Motzkin variable elimination [26]. The
two tests currently have the highest precision and the widest applicable range in the field of
data dependence analysis for testing arrays with linear subscripts. However, the cost of the
two tests is very expensive because the worst-case of Fourier-Motzkin variable elimination
is exponential in the number of free variables [26, 31]. Wolfe [31] found that using Fourier-
Motzkin variable elimination for dependence testing takes from 22 to 28 times longer than
the Banerjee test. Wolfe also indicated that the Lambda test is a very precise and effi-
cient method for testing two-dimensional coupled arrays with constant bounds. Banerjee
and Kleanthis [1–3, 20, 25] also indicated that the Omega test is a precise but inefficient
method. The Range test [4] and the access range test [13, 21] currently have the highest
precision and the widest applicable range for checking nonlinear arrays in the field of data
dependence testing.

According to the time complexity analysis, the multi-dimensional generalized interval
test performs slightly poorer than that of the generalized Lambda test, the Lambda test, the
extended I test and the generalized direction vector I test. Therefore, it is suggested that
depending on the application domains and environments, the multi-dimensional generalized

134 CHANG, CHU AND WU

interval test can be applied independently or together with other famous methods to analyze
data dependence for linear-subscript array references.

References

1. U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Publishers, Norwell, MA, 1988.
2. U. Banerjee. Loop Transformations for Restructuring Compilers:The Foundations, Kluwer Academic Pub-

lishers, 1993.
3. U. Banerjee, Dependence Analysis. Kluwer Academic Publishers, Norwell, MA, 1997.
4. W. Blume and R. Eigenmann. Nonlinear and symbolic data dependence testing. IEEE Transaction on Parallel

and Distributed Systems, 9(12):1180–1194, 1998.
5. W.-L. Chang and C.-P. Chu. The extension of the I test. Parallel Computing, 24(14):2101–2127, 1998.
6. W.-L. Chang and C.-P. Chu. The infinity lambda test: A multi-dimensional version of Banerjee’s infinity test.

Parallel Computing, 26(10):1275–1295, 2000.
7. W.-L. Chang and C.-P. Chu. The generalized direction vector I test. Parallel Computing, 27(8)1117–1144,

2001.
8. W.-L. Chang, C.-P. Chu, and J. Wu. The generalized lambda test: A multi-dimensional version of banerjee’s

algorithm. International Journal of Parallel and Distributed Systems and Networks, 2(2):69–78, 1999.
9. W.-L. Chang, C.-P. Chu, and J.-H. Wu. A multi-dimensional I-test. Parallel Computing, 27:1783–1799, 2001.

10. W.-L. Chang, C.-P. Chu, and J.-H. Wu. A precise dependence analysis for multi-dimensional arrays under
specific dependence direction. Journal of Systems and Software, 63(2):99–112, 2002.

11. J. Dongarra, M. Furtney, S. Reinhardt, and J. Russell. Parallel Loops—A test suite for parallelizing compilers:
Description and example results. Parallel Computing, 17:1247–1255, 1991.

12. R. Eigenmann, J. Hoeflinger, and D. Padua. On the automatic parallelization of the perfect benchmarks. IEEE
Transactions on Parallel and Distributed Systems, 9(1):5–23, 1998.

13. J. P. Hoeflinger. Interprocedural parallelization using memory classification analysis. Ph.D. thesis, University
of Illinois at Urbana-Champaign, 1998.

14. J. Hoeflinger and Y. Paek. A comparative analysis of dependnece testing mechanisms. Language and Compiler
for Parallel Computing in 2000, pp. 289–303.

15. T. C. Huang and C. M. Yang. Data dependence analysis for array references. The Journal of System and
Software, 52:55–65, 2000.

16. D. E. Knuth. The Art of Computer Programming, vol. 2, Seminumerical Algorithms, 2nd ed., Addison-Wesley,
Reading, MA, 1981.

17. X. Kong, D. Klappholz, and K. Psarris. The I test. IEEE Transaction on Parallel and Distributed Systems,
2(3):342–359, 1991.

18. D. Levine, D. Callahan, and J. Dongarra. A comparative study of automatic vectorizing compilers. Parallel
Computing, 17:1223–1244, 1991.

19. Z. Li, P.-C. Yew, and C.-Q. Zhu. An efficient data dependence analysis for parallelizing compilers. IEEE
Transaction on Parallel and Distributed Systems, 1(1):26–34, 1990.

20. D. Niedzielski and K. Psarris. An analytical comparison of the I-test and omega test. LCPC’99: Twelfth
International Workshop on Languages and Compilers for Parallel Computing.

21. Y. Paek. Compiling for distributed memory multiprocessors based on access region analysis. PhD thesis,
University of Illinois at Urbana-Champaign, 1997.

22. P. M. Petersen. Evaluation of programs and parallelizing compilers using dynamic analysis techniques. Ph.D.
thesis, University of Illinois at Urbana-Champaign, January 1993.

23. K. Psarris, D. Klappholz, and X. Kong. On the accuracy of the banerjee test. Journal of Parallel and Distributed
Computing, 12(2):152–158, 1991.

24. K. Psarris, X. Kong, and D. Klappholz. The direction vector i test. IEEE Transaction on Parallel and Dis-
tributed Systems, 4(11):1280–1290, 1993.

25. K. Psarris and K. Kyriakopoulos. Data dependence testing in practice. Proceedings of the 1999 International
Conference on Parallel Architectures and Compilation Techniques, 1999.

A POLYNOMIAL-TIME DEPENDENCE TEST 135

26. W. Pugh. A practical algorithm for exact array dependence analysis. Communication of the ACM, 35(8):102–
114, 1992.

27. Z. Shen, Z. Li, and P.-C. Yew. An empirical study of Fortran programs for parallelizing compilers. IEEE
Transaction on Parallel and Distributed Systems, 1(3):356–364, 1992.

28. B. J. Smith et al. Matrix Eigensystem Routines-Eispack Guide. Springer, Heidelberg, 1976.
29. R. Triolet, F. Irigoin, and P. Feautrier. Direct parallelization of call statements. Proc. SIGPLAN Symp. Compiler

Construction, Palo Alto, CA, 1986, pp. 176–185.
30. Vaughan and William Jeffrey. A residuals management model of the iron and steel industry: A linear pro-

gramming approach. Mich.: Univ. Microfilms International, Ann Arbor, 1986.
31. M. Wolfe and C.W. Tseng. The power test for data dependence. IEEE Transaction on Parallel and Distributed

Systems, 3(5):591–601, 1992.

