
Using Elementary Linear Algebra to
Solve Data Alignment for Arrays with

Linear or Quadratic References
Weng-Long Chang, Jih-Woei Huang, and Chih-Ping Chu

Abstract—Data alignment that facilitates data locality so that the data access communication costs can be minimized, helps

distributed memory parallel machines improve their throughput. Most data alignment methods are devised mainly to align the arrays

referenced using linear subscripts or quadratic subscripts with few (one or two) loop index variables. In this paper, we propose two

communication-free alignment techniques to align the arrays referenced using linear subscripts or quadratic subscripts with multiple

loop index variables. The experimental results from our techniques on Vector Loop and TRFD of the Perfect Benchmarks reveal that

our techniques can improve the execution times of the subroutines in these benchmarks.

Index Terms—Parallel compiler, communication-free alignment, parallel computing, loop optimization, data dependence analysis,

load balancing.

�

1 INTRODUCTION

DISTRIBUTED memory multiprocessors systems have been
increasingly used in scientific and engineering appli-

cations. The major shortcoming of this system is the
difficulty in programming due to the lack of shared
memory space [8]. The programmers or compilers in this
computing architecture must be responsible for distributing
the computations and data in a program over processors
and managing communications among tasks. Carefully
arranging the computations and data can assist the parallel
system in improving throughput. This matter relates to
determining which computations need to be distributed
onto which processor and what data should be stored
locally for the corresponding computations to access with
little or no communication cost.

Over the past several years, many researchers have paid
attention to maximizing parallelism and minimizing the
communication cost for a given program executed on a
parallel machine. Ramanujam and Sadayappan [3] consid-
ered the problem to communication-free partition data
space along hyperplanes for distributed memory multi-
processors system. They presented a matrix-based formula-
tion for this problem to determine the existence of
communication-free partitions for data arrays. Feautrier
[6] proposed an algorithm analogous to Gaussian elimina-
tion to determine a placement function for the problem of
data and code distributions among the processors of a
distributed memory supercomputer. Dion and Robert [10]

introduced an access graph to model affine communications
more adequately for the data and computation alignment
problem when mapping affine loop nests onto distributed
memory parallel computers. Lam et al. [14], [21] presented
data access pattern analyzing approaches for a program
with nested loops to enable the program to run on a parallel
machine in a communication-free manner with some
constraints. Shih et al. [22] examined the problem to
communication-free partition statement-iteration and data
spaces along hyperplanes for multistatements in perfect and
imperfect loops. They offered the necessary and sufficient
conditions for communication-free hyperplane partitions.
Lee [11] showed that data redistribution is necessary for
executing a sequence of do loops if the communication cost
for performing this do loops sequence is larger than a
threshold value. Hwang and Lee [20] proposed an expres-
sion-rewriting framework to generate communication sets
for arrays in loops with block-cyclic distribution. Chung et
al. [13], Liao and Chung, [19], and Hsu et al. [23] presented
efficient methods to perform block-cyclic array redistribu-
tion that allow a processor not to construct send/receive
data sets for a redistribution.

To properly allocate computations and data in a program
over multiple processors usually involves two phases called
alignment and distribution. First, the alignment phase
intelligently maps computations and data onto a set of
virtual processors organized into a Cartesian grid of some
dimension (or a template in HPF Fortran term) to provide
data locality in a program. The distribution phase then folds
the virtual processors in the physical processors according
to feasible distribution strategies. Our concern in this paper
is the alignment.

Being a mapping, the alignment theoretically functions
as transformation that symbolizes a linear algebra model.
Kandemir et al. [15], [16] presented a linear algebra
framework to automatically determine the optimal data
layouts expressed by hyperplanes for each array reference
in a program. Boudet et al. [18] proposed a method to solve
the alignment problem by considering how to align and
distribute data arrays while, at the same time, considering

28 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 1, JANUARY 2004

. W.-L. Chang is with the Department of Information Management,
Southern Taiwan University of Technology, Tainan County, Taiwan
710, Republic of China.
E-mail: changwl@{csie.ncku.edu.tw, mail.stut.edu.tw}.

. J.-W. Huang and C.-P. Chu are with the Department of Computer Science
and Information Engineering, National Cheng Kung University, Tainan,
Taiwan 701, Republic of China.
E-mail: {cwhuang, chucp}@csie.ncku.edu.tw.

Manuscript received 17 Oct. 2001; revised 21 Nov. 2002; accepted 19 June
2003.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 115212.

1045-9219/04/$17.00 � 2004 IEEE Published by the IEEE Computer Society

how to preserve parallelism for a given program. Bau et al.
[7] proposed an alignment technique to align arrays
referenced using linear subscripts with one loop index
variable in a communication-free manner. Chu et al. [17]
and Chang et al. [24] presented communication-free
alignment methods to align the arrays referenced using
linear subscripts with two and three loop index variables or
quadratic subscripts with the ðaI2 þ bI þ dÞ or ðaI2 þ bI þ
cJ þ dÞ patterns [5]. However, for the arrays referenced
using linear subscripts or quadratic subscripts with multi-
ple index variables (more than three loop index variables),
these alignment methods cannot be applied. Generally,
array alignment constraints are induced by the character-
istics of the computations in which the arrays are
referenced. These array alignment constraints can be
expressed mathematically through a set of algebraic
formulation, or can be modeled with a weighted graph
problem.

In this paper, we propose two alignment techniques to
properly map the loop iteration space that implies the
computation instances, and the array elements which are
respectively referenced using linear subscripts or quadratic
subscripts with multiple loop index variables, onto the
virtual processors so that no communication cost for data
accesses is produced. Our alignment techniques, based on
elementary linear algebra, reduce the computations and
array elements mapping problem into the problem of
determining a null space basis for a matrix. By simplifying
solving the null space basis, the proposed techniques can
readily determine the desired mapping functions.

The rest of this paper is organized as follows: In Section 2,
the primary data alignment notion is introduced. In
Section 3, the theoretical explanations and practical applica-
tions of our data alignment techniques are presented. In
Section 4, the experimental results to show that our
techniques can improve the execution time of the sub-
routines in Vector Loop and TRFD of the Perfect Bench-
marks [4], [12] are offered. Finally, a brief conclusion is
drawn in Section 5.

2 PRELIMINARY DATA ALIGNMENT NOTION

In terms of linear algebra, the entire alignment framework,
in general, includes three main steps [7]. The first step is to
determine the constraints on the computation and data
mapping. This means that the data accesses in a program
are inspected and formulated as a system of equations in
which the unknowns can be utilized to determine the
virtual processors for the computations and data to be
mapped onto. Each equation in the system is indeed a
constraint on the computation and data mapping. Any
solution to the system determines a so-called communica-
tion-free alignment that enables the needed data elements
for a processor to perform a computation to be mapped
onto its local memory so that no communication cost owing
to data accesses occurs and, thus, optimizes the data locality
in a program. Various data access patterns, such as array
subscript patterns, will result in unlike equation systems.
Hence, the alignment framework needs to take data access
patterns into account to achieve a communication-free
alignment. Intuitively, mapping all of the computations
and data in a program onto a single processor is the trivial
communication-free alignment—this, however, implies no
parallelism. The trivial solution quite possibly is the only
communication-free alignment if the system of equations is
constrained too far. Accordingly, the second step of the

framework is to identify the constraints (or equations) that
need to be intentionally left unsatisfied to retain parallelism
in the computations. Allowing unsatisfied constraints will
introduce communication costs. Thus, the constraints left
unsatisfied should be those that result in as little commu-
nication as possible. Finally, the remaining constraints are
solved to determine the computation and data mapping
functions. In terms of linear algebra, solving the remaining
constraints is identical to determining the null space basis
for a matrix. Eventually, based on the alignment result, the
programmer needs to provide codes ahead of the nested
loops for replicating or broadcasting data onto the
processors so that no further communication is needed
within the nested loops.

3 THE PROPOSED ALIGNMENT TECHNIQUES

Linear expressions are the most common subscript patterns
for referenced arrays. Petersen and Padua [9] indicated that
there are 6,503 nonlinear cases in the analyzed Perfect
Benchmarks, which were obtained in counting the number
of feasible directions of the potential dependences. With our
counting criteria for the number of quadratic cases for data
alignment, which is the number of the nested loops
containing arrays with quadratic subscripts, we surveyed
and found that the quadratic cases approximately account
for 60 percent of all the nested loops that contain nonlinear
array references in TRFD of the Perfect Benchmarks after
induction variable substitution and/or scalar expansion
transformations. These results imply that the number of the
arrays with quadratic subscript might attain to certain
extent. However, the data alignment for the arrays
referenced using quadratic subscripts was scarcely dis-
cussed before. In this section, our communication-free
alignment techniques for aligning the arrays referenced
using generalized linear or quadratic subscripts (i.e., linear
or quadratic subscripts with multiple loop index variables)
are discussed. To avoid falling into complications, the
illustration for our techniques is restricted to formulating
and solving the equation system. The discussion related to
unsatisfied constraints is not considered here. The features
and time complexity analysis of our techniques are
presented as well.

3.1 Arrays Referenced Using Linear Subscripts

Assume that there exist s statements containing q arrays,

each with one or more (say m) dimensions, referenced

using linear subscripts enclosed with a general n nested do

loop. To align data elements for multidimensional arrays, a

general approach is to employ one dimension among others

for each array as the alignment basis. We consider the data

alignment for multidimensional arrays as the data align-

ment simply for the adopted dimension of the arrays in the

following discussions. Suppose a reference function for the

adopted dimension of an array Ae for 1 � e � q in this

common loop is RAe
¼ ae;1I1 þ ae;2I2 þ . . .þ ae;nIn þ ae;0,

where I1; I2; . . . ; In are index variables of the general nested

loop, and ae;1; ae;2; . . . ; ae;n are integer coefficients and ae;0 is

an integer constant. For an iteration vector i ði ¼
½i1i2 . . . in�T ; iu is an index value of Iu for 1 � u � n and T

is the transposition operation) in the iteration space of this

general n nested do loop, the alignment constraints require

the processor performing iteration i, which stands for a

CHANG ET AL.: USING ELEMENTARY LINEAR ALGEBRA TO SOLVE DATA ALIGNMENT FOR ARRAYS WITH LINEAR OR QUADRATIC... 29

computation instance, to own AeðRAe
Þ. With our techni-

ques, if there exist two or more distinct references (either

read or write) to an array, each of the distinct references

will be selected as the alignment constraints respectively for

this array without considering their data dependences. For

instance, there are two statements containing three different

one-dimensional arrays (i.e., q ¼ 3 and m ¼ 1) in the

example in Fig. 1. For an iteration vector i ði ¼ ½ij�T Þ, the
alignment constraint demands that the processor perform-

ing iteration i must own AðRAÞ, BðRBÞ, and DðRDÞ.
Below, we first give the mathematical derivation of our

alignment methods. Suppose that C is the computation

mapping function to map the loop iteration space onto

virtual processors and DAe
is the data mapping function to

map the array elements of Ae onto virtual processors. The

alignment problem can be described as: Find C and DAe

such that 8 i 2 iteration space of this loop:

CðiÞ ¼ DAe
ðRAe

Þ: ð1Þ
To map the computations and array elements in a
communication-free manner, our alignment technique
considers the array subscript patterns that are generalized
linear subscripts here. Hence, C and DAe

will be formulated
using our technique in linear form as follows:

RAe
¼ R0

Ae
iþ ae;0ðR0

Ae
¼ ½ae;1ae;2 . . . ae;n�Þ; ð2Þ

CðiÞ ¼ C0iþ c0; ð3Þ

and

DAe
ðRAe

Þ ¼ D0
Ae
ðRAe

Þ þ d0 ¼ D0
Ae
ðR0

Ae
iþ ae;0Þ þ d0: ð4Þ

From (3) and (4), (1) can be converted into the following
equation:

C0iþ c0 ¼ D0
Ae
ðR0

Ae
iþ ae;0Þ þ d0: ð5Þ

Without loss of generality, (5) can be reduced to (6):

C0 c0½ � i
1

� �
¼ D0

Ae
d0

� � R0
Ae

ae;0
0 1

� �
i
1

� �
: ð6Þ

Let

C ¼ C0 c0½ �; DAe
¼ D0

Ae
d0

� �
; FAe

¼ R0
Ae

ae;0
0 1

� �

and i0 ¼ i
1

� �
, (6) can be transformed into the following

equation:

Ci0 ¼ DAe
FAe

i0: ð7Þ

As a result, to determine C and DAe
is to solve the equation

C ¼ DAe
FAe

(or C �DAe
FAe

¼ 0) provided that i0 can be
cancelled. Such an equation can be rewritten, without loss
of generality, in block matrix form [7] as follows:

C DAe½ � I
�FAe

� �
¼ 0: ð8Þ

Here, I is an identity matrix, and 0 (zero matrix), C,DAe
and

FAe
are square matrices with the same size as I. By

expressing (8) in the form of UV ¼ 0 and determining a
null space basis for V T , the alignment problem is thus
reduced to the standard linear problem of determining a
null space basis for a matrix.

Clearly, to constructC,DAe
, andFAe

as squarematrices for
the nested do loops with different numbers of loop index
variables, (3) and (4) need to be adjusted. For example,
suppose that there is only one index loop variable I1 for this
do loop; that is, RAe

¼ ae;1I1 þ ae;0, then our alignment
techniqueoriginally formulatesCðiÞ andDAe

ðRAe
Þ as follows:

CðiÞ ¼ c1i1 þ c0 andDAe
ðRAe

Þ ¼ d1ðae;1i1 þ ae;0Þ þ d0. To con-
struct C andDAe

as square matrices, the above equations are
adjusted as follows: CðiÞ ¼ ðc1;1 þ c2;1Þi1 þ ðc1;2 þ c2;2Þ and

DAe
ðRAe

Þ ¼ ðd1;1 þ d2;1Þðae;1i1 þ ae;0Þ þ ðd1;2 þ d2;2Þ:

Using our technique, the above equations are reduced to the
following equation:

c1;1 c1;2
c2;1 c2;2

� �
i1
1

� �
¼ d1;1 d1;2

d2;1 d2;2

� �
ae;1 ae;0
0 1

� �
i1
1

� �
:

This makes C and DAe
2� 2 square matrices. However, for

a nested do loop with two index loop variables I1 and I2;
that is, RAe

¼ ae;1I1 þ ae;2I2 þ ae;0, our alignment technique
originally formulates CðiÞ and DAe

ðRAe
Þ as follows: CðiÞ ¼

c1i1 þ c2i2 þ c0 and DAe
ðRAe

Þ ¼ d1ðae;1i1 þ ae;2i2 þ ae;0Þ þ d0
However, in addition to constructing C and DAe

as square
matrices, our alignment technique also considers enabling
C and DAe

to be easily determined by constructing FAe
in a

form that allows the Gaussian elimination for echelon
reduction to be carried out effortlessly to simplify the
calculation for the aforementioned null space basis. The
above equations are thus adjusted as follows:

CðiÞ ¼ðc1;1 þ c2;1 þ c3;1Þi1 þ ðc1;2 þ c2;2 þ c3;2Þi2þ
ðc1;3 þ c2;3 þ c3;3Þ

and

DAe
ðRAe

Þ ¼ðd1;1 þ d2;1 þ d3;1Þðae;1i1 þ ae;2i2 þ ae;0Þþ
ðd1;2 þ d2;2 þ d3;2Þþðd1;3 þ d2;3 þ d3;3Þði1 þ i2 þ 1Þ:

Using our technique, the above equations are reduced to the
following equation:

c1;1 c1;2 c1;3

c2;1 c2;2 c2;3

c3;1 c3;2 c3;3

2
64

3
75

i1

i2

1

2
64

3
75¼

d1;1 d1;2 d1;3

d2;1 d2;2 d2;3

d3;1 d3;2 d3;3

2
64

3
75

ae;1 ae;2 ae;0

0 0 1

1 1 1

2
64

3
75

i1

i2

1

2
64

3
75:

30 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 1, JANUARY 2004

Fig. 1. Arrays referenced using linear subscripts.

This makes C and DAe
3� 3 square matrices. Continuing

with this notion, the alignment constraint for the iteration

space of this n nested do loop can be formally expressed,

using our technique, as:

Ci0 ¼

c1;1

c2;1

..

.

cnþ1;1

2
66664

3
77775½i1� þ

c1;2

c2;2

..

.

cnþ1;2

2
66664

3
77775 i2½ � þ . . .þ

c1;n

c2;n

..

.

cnþ1;n

2
66664

3
77775 in½ � þ

c1;nþ1

c2;nþ1

..

.

cnþ1;nþ1

2
66664

3
77775

¼

c1;1 c1;2 . . . c1;nþ1

c2;1 c2;2 . . . c2;nþ1

..

. ..
. . .

. ..
.

cnþ1;1 cnþ1;2 . . . cnþ1;nþ1

2
66664

3
77775

i1

..

.

in

1

2
66664

3
77775:

The alignment constraint for an array Ae; 1 � e � q in the

general loop can be represented as:

DAe
FAe

i0 ¼

d1;1

d2;1

..

.

dnþ1;1

2
66664

3
77775 ae;1i1 þ . . .þ ae;nin þ ae;0
� �

þ

d1;2

d2;2

..

.

dnþ1;2

2
66664

3
77775þ

d1;3

d2;3

..

.

dnþ1;3

2
66664

3
77775 i1 þ . . .þ in þ 1½ � þ . . .þ

d1;nþ1

d2;nþ1

..

.

dnþ1;nþ1

2
66664

3
77775

i1 þ . . .þ in þ 1½ � ¼

d1;1 . . . d1;nþ1

..

. . .
. ..

.

dnþ1;1 . . . dnþ1;nþ1

2
664

3
775

ae;1 ae;2 . . . ae;n ae;0

0 0 . . . 0 1

1 1 . . . 1 1

..

. ..
. . .

. ..
. ..

.

1 1 . . . 1 1

2
6666664

3
7777775

i1

..

.

in

1

2
66664

3
77775:

Therefore, the alignment problem can be restated as: Find C

and DAe
such that 8 i 2 iteration space of this loop:

Ci0 ¼ DAe
FAe

i0. Here, i0 ¼ ½i 1�T , as mentioned. The above

equation can be reduced to (8) to determine C and DAe
, as

described. This requires the column vector i0 on both sides

of the equation to be cancelled to make ðC �DAe
FAe

Þ equal
to 0 for any i0. To do this, we need the following lemma.

Lemma 1. Let Qi be a q � 1 matrix for 1 � i � n, t a

q-elements column vector, 0 a q-elements zero vector, and

xi a scalar variable for 1 � i � n. Then,

8xi½Q1 . . . Qn t�

x1
..
.

xn

1

2
6664

3
7775 ¼ 0 , Qi ¼ 0 for 1 � i � n and t

¼ 0:

Proof.

8xi½Q1 . . . Qn t�

x1

..

.

xn

1

2
66664

3
77775 ¼ 0 , 8xi

q1;1 q2;1 . . . qn;1 t1

q1;2 q2;2 . . . qn;2 t2

..

. ..
. . .

. ..
. ..

.

q1;q q2;q . . . qn;q tq

2
66664

3
77775

x1

..

.

xn

1

2
66664

3
77775 ¼ 0

,

8xi

x1q1;1 þ x2q2;1 þ . . .þ xnqn;1 þ t1

x1q1;2 þ x2q2;2 þ . . .þ xnqn;2 þ t2

..

.

x1q1;q þ x2q2;q þ . . .þ xnqn;q þ tq

2
66664

3
77775 ¼ 0

,
8 xix1Q1 þ x2Q2 þ . . .þ xnQn þ t ¼ 0:

We now show that

8 xix1Q1 þ x2Q2 þ . . .þ xnQn þ t ¼ 0 ,
Q1 ¼ Q2 ¼ . . . ¼ Qn ¼ t ¼ 0:

)) Assume that there exists some Qi’s 6¼ 0 (e.g., Qp,
Qr, and Qs 6¼ 0) and t 6¼ 0 and some xi’s 6¼ 0 (e.g., xp, xr,
and xs 6¼ 0) such that

xpQp þ xrQr þ xsQs þ t ¼ 0:

Since all xis can be any value, we have

ðxp þ 1ÞQp þ xrQr þ xsQs þ t ¼ 0:

That is, ðxpQp þ xrQr þ xsQs þ tÞ þQp ¼ 0. This implies

Qp ¼ 0, which contradicts the assumption. Similarly, we

haveQr ¼ Qs ¼ 0. Thismakes t ¼ 0. Therefore,Q1 ¼ Q2 =

. . . ¼ Qn ¼ t ¼ 0.
() The (if part) is trivial. tu
From Lemma 1, (7) can indeed be rewritten as:

C ¼ DAe
FAe

: ð9Þ
For 1 � e � q, the equation system of (9) can be converted

into the following matrix equation (10):

C DA1
. . . DAq

� �
I I . . . I

�FA1
0 . . . 0

0 . .
. ..

.

..

. . .
.

0
0 0 . . . �FAq

2
6666664

3
7777775
¼ 0 . . . 0½ �:

CHANG ET AL.: USING ELEMENTARY LINEAR ALGEBRA TO SOLVE DATA ALIGNMENT FOR ARRAYS WITH LINEAR OR QUADRATIC... 31

Here, I is an ðnþ 1Þ � ðnþ 1Þ identify matrix, 0 is an ðnþ
1Þ � ðnþ 1Þ zero matrix, and 0 . . . 0½ � is an ðnþ 1Þ � ððnþ
1Þ � qÞ zero matrix.

To solve the matrix equation ½U�s�m½V �m�n ¼ ½0�s�n in
which ½U �s�m is unknown and ½V �m�n is known, we can first
transform V into a “rank-revealing” form by performing the
required rank preserving operations—elementary row and
column operations. The notion behind this is to get a matrix
into a form in which its rank can be determined by
inspection [1], [7]. One way to achieve this is to perform
integer preserving Gaussian elimination [1], [2], whereby
matrix rows or columns are systematically manipulated by
elementary row or column operations to yield a matrix in
echelon form, to enable us to obtain the following
factorization (suppose that V 2 Zm�n and rankðV Þ ¼ rÞ:

H½ �m�m V½ �m�n P½ �n�n¼
R1; 1 R1; 2

0 0

� �
m�n

:

Here, H is an m�m invertible matrix representing the row
operations, P is an n� n unimodular matrix representing
the column operations, and R1; 1 is an r� r upper triangular
invertible matrix. It is a property of this factorization that
the transposition of the last m-r rows of H spans the null
space of V T . Thus, we can then obtain the solution for
½U�s�m as follows: U ¼ Hðrþ 1 : m; 1 : mÞ. This means that
only H, the composition of row operations, needs to be
determined during the elimination.

We now go back to the example in Fig. 1 to illustrate our
points. In this case, there are two references to the same
array B. The reference to array B in S1 updates the values of
array B elements. The reference to array B in S2 reads the
values of array B elements. Because both references to array
B use the same data access function, one of these references
is selected as the alignment constraint for array B. Thus, the
alignment constraint for the iteration space of this nested
loop can be formally expressed as:

Ci0 ¼
c1;1 c1;2 c1;3
c2;1 c2;2 c2;3
c3;1 c3;2 c3;3

2
4

3
5 i

j
1

2
4

3
5:

The alignment constraints for the three arrays A, B, and D,
can also be, respectively, represented as:

DAFAi
0 ¼

x1;1 x1;2 x1;3

x2;1 x2;2 x2;3

x3;1 x3;2 x3;3

2
64

3
75

2 3 1

0 0 1

1 1 1

2
64

3
75

i

j

1

2
64

3
75;

DBFBi
0 ¼

y1;1 y1;2 y1;3

y2;1 y2;2 y2;3

y3;1 y3;2 y3;3

2
64

3
75

1 1 �1

0 0 1

1 1 1

2
64

3
75

i

j

1

2
64

3
75; and

DDFDi
0 ¼

z1;1 z1;2 z1;3

z2;1 z2;2 z2;3

z3;1 z3;2 z3;3

2
64

3
75

1 1 5

0 0 1

1 1 1

2
64

3
75

i

j

1

2
64

3
75:

Therefore, the alignment problem can be described as
follows: Find C, DA, DB, and DD such that 8 ði; jÞ 2
iteration space of this loop:

C ¼ DAFA

C ¼ DBFB

C ¼ DDFD

:

8<
: ð11Þ

The system of equations (11) can be converted into the
following matrix equation:

C DA DB DD½ �

I I I
�FA 0 0
0 �FB 0
0 0 �FD

2
664

3
775 ¼ 0 0 0½ �:

ð12Þ

Here, I is a 3� 3 identity matrix and 0 is a 3� 3 zero matrix.
According to the method described above, a solution matrix
of (12) is:

C DA DB DD

� �
¼

1 1 1 0 0 1 1 2 0 1 �4 0

0 0 1 0 1 0 0 1 0 0 1 0

0 0 0 0 0 0 �1 �2 1 �1 4 1

2
4

3
5:

This gives us:

C¼

1 1 1

0 0 1

0 0 0

2
64

3
75; DA¼

0 0 1

0 1 0

0 0 0

2
64

3
75; DB¼

1 2 0

0 1 0

�1 �2 1

2
64

3
75;

and DD¼

1 �4 0

0 1 0

�1 4 1

2
64

3
75:

Therefore, we can obtain the computation and data
mapping as follows:

Ci0 ¼
1 1 1

0 0 1

0 0 0

2
64

3
75

i

j

1

2
64

3
75 ¼

iþ jþ 1

1

0

2
64

3
75;

DAFAi
0 ¼

0 0 1

0 1 0

0 0 0

2
64

3
75

2 3 1

0 0 1

1 1 1

2
64

3
75

i

j

1

2
64

3
75 ¼

iþ jþ 1

1

0

2
64

3
75;

DBFBi
0 ¼

1 2 0

0 1 0

�1 �2 1

2
64

3
75

1 1 �1

0 0 1

1 1 1

2
64

3
75

i

j

1

2
64

3
75¼

iþ jþ 1

1

0

2
64

3
75; and

DDFDi
0 ¼

1 �4 0

0 1 0

�1 4 1

2
64

3
75

1 1 5

0 0 1

1 1 1

2
64

3
75

i

j

1

2
64

3
75 ¼

iþ jþ 1

1

0

2
64

3
75:

Hence, using our alignment, iteration ði; jÞ is mapped onto
virtual processor iþ jþ 1 and the corresponding array
elements of A, B, and D are mapped onto the same virtual
processor. In FortranD, theAlign statement can be applied to
map the arrays onto the virtual processors. The array
elements mapped onto the same virtual processor are
automatically aligned with one another. We employ Align
statements in this case to describe the alignment relation for
the array elements of A, B, and D. They are represented as
follows:

Align Að2I þ 3J þ 1Þ with T ðI þ J þ 1Þ;
Align BðI þ J � 1ÞWRITE with T ðI þ J þ 1Þ;
Align BðI þ J � 1ÞREAD with T ðI þ J þ 1Þ; and
Align DðI þ J þ 5Þ with T ðI þ J þ 1Þ:

Here, the virtual processors are supposed to be organized as a
one-dimensional template T , BðI þ J � 1ÞWRITE represents
the reference toarrayB inS1 andBðI þ J � 1ÞREAD represents
the reference to array B in S2.

Thereexist loop-carriedoutput-dependences forarrayB in
S1. From S1 to S2, there exist loop-carried true-dependences

32 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 1, JANUARY 2004

for array B. In S2, there exist loop-carried output-depen-
dences for array D. The alignment function for the one-
dimensional template T and the reference functions for the
written arrays, B andD, are in common form. Therefore, the
iterations updating the same elements of array B or array D
aremappedonto the same template element (see the proof for
Theorem 1 in theAppendix). That is, the loop-carried output-
dependences in this nested loop can be removed. Likewise,
because those iterations respectively updating and reading
the same elements of array B are mapped onto the same
template element, the loop-carried true-dependences for
array B from S1 to S2 can also be removed. The array A in S1

is a read-only variable. Though themapping of arrayA is not
one-to-one, replicatingmultiple copies of thedata elements of
arrayA ontodifferent processorswill not alter the correctness
of execution. Owing to that the required data elements (the
written and read data elements of array B, the written data
element of arrayD, and the readdata element of arrayA) for a
computation are mapped onto the same template element,
this nested loop can be executed in parallel without inter-
processor communication.

3.2 Arrays Referenced Using Quadratic Subscripts

Assume that there exist s statements containing q arrays of
m-dimensions referenced using quadratic subscripts en-
closed with a general n nested do loop. Suppose that a
reference function for the adopted dimension of an array Ae

for 1 � e � q in this general loop is

RAe
¼ae;1I

2
1 þ ae;2I

2
2 þ . . .þ ae;nI

2
n þ be;1I1 þ be;2I2 þ . . .þ

be;nIn þ fe;

where I1; I2; . . . ; In are index variables of the general loop
and ae;1; ae;2; . . . ; ae;n; be;1; be;2; . . . ; be;n are coefficients, which,
in general, are integers or fractions in the quadratic case,
and fe is an integer constant.

For instance, two different one-dimensional arrays (i.e.,
q ¼ 2 and m ¼ 1), referenced using quadratic subscripts, are
enclosed with a depth-two nested loop in the example in
Fig. 2. For an iteration vector i ði ¼ ½i1 i2�T Þ; the alignment
constraints require the processor performing iteration i to
own AðRAÞ and BðRBÞ.

The primary notion of our technique to align arrays
referenced using quadratic subscripts is the same as the
previous linear technique, except that C and DAe

are
formulated in quadratic patterns. However, in dealing with
thequadratic cases,moresubtlebutnontrivial adjustmentson
(3) and (4) are needed to construct C,DAe

, and FAe
as square

matrices for thenesteddo loopwithdifferentnumbersof loop
index variables. Similar to the linear case, the alignment
problem can be described as: Find C andDAe

such that 8 i 2
iteration space of this loop: Ci0 ¼ DAe

FAe
i0. In this case, i ¼

½i1 i2 . . . in�T and i0 ¼ ½i21 i22 . . . i2n i1 i2 . . . in 1�T . The align-

ment constraint for the iteration space of this general loop can

be formally expressed, using our alignment technique, as:

Ci0 ¼

c1;1

c2;1

..

.

c2nþ1;1

2
66664

3
77775½i

2
1�þ. . .þ

c1;n

c2;n

..

.

c2nþ1;n

2
66664

3
77775 i2n
� �

þ

c1;nþ1

c2;nþ1

..

.

c2nþ1;nþ1

2
66664

3
77775 i1½ � þ . . .þ

c1;2n

c2;2n

..

.

c2nþ1;2n

2
66664

3
77775 in½ � þ

c1;2nþ1

c2;2nþ1

..

.

c2nþ1;2nþ1

2
66664

3
77775

¼

c1;1 . . . c1;n c1;nþ1 . . . c1;2n c1;2nþ1

c2;1 . . . c2;n c2;nþ1 . . . c2;2n c2;2nþ1

..

. . .
. ..

. ..
. . .

. ..
. ..

.

c2nþ1;1 . . . c2nþ1;n c2nþ1;nþ1 . . . c2nþ1;2n c2nþ1;2nþ1

2
66664

3
77775

i21

..

.

i2n
i1

..

.

in

1

2
66666666666664

3
77777777777775

:

The alignment constraint for an array Ae; 1 � e � q, in the
general loop can be represented as:

DAe
FAe

i0¼

d1;1

d2;1

..

.

d2nþ1;1

2
66664

3
77775½ae;1i

2
1þ. . .þae;ni

2
nþbe;1i1þ. . .þ be;ninþfe�þ

d1;2

d2;2

..

.

d2nþ1;2

2
66664

3
77775þ

d1;3

d2;3

..

.

d2nþ1;3

2
66664

3
77775i

2
1þ. . .þi2nþi1þ. . .þ in þ 1

� �
þ . . .þ

d1;2nþ1

d2;2nþ1

..

.

d2nþ1;2nþ1

2
66664

3
77775 i21 þ . . .þ i2n þ i1 þ . . .þ in þ 1
� �

¼

d1;1 . . . d1;2nþ1

d2;1 . . . d2;2nþ1

..

. . .
. ..

.

d2nþ1;1 . . . d2nþ1;2nþ1

2
66664

3
77775

ae;1 . . . be;n fe

0 . . . 0 1

1 . . . 1 1

..

. . .
. ..

. ..
.

1 . . . 1 1

2
6666664

3
7777775

i21

..

.

i2n
i1

..

.

in

1

2
66666666666664

3
77777777777775

:

Similar to the discussion in the previous section, the column
vector i0 on both sides of equation, Ci0 ¼ DAe

FAe
i0, is

required to be cancelled for any i0. To do this, we need
the following lemma.

Lemma 2. Let Qi be a q � 1 matrix for 1 � i � 2n, t a

q-elements column vector, 0 a q-elements zero vector, and xi

a scalar variable for 1 � i � 2n. Then,

CHANG ET AL.: USING ELEMENTARY LINEAR ALGEBRA TO SOLVE DATA ALIGNMENT FOR ARRAYS WITH LINEAR OR QUADRATIC... 33

Fig. 2. Arrays referenced using quadratic subscripts.

8xi Q1 . . . Qn Qnþ1 . . . Q2n t½ �

x2
1

..

.

x2
n

x1

..

.

xn

1

2
66666666666664

3
77777777777775

¼ 0 , Qi ¼ 0

for 1 � i � 2n; and t ¼ 0:

Proof.

8xi Q1 . . . Qn Qnþ1 . . .Q2n t½ �

x2
1

..

.

x2
n

x1

..

.

xn

1

2
66666666666664

3
77777777777775

¼ 0 ,

8xi

q1;1 . . . qn;1 qnþ1;1 . . . q2n;1 t1

q1;2 . . . qn;2 qnþ1;2 . . . q2n;2 t2

..

. . .
. ..

. ..
. . .

. ..
. ..

.

q1;q . . . qn;q qnþ1;q . . . q2n;q tq

2
66664

3
77775

x2
1

..

.

x2
n

x1

..

.

xn

1

2
66666666666664

3
77777777777775

¼ 0 ,

8xi

x2
1q1;1 þ . . .þ x2

nqn;1 þ x1qnþ1;1 þ . . .þ xnq2n;1 þ t1

x2
1q1;2 þ . . .þ x2

nqn;2 þ x1qnþ1;2 þ . . .þ xnq2n;2 þ t2

..

.

x2
1q1;q þ . . .þ x2

nqn;q þ x1qnþ1;q þ . . .þ xnq2n;q þ tq

2
666664

3
777775
¼ 0

, 8xi x
2
1Q1 þ . . .þ x2nQn þ x1Qnþ1 þ . . .þ xnQ2n þ t ¼ 0:

We now show that

8xi x
2
1Q1 þ . . .þ x2

nQn þ x1Qnþ1 þ . . .þ xnQ2n þ t ¼ 0 ,
Q1 ¼ . . . ¼ Qn ¼ Qnþ1 ¼ . . . ¼ Q2n ¼ t ¼ 0:

)) Assume that there exists someQis 6¼ 0 (e.g.,Qp,Qr,
Qs, andQt 6¼ 0) and t 6¼ 0 and some xis 6¼ 0 (e.g., xp, xr, xs,
and xt 6¼ 0) such that x2

pQp þ x2
rQr þ xsQs þ xtQt þ t ¼ 0.

Since allxis canbe anyvalue,wehave ðxp þ 1Þ2Qp +x2
rQr +

xsQs + xtQt þ t = 0. That is,

ðx2
pQp þ x2

rQr þ xsQs þ xtQt þ tÞ þ ð2xp þ 1ÞQp ¼ 0:

This implies Qp ¼ 0, which contradicts the assumption.
Similarly, we have Qr ¼ 0. This gives us xsQs þ xtQt +
t ¼ 0. From Lemma 1, we can obtain Qs ¼ Qt ¼ t ¼ 0.
Therefore, Q1 ¼ . . . ¼ Qn = Qnþ1 = . . . ¼ Q2n = t ¼ 0.
() The (if part) is trivial. tu
Again, similar to the linear equation, the equation system

in this case can eventually be converted into the following
matrix equation:

C DA1
. . . DAq

� �
I . . . I

�FA1
. . . 0

..

. . .
. ..

.

0 . . . �FAq

2
6664

3
7775 ¼ 0 . . . 0½ �:

Here, I is a ð2nþ 1Þ � ð2nþ 1Þ identity matrix, 0 is a ð2nþ
1Þ � ð2nþ 1Þ zero matrix, and 0 . . . 0½ � is a ð2nþ 1Þ �
ðð2nþ 1Þ � qÞ zero matrix. Note that, in solving the above

matrix equation, each row with fraction elements in each

FAe
can be first multiplied by a factor to make it have only

integer elements.
In the example in Fig. 2, the alignment constraint for the

iteration space of this loop can be formally expressed as:

Ci0 ¼

c1;1 c1;2 c1;3 c1;4 c1;5
c2;1 c2;2 c2;3 c2;4 c2;5
c3;1 c3;2 c3;3 c3;4 c3;5
c4;1 c4;2 c4;3 c4;4 c4;5
c5;1 c5;2 c5;3 c5;4 c5;5

2
66664

3
77775

i21
i22
i1
i2
1

2
66664

3
77775:

The alignment constraints for arrays A and B can be,

respectively, represented as:

DAFAi
0 ¼

x1;1 x1;2 x1;3 x1;4 x1;5

x2;1 x2;2 x2;3 x2;4 x2;5

x3;1 x3;2 x3;3 x3;4 x3;5

x4;1 x4;2 x4;3 x4;4 x4;5

x5;1 x5;2 x5;3 x5;4 x5;5

2
6666664

3
7777775

1=2 0 �1=2 1 0

0 0 0 0 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

2
6666664

3
7777775

i21
i22
i1

i2

1

2
6666664

3
7777775

and

DBFBi
0 ¼

y1;1 y1;2 y1;3 y1;4 y1;5

y2;1 y2;2 y2;3 y2;4 y2;5

y3;1 y3;2 y3;3 y3;4 y3;5

y4;1 y4;2 y4;3 y4;4 y4;5

y5;1 y5;2 y5;3 y5;4 y5;5

2
6666664

3
7777775

0 1=2 1 �1=2 0

0 0 0 0 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

2
6666664

3
7777775

i21
i22
i1

i2

1

2
6666664

3
7777775
:

The alignment problem can be expressed as follows: Find C,

DA, andDB such that 8 ði1; i2Þ 2 iteration space of this loop:

C ¼ DAFA

C ¼ DBFB
:

�
ð13Þ

The equations system of (13) can be converted into the

following matrix equation:

C DA BB½ �
I I

�FA 0
0 �FB

2
4

3
5 ¼ 0 0½ �: ð14Þ

34 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 1, JANUARY 2004

Here, I is a 5� 5 identity matrix and 0 is a 5� 5 zero matrix.

According to the method stated in Section 3.1, a solution

matrix of (14) is:

C DA DB½ � ¼
1 1 1 1 1 0 0 1 0 0 0 0 0 0 1

1 1 1 1 1 0 0 1 0 0 0 0 0 1 0

1 1 1 1 1 0 0 1 0 0 0 0 1 0 0

0 0 0 0 1 0 1 0 0 0 0 1 0 0 0

0 1 2 �1 0 �2 �1 1 0 0 2 0 0 0 0

2
6666664

3
7777775
:

This gives us

C ¼

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

0 0 0 0 1

0 1 2 �1 0

2
6666664

3
7777775
; DA¼

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 1 0 0 0

�2 �1 1 0 0

2
6666664

3
7777775
; and

DB ¼

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

2 0 0 0 0

2
6666664

3
7777775
:

We can obtain the mappings of computations and data as

follows:

Ci0 ¼

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

0 0 0 0 1

0 1 2 �1 0

2
6666664

3
7777775

i21
i22
i1

i2

1

2
6666664

3
7777775
¼

i21 þ i22 þ i1 þ i2 þ 1

i21 þ i22 þ i1 þ i2 þ 1

i21 þ i22 þ i1 þ i2 þ 1

1

i22 þ 2i1 � i2

2
6666664

3
7777775
;

DAFAi
0 ¼

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 1 0 0 0

�2 �1 1 0 0

2
6666664

3
7777775

1=2 0 �1=2 1 0

0 0 0 0 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

2
6666664

3
7777775

i21
i22
i1

i2

1

2
6666664

3
7777775
¼

i21 þ i22 þ i1 þ i2 þ 1

i21 þ i22 þ i1 þ i2 þ 1

i21 þ i22 þ i1 þ i2 þ 1

1

i22 þ 2i1 � i2

2
6666664

3
7777775
; and

DBFBi
0 ¼

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

2 0 0 0 0

2
6666664

3
7777775

0 1=2 1 �1=2 0

0 0 0 0 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

2
6666664

3
7777775

i21
i22
i1

i2

1

2
6666664

3
7777775
¼

i21 þ i22 þ i1 þ i2 þ 1

i21 þ i22 þ i1 þ i2 þ 1

i21 þ i22 þ i1 þ i2 þ 1

1

i22 þ 2i1 � i2

2
6666664

3
7777775
:

Hence, using our alignment, iteration ði1; i2Þ is mapped
onto virtual processor ði21 þ i22 þ i1 þ i2 þ 1Þ and the corre-
sponding A and B array elements are mapped onto the
same virtual processor. The Align statements adopted to
describe the alignment relation for the array elements of
both A and B are represented as follows:

Align Að1=2 I21 � 1=2 I1 þ I2Þ with T ðI21þI22þI1þI2þ1Þ and
Align Bð1=2 I22 þ I1 � 1=2 I2Þ with T ðI21 þ I22 þ I1 þ I2 þ 1Þ:

Here, the virtual processors are supposed to be organized as
a one-dimensional template T . Because no loop-carried
output-dependences exist for array A and the required data
elements (the written data element of array A and the
corresponding read data element of array B) for a
computation are mapped onto the same template element,
this nested loop can be executed in parallel without
interprocessor communication.

3.3 Features of the Proposed Techniques

In principle, our techniques have the following features:

Theorem 1. If the alignment function of the template and the

reference functions of the written arrays are in common form,

i.e., multiple of the nonconstant items of the former is equal to

multiple of the nonconstant items of the latter, then there are

no distributed data updates for writing these arrays.

Proof. Please refer to the Appendix. tu

It is clear that our proposed techniques are not one-to-
one mappings but many-to-one mappings, because depen-
dent iterations with the properties described in Theorem 1
will be mapped onto the same template element. For
instance, in Fig. 1, dependent iterations [2 3], [3 2], [1 4], and
[4 1] will be mapped onto the same template array element
T (6). Thus, the size of the template array could have a
smaller order than the iteration space. On the other hand
the mappings of the read-only arrays will not inflect the
correctness of execution, it is generally helpful to replicate
multiple copies of a read-only data element onto the
processors requiring that data element for computation, so
that no further interprocessor communication is needed
within the nested loops.

As mentioned, our proposed alignment techniques do
not consider the data dependences. In this way, there are
two principal advantages. First, the difficulty of alignment
can be decreased, enabling our techniques to be applicable
more broadly than other methods. Second, the original data
dependences (if existed) are likely eliminated or reduced by
the resulted alignment function because the dependent
iterations and their needed data could be mapped onto the
same temple element. This fact might benefit the exploita-
tion of parallelism in distribution phase.

3.4 Time Complexity

The proposed alignment techniques reduce the problem of
mapping the computations and data in a program to the
standard linear algebra problem of determining a null space
basis for a matrix. This includes three main phases. The first
phase involves determining, according to the alignment
constraints, the value for each element in the matrix V . The
second phase involves applying Gaussian elimination to

CHANG ET AL.: USING ELEMENTARY LINEAR ALGEBRA TO SOLVE DATA ALIGNMENT FOR ARRAYS WITH LINEAR OR QUADRATIC... 35

determine a basis for UT , the null space of V T . The third
phase involves extracting the solution matrices U .

Suppose that V is an m� n matrix and its rank is r,
where r is at most the minimal value of m and n. The

worst-case time complexity to determine the values for all

of the elements of V is . .
.

ðm� nÞ. Determining a null
space basis for V T using Gaussian elimination needs
. .
.

ðr�m� nþ r3Þ arithmetic operations. The worst-case

time complexity to determine a basis for UT is accord-
ingly . .

.
ðr�m� nþ r3Þ. Due to U ¼ Hðrþ 1 : m; 1 : mÞ,

the worst-case time complexity to extract the solution

matrices U from H is clearly . .
.

ðm2 � r�mÞ. Hence, the
worst-case time complexity for the presented techniques

is . .
.

ðm� nþ r�m� nþ r3þm2 � r�mÞ, which is similar

to that for the method proposed by Bau et al. in [7].
Generally, a single nested loop is the main program

section to be parallelized, the data alignment, which

reduces the interprocessor communication to avoid under-

mining the benefits of parallelism, is often discussed on a

single nested loop basis [3], [6], [10]. In the next section, a

code segment with a single nested loop extracted from a

benchmark is executed with our alignment method. On the

other hand, to reduce the communication for a program

with multiple parallelizable nested loops, a data alignment

focusing on the whole program may be needed. However,

the alignment entirely based on the whole program is

extremely complicated because many factors, e.g., data

dependences across the nested loops, the iteration spaces

for different nested loops and the data access patterns for

each nested loop, etc., need to be considered. Alternatively,

an intuitive way for aligning data arrays over multiple

nested loops is to align the data arrays with the proposed

techniques for each individual single nested loop. It is

possible that large amounts of communication will occur in

this way because the data arrays might need to be

remapped onto the template elements and redistributed

over the processors across the nested loops. Nevertheless,

whether the time to run the program in the above way is

beneficial might depend on the characteristics of the

program. For example, if the program computation is

enormous, the communication cost might become relatively

less significant for the program execution. The executed

program perhaps can obtain effective speedup. In the

following section, a code segment with multiple paralleliz-

able nested loops extracted from a benchmark is executed in

the above way. The experimental result shows that the

tested code segment can obtain effective speedup when its

computation is vast.

4 EXPERIMENTAL RESULTS

We have experimented with the proposed alignment
techniques on some codes extracted, respectively, from
TRFD of the Perfect Benchmarks and Vector Loop [4], [12]
in our PC-cluster environment. Our PC-cluster includes a
master, a PC with one P4 (Pentium 4) 1.8 GHz CPU and
256 MB main memory, and 10 slaves, each a PC with one P4
1.5GHz CPU and 128 MB main memory. The operation
environment was the RedHat Linux 7.1 with the installed
parallel software package-MPI-1.2.2.2. We hand-coded
these extracted code segments in MPI (Message Passing
Interface) with C language and executed them sequentially
and in parallel in our MPI environment, respectively.

The code segment extracted from TRFD of the Perfect
Benchmarks contains arrays referenced using quadratic
subscripts, as shown in Table 1. This real code segment has
no data dependence such that it can intrinsically be
executed in parallel. Our proposed method can align the
arrays of this code segment in a communication-free
manner that does not cause interprocessor communication.
The corresponding sequential and parallel run times for this
code segment are shown in Fig. 3. Fig. 3 shows that the
difference between sequential and parallel run time is
insignificant. This is because that this tested code segment is
not computation-intensive (only one statement with simple
operation) that the cost for initially distributing the aligned
data and finally receiving the computed results appears
more significant. Generally, a computation-intensive nested
loop that can be aligned in a communication-free manner
should well benefit from parallelism.

On the other hand, Vector Loop consists of a main
program, drivers, and a collection of subroutines that
contain one or more nested loops of which the outer loop
is used to increase the granularity of the calculation. By and
large, this benchmark can be considered as consisting of a

36 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 1, JANUARY 2004

TABLE 1
The Extracted Code Segment and the Data Alignments with Our Technique

(For simplicity, the induction variable MRSIJ in the source code is substituted with 1=2 MI2 � 1=2 MI þMJ.)

Fig. 3. The sequential and parallel runtimes for the extracted code
segment.

sequence of nested loops. In this experiment, we extracted a
code segment from this benchmark that included three
parallelizable nested loops, as shown in the Table 2.

In the parallel mode, the iterations and their needed data
for each individual nested loop were remapped using our
techniques onto the corresponding template elements and
redistributed over the processors. The corresponding over-
all sequential and parallel run times for this code segment
are shown in Fig. 4. It was not difficult to find that the code
segment executed in parallel with each single nested loop
aligned individually could obtain effective speedup when
the code segment computation is vast. Therefore, when the
program computation is enormous, the cost for remapping
and redistributing become less significant for program
execution.

5 CONCLUSIONS

Linear expressions are the most common subscript patterns
for the referenced arrays and most data alignment methods
were devised mainly to align the arrays referenced using
linear subscripts with few loop index variables. According
to Petersen and Padua’s results [9] and our survey, the

number of the arrays with quadratic subscript might attain
to certain extent. However, the data alignments for the
arrays referenced using quadratic subscripts were scarcely
discussed before. In this paper, we offer two alignment
techniques to properly map, in a communication-free
manner, computations and arrays referenced using general-
ized linear subscripts or generalized quadratic subscripts
onto the virtual processors. Our alignment techniques,
based on elementary linear algebra, reduce the alignment
problem to the problem of determining a null space basis
for a matrix. By simplifying solving the null space basis, the
proposed techniques can easily determine the desired
mapping functions. Obviously, many different mapping
functions can be obtained by different linear combinations
of the null space basis. Additionally, because dependent
iterations with the properties described in Theorem 1 will
be mapped onto the same template element, the proposed
techniques are not one-to-one mappings.

Nevertheless, to align arrays referenced using exponential
subscriptswithmultiple loop index variables (e.g., subscripts
with the pattern of b1a

I1
1 þ . . .þ bna

In
n þ c1I1 þ . . .þ cnIn þ dÞ,

our techniques cannot be straightforwardly applied. Con-
structing a general communication-free alignment technique
to achieve this would be our future research work.

APPENDIX

THEOREM 1

Given that the alignment function of the template and the
array reference functions of the written arrays are in the
common form, i.e., multiple of the nonconstant items of the
former is equal to multiple of the nonconstant items of the
latter, then there is no distributed data updates for writing
these arrays.

Proof. We give the proof for linear the cases, the proof for
the quadratic cases can be obtained similarly. We first
present the condition for two dependent iterations to be
mapped onto the same template element. Let the
alignment constraint for the iteration space of an
n nested do loop be expressed as:

CHANG ET AL.: USING ELEMENTARY LINEAR ALGEBRA TO SOLVE DATA ALIGNMENT FOR ARRAYS WITH LINEAR OR QUADRATIC... 37

TABLE 2
The Extracted Code Segment and the Data Alignments with Our Technique

(In this experiment, the upper bound for loop index variable I in each nested loop was defined as 30, which is nonconstant in the original code.)

Fig. 4. The overall sequential and parallel runtimes for the extracted

code segment.

Ci0 ¼

c1;1 c1;2 . . . c1;nþ1

c2;1 c2;2 . . . c2;nþ1

..

. ..
. . .

. ..
.

cnþ1;1 cnþ1;2 . . . cnþ1;nþ1

2
66664

3
77775

i1

..

.

in

1

2
66664

3
77775

¼

c1;1i1 þ c1;2i2 þ . . .þ c1;nin þ c1;nþ1

c2;1i1 þ c2;2i2 þ . . .þ c2;nin þ c2;nþ1

..

.

cnþ1;1i1 þ cnþ1;2i2 þ . . .þ cnþ1;nin þ cnþ1;nþ1

2
66664

3
77775;

and the alignment constraint for the written array Ae in
the general loop be represented as:

DAe
FAe

i0

¼

d1;1 . . . d1;nþ1

..

. . .
. ..

.

dnþ1;1 . . . dnþ1;nþ1

2
664

3
775

ae;1 ae;2 . . . ae;n ae;0

0 0 . . . 0 1

1 1 . . . 1 1

..

. ..
. . .

. ..
. ..

.

1 1 . . . 1 1

2
6666664

3
7777775

i1

..

.

in

1

2
66664

3
77775

¼

d1;1 . . . d1;nþ1

..

. . .
. ..

.

dnþ1;1 . . . dnþ1;nþ1

2
664

3
775

ae;1i1 þ . . .þ ae;nin þ ae;0

1

i1 þ . . .þ in þ 1

..

.

i1 þ . . .þ in þ 1

2
66666664

3
77777775
;

and Ci0 ¼ DAe
FAe

i0. Take any element of Ci0, e.g., ck;1i1 þ
ck;2i2 þ . . .þ ck;nin þ ck;nþ1 for 1 � k � nþ 1, as the tem-
plate alignment function by which the template elements
are determined for the corresponding iterations (compu-
tations) and their needed data to be mapped onto, then
two dependent iterations i1 ¼ ½i1;1i1;2 . . . i1;n� and
i2 ¼ ½i2;1 i2;2 . . . i2;n�, which both access to the same
element of array Ae, will be mapped onto the same
template array element if and only if i1;1 þ i1;2 þ . . .þ
i1;n þ 1 = i2;1 þ i2;2 þ . . .þ i2;n þ 1. It is clear that two
iterations i1 ¼ ½i1;1 i1;2 . . . i1;n� and i2 ¼ ½i2;1 i2;2 . . . i2;n� can
be mapped onto the same template element if and only if

ck;1i1;1 þ ck;2i1;2 þ . . .þ ck;ni1;n þ ck;nþ1 ¼
ck;1i2;1 þ ck;2i2;2 þ . . .þ ck;ni2;n þ ck;nþ1

for 1 � k � nþ 1. Due to that Ci0 ¼ DAe
FAe

i0, for two
iterations i1 ¼ ½i1;1i1;2 . . . i1;n� and i2 ¼ ½i2;1 i2;2 . . . i2;n�, we
have:

ck;1i1;1 þ ck;2i1;2 þ . . .þ ck;ni1;n þ ck;nþ1

¼ dk;1ðae;1i1;1 þ . . .þ ae;ni1;n þ ae;0Þ þ dk;2þ
dk;3ði1;1 þ . . .þ i1;n þ 1Þ þ . . .þ dk;nþ1ði1;1 þ . . .þ i1;n þ 1Þ

¼ dk;1ðae;1i1;1 þ . . .þ ae;ni1;n þ ae;0Þ þ dk;2þ
ðdk;3 þ . . .þ dk;nþ1Þði1;1 þ . . .þ i1;n þ 1Þ;

and

ck;1i2;1 þ ck;2i2;2 þ . . .þ ck;ni2;n þ ck;nþ1

¼ dk;1ðae;1i2;1 þ . . .þ ae;ni2;n þ ae;0Þ þ dk;2þ
dk;3ði2;1 þ . . .þ i2;n þ 1Þ þ . . .þ dk;nþ1ði2;1 þ . . .þ i2;n þ 1Þ

¼ dk;1ðae;1i2;1 þ . . .þ ae;ni2;n þ ae;0Þ þ dk;2þ
ðdk;3 þ . . .þ dk;nþ1Þði2;1 þ . . .þ i2;n þ 1Þ:

From the above equations, it is easy to find that, if

ae;1i1;1 þ . . .þ ae;ni1;n þ ae;0 ¼ ae;1i2;1 þ . . .þ ae;ni2;n þ ae;0;

then

ck;1i1;1 þ ck;2i1;2 þ . . .þ ck;ni1;n þ ck;nþ1 ¼
ck;1i2;1 þ ck;2i2;2 þ . . .þ ck;ni2;n þ ck;nþ1

if and only if i1;1 þ . . .þ i1;n þ 1 = i2;1 þ . . .þ i2;n þ 1. For
two dependent iterations i1 = ½i1;1i1;2 . . . i1;n� and i2 =
½i2;1i2;2 . . . i2;n�, theyaccess to thesamedataelementofarray
Ae; that is,

ae;1i1;1 þ . . .þ ae;ni1;n þ ae;0 ¼ ae;1i2;1 þ . . .þ ae;ni2;n þ ae;0:

Thus, we have that two dependent iterations i1 ¼
½i1;1 i1;2 . . . i1;n� and i2 ¼ ½i2;1 i2;2 . . . i2;n� will be mapped
onto the same template array element if and only if
i1;1 þ i1;2 þ . . .þ i1;n þ 1 ¼ i2;1 þ i2;2 þ . . .þ i2;n þ 1. Simi-
larly, for the quadratic cases, two dependent iterations
i1 ¼ ½i1;1 i1;2 . . . i1;n� and i2 ¼ ½i2;1 i2;2 . . . i2;n� will be
mapped onto the same template array element if and
only if

i21;1 þ i21;2 þ . . .þ i21;n þ i1;1 þ i1;2 þ . . .þ i1;n þ 1 ¼
i22;1 þ i22;2 þ . . .þ i22;n þ i2;1 þ i2;2 þ . . .þ i2;n þ 1:

Now, suppose that ck;1i1 þ ck;2i2 þ . . .þ ck;nin þ ck;nþ1 for
1 � k � nþ 1 is the template alignment function and
ae;1i1 þ ae;2i2 þ . . .þ ae;nin þ ae;0 is the access function of
the written array Ae and by the assumption,

m� ðck;1i1 þ ck;2i2 þ . . .þ ck;ninÞ ¼
n� ðae;1i1 þ ae;2i2 þ . . .þ ae;ninÞ;

m and n are nonzero positive integers. Due to the fact
that Ci0 ¼ DAe

FAe
i0, for two iterations i1 ¼ ½i1;1 i1;2 . . . i1;n�

and i2 ¼ ½i2;1 i2;2 . . . i2;n�, we have:

dk;1ðae;1i1;1 þ . . .þ ae;ni1;n þ ae;0Þ þ dk;2þ
dk;3ði1;1 þ . . .þ i1;n þ 1Þ þ . . .þ dk;nþ1ði1;1 þ . . .þ i1;n þ 1Þ
¼ ck;1i1;1 þ ck;2i1;2 þ . . .þ ck;ni1;n þ ck;nþ1

¼ ðn=mÞ � ðae;1i1;1 þ ae;2i1;2 þ . . .þ ae;ni1;nÞ þ ck;nþ1;

and

dk;1ðae;1i2;1 þ . . .þ ae;ni2;n þ ae;0Þ þ dk;2þ
dk;3ði2;1 þ . . .þ i2;n þ 1Þ þ . . .þ dk;nþ1ði2;1 þ . . .þ i2;n þ 1Þ
¼ ck;1i2;1 þ ck;2i2;2 þ . . .þ ck;ni2;n þ ck;nþ1

¼ ðn=mÞ � ðae;1i2;1 þ ae;2i2;2 þ . . .þ ae;ni2;nÞ þ ck;nþ1:

From the above equations, it is easy to find that, if

ae;1i1;1 þ . . .þ ae;ni1;n ¼ ae;1i2;1 þ . . .þ ae;ni2;n;

then

dk;1ðae;1i1;1 þ . . .þ ae;ni1;n þ ae;0Þ þ dk;2þ
d1;3ði1;1 þ . . .þ i1;n þ 1Þ þ . . .þ dk;nþ1ði1;1 þ . . .þ i1;n þ 1Þ ¼
dk;1ðae;1i2;1 þ . . .þ ae;ni2;n þ ae;0Þ þ dk;2þ
dk;3ði2;1 þ . . .þ i2;n þ 1Þ þ . . .þ dk;nþ1ði2;1 þ . . .þ i2;n þ 1Þ;

i.e.,

i1;1 þ . . .þ i1;n þ 1 ¼ i2;1 þ . . .þ i2;n þ 1:

38 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 1, JANUARY 2004

For two dependent iterations i1 ¼ ½i1;1 i1;2 . . . i1;n� and
i2 ¼ ½i2;1 i2;2 . . . i2;n�, we have

ae;1i1;1 þ ae;2i1;2 þ . . .þ ae;ni1;n þ ae;0 ¼ ae;1i2;1 þ ae;2i2;2

þ . . .þ ae;ni2;n þ ae;0;

i.e.,

ae;1i1;1 þ ae;2i1;2 þ . . .þ ae;ni1;n ¼
ae;1i2;1 þ ae;2i2;2 þ . . .þ ae;ni2;n

and, thus, i1;1 þ . . .þ i1;n þ 1 ¼ i2;1 þ . . .þ i2;n þ 1. Thus,
fromabove, twodependent iterationswhichbothwrite the
same element of array Ae will be mapped onto the same
template array element to avoid the distributed data
updates for writing the same data element of array Ae. tu

REFERENCES

[1] J. Edmonds, “Systems of Distinct Representative and Linear
Algebra,” J. Research of Nat’l Bureau of Standards, Section B, vol. 71,
no. 4, pp. 241-245, 1967.

[2] D.G. Luenberger, Linear and Nonlinear Programming. Addison-
Wesley Publishing Company, 1984.

[3] J. Ramanujam and P. Sadayappan, “Compile-Time Techniques for
Data Distributed in Distributed Memory Machines,” IEEE Trans.
Parallel and Distributed Systems, vol. 2, no. 4, pp. 472-482, Apr. 1991.

[4] D. Levine, D. Callahan, and J. Dongarra, “A Comparative Study of
Automatic Vectorizing Compilers,” Parallel Computing, vol. 17,
pp. 1223-1244, 1991.

[5] J. Dongarra, M. Furtney, S. Reinhardt, and J. Russell, “Parallel
Loops—A Test Suite for Parallelizing Compilers: Description and
Example Results,” Parallel Computing, vol. 17, pp. 1247-1255, 1991.

[6] P. Feautrier, “Toward Automatic Partitioning of Arrays on
Distributed Memory Computers,” Proc. ACM Int’l Conf. Super-
computing, pp. 175-184, 1993.

[7] D. Bau, I. Kodukula, V. Kotlyar, K. Pingali, and P. Stodghill,
“Solving Alignment Using Elementary Linear Algebra,” Proc.
Conf. Record Seventh Workshop Languages and Compilers for Parallel
Computing, pp. 46-60, Aug. 1994.

[8] M. Wolfe, High Performance Compilers for Parallel Computing.
Redwood City: Addison-Wesley Publishing Company, 1996.

[9] P.M. Petersen and D.A. Padua, “Static and Dynamic Evaluation of
Data Dependence Analysis Techniques,” IEEE Trans. Parallel and
Distributed Systems, vol. 7, no. 11, pp. 1121-1132, Nov. 1996.

[10] M. Dion and Y. Robert, “Mapping Affine Loop Nests: New
Results,” Parallel Computing, vol. 22, no. 10, pp. 1373-1397, Dec.
1996.

[11] P. Lee, “Efficient Algorithms for Data Distribution on Distributed
Memory Parallel Computers,” IEEE Trans. Parallel and Distributed
Systems, vol. 8, no. 8, pp. 825-839, Aug. 1997.

[12] R. Eigenmann, J. Hoeflinger, and D. Padua, “On the Automatic
Parallelization of the Perfect Benchmarks,” IEEE Trans. Parallel and
Distributed Systems, vol. 9, no. 1, pp. 5-23, Jan. 1998.

[13] Y.-C. Chung, C.-H. Hsu, and S.-W. Bai, “A Basic-Cycle Calculation
Technique for Efficient Dynamic Data Redistribution,” IEEE Trans.
Parallel and Distributed Systems, vol. 9, no. 4, pp. 359-377, Apr. 1998.

[14] A.W. Lam and M.S. Lam, “Maximizing Parallelism and Minimiz-
ing Synchronization with Affine Partitions,” Parallel Computing,
vol. 24, nos. 3-4, pp. 445-475, May 1998.

[15] M. Kandemir, A. Choudhary, N. Shenoy, P. Banerjee, and J.
Ramanujam, “A Hyperplane Based Approach for Optimizing
Spatial Locality in Loop Nests,” Proc. 12th ACM Int’l Conf.
Supercomputing, pp. 69-76, July 1998.

[16] M. Kandemir, J. Ramanujam, A. Choudhary, and P. Banerjee, “A
Loop Transformation Algorithm Based on Explicit DADA Layout
Representation for Optimizing Locality,” Proc. 11th Int’l Workshop
Languages and Compilers for Parallel Computing, pp. 34-50, Aug. 1998.

[17] C.-P. Chu, W.-L. Chang, I. Chen, and P.-S. Chen, “Communica-
tion-Free Alignment for Array References with Linear Subscripts
in Two Loop Index Variables or Quadratic Subscripts,” Proc.
Second IASTED Int’l Conf. Parallel and Distributed Computing and
Networks, pp. 571-576, 1998.

[18] V. Boudet, F. Rastello, and Y. Robert, “Alignment and Distribution
is NOT (Always) NP-Hard,” Proc. Int’l Conf. Parallel and
Distributed Systems, vol. 5, no. 9, pp. 648-657, Dec. 1998.

[19] C.-J. Liao and Y.-C. Chung, “Tree-Based Load Balancing Methods
for Solution-Adaptive Finite Element Graphs on Distributed
Memory Multicomputers,” IEEE Trans. Parallel and Distributed
Systems, vol. 10, no. 4, pp. 360-370, Apr. 1999.

[20] G.-H. Hwang and J.K. Lee, “An Expression-Rewriting Framework
to Generate Communication Sets for HPF Programs with Block-
Cyclic Distribution,” Parallel Computing, vol. 25, pp. 1105-1139,
1999.

[21] A.W. Lam, G.I. Cheong, and M.S. Lam, “An Affine Partitioning
Algorithm to Maximize Parallelism and Minimize Communica-
tion,” Proc. 13th ACM Int’l Conf. Supercomputing, pp. 228-237, June
1999.

[22] K.-P. Shih, J.-P. Sheu, and C.-H. Huang, “Statement-Level
Communication-Free Partitioning Techniques for Parallelizing
Compilers,” J. Supercomputing, pp. 243-269, vol. 15, no. 3, Feb.
2000.

[23] C.-H. Hsu, S.-W. Bai, Y.-C. Chung, and C.-S. Yang, “A Generalized
Basic-Cycle Calculation Method for Array Redistribution,” IEEE
Trans. Parallel and Distributed Systems, vol. 11, no. 12, pp. 1201-
1216, Dec. 2000.

[24] W.-L. Chang, C.-P. Chu, and J.-H. Wu, “Communication-Free
Alignment for Array References with Linear Subscripts in Three
Loop Index Variables or Quadratic Subscripts,” J. Supercomputing,
vol. 20, no. 1, pp. 67-83, Aug. 2001.

Weng-Long Chang received the BS and MS
degrees in computer science and information
engineering from Feng Chia University and
National Cheng Kung University, Taiwan, in
1988 and 1994, respectively. In 1999, he
received the PhD degree in computer science
and information engineering from National
Cheng Kung University. He is currently an
assistant professor in the Department of In-
formation Management, Southern Taiwan Uni-

versity of Technology, Tainan County, Taiwan. His research interests
include languages and compilers for parallel computing and molecular
computing.

Jih-Woei Huang received the BS degree in
computer engineering from Feng Chia Univer-
sity, Taiwan, Republic of China, in 1986, and the
MS degree in computer engineering from the
National Chiao Tung University, Taiwan, Repub-
lic of China, in 1991. He is currently working
toward the PhD degree in the Department of
Computer Science and Information Engineering,
National Cheng Kung University, Taiwan, Re-
public of China. His research interest is mainly in

paralleling compilers.

Chih-Ping Chu received the BS degree in
agricultural chemistry from National Chung
Hsing University, Taiwan, the MS degree in
computer science from the University of Califor-
nia, Riverside, and the PhD degree in computer
science from Louisiana State University. He is
currently a professor in the Department of
Computer Science and Information Engineering
at National Cheng Kung University, Taiwan. His
research interests include parallelizing compi-

lers, parallel computing, parallel processing, Internet computing, and
software engineering.

. For more information on this or any other computing topic,
please visit our Digital Library at http://computer.org/publications/dlib.

CHANG ET AL.: USING ELEMENTARY LINEAR ALGEBRA TO SOLVE DATA ALIGNMENT FOR ARRAYS WITH LINEAR OR QUADRATIC... 39

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

