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Abstract

In this paper, we analyze the recurrences from the breakability of the dependence links formed in general multi-state-

ments in a nested loop. The major findings include: (1) A sink variable renaming technique, which can reposition an

undesired anti-dependence and/or output-dependence link, is capable of breaking an anti-dependence and/or output-

dependence link. (2) For recurrences connected by only true dependences, a dynamic dependence concept and the

derived technique are powerful in terms of parallelism exploitation. (3) By the employment of global dependence test-

ing, link-breaking strategy, Tarjan�s depth-first search algorithm, and a topological sorting, an algorithm for resolving a

general multi-statement recurrence in a nested loop is proposed. Experiments with benchmark cited from Vector loops

showed that among 134 subroutines tested, 3 had their parallelism exploitation amended by our proposed method. That

is, our offered algorithm increased the rate of parallelism exploitation of Vector loops by approximately 2.24%.
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1. Introduction

In high speed computing [20], there are the two

most popular parallel computational models, dis-

tributed memory multiprocessors and shared

memory multiprocessors. Because the technique
to memory hardware [20] is improved, therefore,

the access time of shared memory for a system of

multiprocessors is obviously decreased and the
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system has been increasingly used for scientific and

engineering applications. However, the major

shortcoming of shared memory multiprocessors

is the difficulty in programming because program-

mers are responsible for analyzing data depend-
ence relations among statements in programs and

exploiting the parallelism of statements in pro-

grams among shared memory multiprocessors.

A successful vectored/paralleled compiler is

capable of exploiting the parallelism of a program.

Three features of a vectored/paralleled compiler

determine its level of parallelism exploitation: (1)

an accurate data dependence testing, (2) efficient
loop optimization and (3) efficient removals of

undesired data dependences.

Techniques for dependence analysis algorithms,

which directly support data dependence testing,

have been developed and used quite successfully

[2,5,7–10,20,22–27]. Computationally expensive

programs in general spend most of their time in

the execution of loops. Extracting parallelism from
loops in an ordinary program therefore has a con-

siderable effect on the speed-up. Many loop opti-

mizational methods have been developed and

broadly fallen into two classes: loop vectoriza-

tion and loop parallelization [3,4,20,21,28–30].

In terms of the reduction of data dependences,

most researches concentrate on loop optimiza-

tion by the front-end of vectored/paralleled com-
pilers such as scalar renaming, scalar expansion,

scalar forward-substitution and dead code elimina-

tion [20]. Studies on the back-end of vectored/

paralleled compilers primarily deal with separation

of parallelism execution and sequential execu-

tion of the statements. Relatively less attention

has been given to data dependence elimination

[1,9,11].
Recurrence is a type of p-blocks in a general

nested loop, which is extracted at the time of loop

distribution, a back-end phase [17]. Statement(s)

involved in a recurrence are strongly connected

via various dependence types. Famous techniques,

such as node splitting, thresholding, cycle shrinking,

etc., are able to eliminate data dependence of a

recurrence to a certain extent, depending upon
specific dependence types [1,17,18,20,21].

In this paper, we study a parallelism exploita-

tion for loops with dependence cycles on basis of
breaking dependence links. Formally the breaking

strategies for dependence cycles were surveyed in a

single loop [11]. Their method is extended to break

the dependence links in a nest of loops. In Section

2, the concept of data dependence is reviewed. In
Section 3, an analysis of the formation of depend-

ence cycles is provided and three dependence links

on the breaking-strategy basis are derived. For

each link pattern, its features, breaking techniques

and applications are introduced in detail. An algo-

rithm is developed for the resolution of a general

multi-statement recurrence. Experimental results

showing the advantages of the proposed method
are given in Section 4. Finally, Section 5 contains

a conclusion.
2. Data dependence

It is assumed that there are two statements

within a general loop. The general loop is pre-
sumed to contain n common loops. Statements

are postulated to be embedded in n common loops.

An array A is supposed to appear simultaneously

within statements and if a statement S2 uses the

element of the array A defined first by another

statement S1, then S2 is true-dependent on S1. If

a statement S2 defines the element of the array A

used first by another statement S1, then S2 is
anti-dependent on S1. If a statement S2 redefines

the element of the array A defined first by another

statement S1, then S2 is output-dependent on S1.

Another dependence, control dependence, which

arises due to control statements, is not addressed

in this paper.

Each iteration of a general loop is identified by

an iteration vector whose elements are the values
of the iteration variables for that iteration. For

example, the instance of the statement S1 during

iteration ~i ¼ ði1; . . . ; inÞ is denoted S1ð~iÞ; the in-

stance of the statement S2 during iteration
~j ¼ ðj1; . . . ; jnÞ is denoted S2ð~jÞ. If (i1,. . .,in) is iden-

tical to (j1, . . ., jn) or (i1, . . ., in) precedes (j1, . . ., jn)
lexicographically, then S1ð~iÞ is said to precede

S2ð~jÞ, denoted S1ð~iÞ < S2ð~jÞ. Otherwise, S2ð~jÞ is
said to precede S1ð~iÞ, denoted S1ð~iÞ > S2ð~jÞ. In

the following, Definitions 2.1–2.7, cited from

[3,4,11], will be used later.



W.-L. Chang et al. / Journal of Systems Architecture 50 (2004) 729–742 731
Definition 2.1. Loop-independent dependence re-

fers to the dependence confined within each single

iteration. Loop-independent dependences include

loop-independent true-dependence (denoted dt),

loop-independent anti-dependence (denoted da)
and loop-independent output-dependence (de-

noted do). These relations are represented by the

set (denoted D), i.e., D={dt,da,do}.

Definition 2.2. Consistent loop-carried depend-

ence refers to the dependence occurring across

the iteration boundaries. Consistent loop-carried

dependences include consistent loop-carried true-
dependence (denoted [dt]), consistent loop-carried

anti-dependence (denoted [da]) and consistent

loop-carried output-dependence (denoted [do]).

These relations are represented by the set (denoted

[D]), i.e., [D]={[dt], [da], [do]}.

Definition 2.3. A vector of the form ~h ¼
ðh1; . . . ; hnÞ is termed as a direction vector. The
direction vector (h1, . . .,hn) is said to be the direc-

tion vector from S1ð~iÞ to S2ð~jÞ if for 1 6 k 6 n,

ikhk jk, i.e., the relation hk is defined by

hk ¼

< if ik < jk;
¼ if ik ¼ jk;
> if ik > jk
�the relation of ik and jk can be ignored;

i:e:; can be any one off<;¼; >g:

8>>>><
>>>>:

We remember S1 d~h S2, where d2D[ [D] and
~h ¼ ðh1; h2; . . . ; hnÞ.

Definition 2.4. The dependence distance vector

from S1ð~iÞ to S2ð~jÞ is denoted by distð~i;~jÞ ¼
ðj1 	 i1; . . . ; jn 	 inÞ.

Definition 2.5. The dependence distance matrix of

nested loops is a matrix whose columns are the

dependence distance vectors of all the dependences

in nested loops.

Definition 2.6. For an inter-statement or intra-

statement dependence, the source variable of the

dependence refers to the instance of an indexed

variable to be accessed first; the sink variable of

the dependence refers to the instance of indexed

variable to be accessed later.
Definition 2.7. The direction vector matrix of

nested loops is a matrix whose columns are the

direction vectors of all the dependences in nested

loops.

In the following, Lemma 2.1, cited from [12],
introduces a dependence relation for which direct

vectorization of the code is available. Lemma 2.2,

cited from [1,21], emphasizes an important fact.

That is, no matter how complicated dependence

relations in statements are, so long as depend-

ence relations do not form a cycle, the statements

can always be vectorized via statement reorder-

ing.
Lemma 2.1. A nest of loops without inconsistently

dependent statement(s) can be fully vectorized

directly if the following two conditions hold.

1. There does not exist a single statement S1 such

that S1ð~iÞ½dt�S1ð~jÞ.
2. There does not exist a pair of statements S1 and

S2, where S1<S2, such that S2ð~jÞdS1ð~iÞ, where

d2[D].

Lemma 2.2. A nest of loops with two statements S1

and S2, where S1<S2, S2ð~jÞdS1ð~iÞ and d2[D], is the

only dependence relation in the statements, can be

vectorized via the statement reordering technique,

i.e., reorder S1 and S2 to become S2<S1.

The vectorization of statements in a nest of loops

is inhibited if dependence relations in statements

form a dependence cycle. Statements involved in a

dependence cycle are strongly connected by various
dependence edges. There exists at least one path be-

tween any pairs of statements in the dependence

graph. The vectorizability of the dependence cycle(s)

depends on whether the dependence cycle(s) can be

broken or the level of dependence links that can be

eliminated [1,6,11,21].
3. The breaking strategy and exploitation of

parallelism

In general, we can exploit the parallelism of
a nest of loops as long as one of the existing
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dependence links in a dependence cycle is breaka-

ble. If we break one dependence cycle and new

dependence links satisfy the condition of Lemma

2.1, then these statements involved in the depend-

ence cycle can be vectorized. If we break one
dependence cycle and new dependence links satisfy

the condition of Lemma 2.2, then these statements

involved in the dependence cycle can be vectorized

via statement reordering. So, to deal with the par-

allelism exploitation of a dependence cycle, we

only need to consider the breakability of its

dependence links in a dependence cycle.

If we examine the possible dependence links
for a statement S2ð~jÞ on a statement S1ð~iÞ, then

we find seven dependence links which can exist:

(1) true-dependence, (2) anti-dependence, (3)

output-dependence, (4) true- and anti-depen-

dences, (5) true- and output-dependences, (6)

anti- and output-dependences and (7) true-, anti-

and output-dependences [11]. With respect to

breaking strategy of a dependence link of a
dependence cycle in a nest of loops, the depend-

ence types of a link can be classified as three

patterns: (1) anti-dependence link, (2) output-

dependence link and (3) true-dependence links

including any possible dependence link. The first

two link patterns can be broken while the third

pattern of dependence link is unbreakable. In or-

der to prove the correction of breaking strategy,
we need to use a general dependence cycle to

study the breaking strategy of the first two link

patterns. Suppose we have n statements S0,S1,

. . .,Sn	 1 in a nest of loops, where S0<S1<

� � �<Sn	 1. These n statements are involved in a

dependence cycle in a nest of loops. If there exists

a pair of statements Sa and Sb, where 0 6 a,b 6

n	1 and a5b, and the dependence link from
Sa to Sb is one of the first two link patterns,

the breaking techniques and applications are de-

scribed below.

3.1. Pattern I––anti-dependence link

For an anti-dependence link of a dependence

cycle in a single loop, a sink variable-renaming
algorithm to break such a dependence cycle was

developed [11,12]. We extend that algorithm to

break such a dependence of a dependence cycle
in a nest of loops. The algorithm is described

below.

Algorithm 1. The Breaking Strategy of Link

Pattern I

Input:

(1) A nest of loops L={l1, l2, . . ., ln}.
(2) A set of statements S={S0,S1, . . .,Sn	 1} that

are involved in a dependence cycle.
(3) The dependence link from Sa to Sb is an anti-

dependence link.

(4) A direction vector matrix D ¼ ð~d1;~d2; . . . ;~dpÞ.

Output: Generate the new dependence links not to

form a new dependence cycle.

Method:

/*

Let Ssrc
a and Ssin k

b represent the source and sink var-

iables in the dependence link from Sa to Sb,
respectively.

Let~db represent the direction vector from Sa to Sb.

Let Sindex
a and Sindex

b represent the indexed expres-

sion of the source and sink variables in the

dependence link from Sa to Sb, respectively.

*/

1. If one of elements in a direction vector matrix, D,

includes one direction vector �>�, then the trans-

formation is exited and all of the statements are
preserved. Otherwise, the two variables X and

index represent the sink variable name and the

indexed expression of the sink variable in anti-

dependence between one statement Sa and

another statement Sb, respectively. Simultane-

ously, one Boolean variable is set to a false value.

2. Determine which variables is true-dependent on

the sink variable X in the anti-dependence. If a
variable Ssin k

d in a statement Sd is true-dependent

on the sink variable X and the variable Ssin k
d can-

not be the sink variable of other true-depen-

dences, then the name of the variable Ssin k
d is

changed and the Boolean variable is allocated

to a true value. If the variable Ssin k
d is the sink

variable of another true-dependence, then such

a transformation is exited and all of the state-
ments are preserved.



Table 1

The performance of the proposed methods to loops tested in Vector loops

Benchmark Loop name Scalar mode (s) Parallel mode (s) Speed-up

Vector loops S231 3.485 0.085 41

Vector loops S232 4.656 0.097 48

Vector loops S221 5.559 0.109 51

Vector loops S212 6.435 0.117 55

Vector loops S211 6.897 0.121 57

Vector loops S243 9.258 0.149 62

Vector loops S241 8.875 0.136 65

Vector loops S244 11.243 0.17 66

Vector loops S222 14.697 0.213 69
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than that of the transformed codes. For all of the

subroutines in our experiments, the execution time

of the original programs was indicated to take

from 41 to 69 times longer than the execution time

of the transformed programs. This indicates that

the proposed scheme is very significant in term of

speed-up, ranging from 41 to 69.
5. Conclusion

Parallelism exploitation for statements with

dependence cycles in a nest of loops is necessary.

The vectorizability of a dependence cycle depends

primarily on its dependence links. There exist

seven possible dependence relations for one state-
ment on another statement. A dependence cycle

with an anti-dependence link is breakable via node

splitting [17]. In case the source variable for the

anti-dependence relation is itself the sink variable

of another true-dependence, a corrective strategy

should be incorporated into the node splitting

algorithm. An output-dependence link or an anti-

and output-dependence link in a dependence cycle
is breakable via a sink variable renaming tech-

nique. This technique is also applicable to break

an anti-dependence link. In practice, node splitting

and sink variable renaming techniques should be

utilized in a complementary manner. For a

dependence cycle formed only by links of true-

dependence or all other dependences, a general,

simple, but less-efficient partial vectorization algo-
rithm is available. To improve the efficiency, a dy-

namic dependence concept and its derived

technique are powerful. This approach is particu-

larly efficient to deal with a simple dependence
cycle. All of the recurrence-resolving strategies

can be integrated with the dependence testing tech-

nique, Tarjan�s depth-first search algorithm, and a

topological sorting to develop an automatic recur-

rence-resolving system.
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