
The in®nity Lambda test: A multi-dimensional
version of Banerjee in®nity test

Weng-Long Chang, Chih-Ping Chu *

Department of Computer Science and Information Engineering, National Cheng Kung University,

Tainan 701, Taiwan, ROC

Received 15 February 1999; received in revised form 21 September 1999; accepted 20 December 1999

Abstract

The Banerjee in®nity test accurately determines data dependence for one linear equation

under symbolic limits and any given direction vectors (U. Banerjee, Depence Analysis for

Supercomputing, Kluwer Academic Publishers, Norwell, MA, 1988; P.M. Petersen, Evalua-

tion of programs and parallelizing compilers using dynamic analysis techniques, Ph.D. Thesis,

University of Illinois at Urbana±Champaign, January 1993). For m linear equations with the

same constraints, as each linear equation has to be tested separately, the Banerjee in®nity test

may generally lose the accuracy. In this paper, we proposed the in®nity Lambda test ± a multi-

dimensional version of the Banerjee in®nity test. The in®nity Lambda test can be applied to

deal with data dependence of coupled arrays with symbolic (unknown at compile time) bounds.

Experiments with benchmark showed that the in®nity Lambda test increases the success

rate of the Lambda test by approximately 12%. Ó 2000 Elsevier Science B.V. All rights

reserved.

Keywords: Parallelizing compilers; Vectorizing compilers; Data dependence analysis

1. Introduction

Coupled subscripts occur quite frequently in real programs in the light of an
empirical study reported in [14]. The study shows that two-dimensional array ref-
erences account for 36% and three-dimensional array references account for 7%

www.elsevier.com/locate/parco

Parallel Computing 26 (2000) 1275±1295

* Corresponding author. Tel.: +886-6-2757575, ext. 62527; fax: +886-6-2747076.

E-mail address: chucp@server2.iie.ncku.edu.tw (C.-P. Chu).

0167-8191/00/$ - see front matter Ó 2000 Elsevier Science B.V. All rights reserved.

PII: S 0 1 6 7 - 8 1 9 1 (0 0) 0 0 0 0 7 - 7

among array references examined. The study also shows that about 46% and 2%
have coupled subscripts for examined two-dimensional and three-dimensional array
references, respectively. Loops with symbolic (unknown at compile time) bounds also
appear quite frequently in real programs according to an empirical study reported in
[6]. The study indicates that 95% of loops checked have symbolic limits. The major
®ndings from these data include: (1) multi-dimensional array references with un-
known bounds are very common, (2) coupled subscripts with symbolic bounds
emerge quite frequently, and (3) most of the coupled subscripts with unknown
bounds appear in two-dimensional arrays. Hence, an e�cient and precise depen-
dence testing method for manipulating coupled expressions with symbolic bounds is
very important.

The question of whether multi-dimensional arrays with linear coupled sub-
scripts under symbolic loop bounds may be parallelized/vectorized depends upon
the resolution of those multi-dimensional array aliases. The resolution of coupled
multi-dimensional array aliases is to ascertain whether two references to a coupled
multi-dimensional array in a general loop with symbolic loop limits may refer to
the same element of that array. This problem in general case can be reduced to
that of checking whether a system of m linear equations with n unknown vari-
ables has a simultaneous integer solution, which satis®es the constraints for each
variable in the system. It is assumed that m linear equations in a system are
written as

a1;1X1 � a1;2X2 � � � � � a1;nÿ1Xnÿ1 � a1;nXn � a1;0 � 0;

..

.

am;1X1 � am;2X2 � � � � � am;nÿ1Xnÿ1 � am;nXn � am;0 � 0;

�1:1�

where each ai;j is an integer for 16 i6m and 16 j6 n:
It is postulated that the constraints to each variable in (1.1) are represented as

Pr;0 �
Xrÿ1

s�1

Pr;sXs6Xr6Qr;0 �
Xrÿ1

s�1

Qr;sXs; �1:2�

where Pr;0; Qr;0; Pr;s and Qr;s are either loop-invariant variables or loop-invariable
constants for 16 r6 n; but at least one of the Pr;0; Qr;0; Pr;s and Qr;s is a loop-
invariant variable for the r, 16 r6 n:

The bounds of a variable Xr are constants if each of Pr;0 and Qr; 0 is a loop-in-
variant constant and each of Pr;s and Qr;s is 0. The bounds of a variable Xr are
variables if each of Pr;0; Qr;0; Pr;s and Qr;s is a loop-invariant constant. The bounds of
a variable Xr are symbolic if at least one of Pr;0; Qr;0; Pr;s and Qr;s is a loop-invariant
variable.

There are several data dependence analysis algorithms for arrays with coupled
subscripts in practice. The I test and the Direction Vector I test are a combination of
the Banerjee inequalities and the GCD test [7,8]. They ®gure out integer solutions for
one linear equation with constant bounds and given direction vectors. The Lambda
test extends the Banerjee inequalities to allow m linear equations (1.1) under constant

1276 W.-L. Chang, C.-P. Chu / Parallel Computing 26 (2000) 1275±1295

loop limits and any given direction vectors to be tested simultaneously [15]. The
generalized Lambda test extends the Lambda test and the Banerjee algorithm to
allow m linear equations (1.1) with variable loop limits as well as any given direction
vectors to be checked simultaneously [5]. If the Lambda test and the generalized
Lambda test determine no real solutions for m linear equations with both constant
loop bounds and variable loop limits, then they conclude that there are no integer
solutions for m linear equations under those constraints. Otherwise, the Lambda and
generalized Lambda tests assume that there are integer solutions for m linear
equations under those constraints. More precise results are achieved by judging the
consistency of a linear system of equalities and inequalities. The Power test is a
combination of Fourier±Motzkin variable elimination with an extension of Euclid's
GCD algorithm [17,18]. The Omega test combines new methods for eliminating
equality constraints with an extension of Fourier±Motzkin variable elimination to
integer programming [11]. Though both of the methods gain more accurate out-
comes, they have exponential worst-case time complexity.

The Banerjee in®nity test (the Banerjee inequalities and the Banerjee algorithm for
testing single dimension with symbolic limits) can handle the system of one linear
equation under the limits of (1.2) and any given direction vectors [2,10]. For m linear
equations (1.1) with the same constraints (1.2), each linear equation has to be tested
separately. The Banerjee in®nity test in this case may generally lose the accuracy in
many practical cases.

In this paper, the Lambda test and the Banerjee in®nity test are integrated to
treat whether m linear equations (1.1) under the bounds of (1.2) and given direction
vectors have relevant real-valued solutions. An algorithm called the in®nity
Lambda test has been implemented and several measurements have also been
performed.

The rest of this paper is pro�ered as follows. In Section 2, the problem of data
dependence subject to an arbitrary direction vector is reviewed. The summary ac-
counts of the Lambda test, the generalized Lambda test and the Banerjee in®nity test
are presented. In Section 3, the theoretical aspects and the worst-case time com-
plexity of the in®nity Lambda test are described. Experiments with the in®nity
Lambda test and the results showing the advantages of the in®nity Lambda test are
given in Section 4. Finally, brief conclusions are drawn in Section 5.

2. Background

The concept of data dependence and the summary accounts of the Lambda test
and the generalized Lambda test are mainly introduced in this section.

2.1. Data dependence

It is assumed that S1 and S2 are two statements within a general loop. The general
loop is presumed to contain d common loops. Statements S1 and S2 are postulated to

W.-L. Chang, C.-P. Chu / Parallel Computing 26 (2000) 1275±1295 1277

be embedded in d � p loops and d � q loops, respectively. An array A is supposed to
appear simultaneously within statements S1 and S2: Each iteration of a general loop
is identi®ed by an iteration vector whose elements are the values of the iteration
variables for that iteration. For example, the instance of the statement S1 during
iteration ~i � �i1; . . . ; id ; . . . ; id�p� is denoted S1�~i�; the instance of the statement S2

during iteration ~j � �j1; . . . ; jd ; . . . ; jd�q� is denoted S2�~j�. If �i1; . . . ; id ; . . . ; id�p� is
identical to �j1; . . . ; jd ; . . . ; jd�q� or �i1; . . . ; id ; . . . ; id�p� precedes �j1; . . . ; jd ; . . . ; jd�q�
lexicographically, then S1�~i� is said to precede S2�~j�, denoted S1�~i� < S2�~j�: Otherwise,
S2�~j� is said to precede S1�~i�, denoted S1�~i� > S2�~j�: If the instance of the statement
S2�~j� uses the element of the array A de®ned ®rst by the instance of another state-
ment S1�~i�, then S2�~j� is true-dependent on S1�~i�. If the instance of the statement S2�~j�
de®nes the element of the array A used ®rst by the instance of another statement
S1�~i�, then S2�~j� is anti-dependent on S1�~i�. If the instance of the statement S2�~j�
rede®nes the element of the array A de®ned ®rst by the instance of another statement
S1�~i�, then S2�~j� is output-dependent on S1�~i�.

De®nition 2.1. A vector of the form ~h � �h1; . . . ; hd� is termed as a direction vector.
The direction vector �h1; . . . ; hd� is said to be the direction vector from S1�~i� to S2�~j� if
for 16 k6 d; ikhkjk; i.e., the relation hk is de®ned by

hk �

< if ik < jk;
� if ik � jk;
> if ik > jk;
� the relation of ik and jk can be ignored; i:e:; can be any one of

f<; �; >g:

8>>>><>>>>:
2.2. The Lambda test

Coupled references are groups of reference positions sharing one or more index
variables [9,17]. Geometrically, each linear equation in (1.1) de®nes a hyperplane p in
Rn spaces. The intersection S of m hyperplanes corresponds to the common solutions
to all linear equations in (1.1). Obviously, if S is empty then there is no data de-
pendence. Inspecting whether S is empty is trivial in linear algebra. Constant loop

Fig. 1. A geometrical illustration.

1278 W.-L. Chang, C.-P. Chu / Parallel Computing 26 (2000) 1275±1295

bounds and any given direction vectors de®ne a bounded convex set V in Rn: If any
of the hyperplanes in (1.1) does not intersect V, then obviously S cannot intersect V.
However, even if every hyperplane in (1.1) intersects V, it is still possible that S and
V are disjoint. In Fig. 1 from [9], p1 and p2 are two such hyperplanes representing
two linear equations in (1.1), each of which intersects V. But the intersection of
p1 and p2 is outside of V. If a new hyperplane which contains the intersection of
p1 and p2 is found but is disjoint from V, then S and V are immediately gathered not
to intersect. In Fig. 1, p3 is such a new hyperplane. If S and V are disjoint, then there
exists a hyperplane which contains S and is disjoint from V. Furthermore, this hy-
perplane is a linear combination of hyperplanes in (1.1). On the other hand, if S and
V intersect, then no such linear combination exists [2,17].

The Banerjee inequalities are ®rst applied to test each hyperplane in (1.1). If
every hyperplane intersects V, then the Lambda test is employed to simulta-
neously check every hyperplane. The Lambda test is an e�cient and precise data
dependence method to deal with (1.1) beneath V. The Lambda test is actually
equivalent to a multi-dimensional version of the Banerjee inequality because it can
determine simultaneous constrained real-valued solutions. The test forms linear
combinations of coupled references that eliminate one or more instances of index
variables when direction vectors are not considered. While direction vectors are
considered, the Lambda test generates new linear combinations that use a pair of
relative index variables. Simultaneous constrained real-valued solutions exist if
and only if the Banerjee inequalities ®nd solutions in all the linear combinations
generated [9].

2.3. The generalized Lambda test

The Lambda test is an e�cient and precise data dependence method to ascertain
whether there exist data dependences for coupled arrays with constant bounds. For
coupled arrays with variable limits, the Lambda test simply suggests that variable
constraints should be replaced by the closest constant bounds but did not propose
any practical scheme. In our previous work, we generalized the Lambda test [5]. The
generalized Lambda test is exactly equivalent to a multi-dimensional version of the
Banerjee algorithm that is applied towards determining whether there exist data
dependences for coupled arrays with either variable limits or constant bounds under
any given direction vectors. Experiments with benchmark showed that the general-
ized Lambda test increases the success rate of the original Lambda test by approx-
imately 22% [5].

2.4. Banerjee's in®nity test

In checking data dependence of a pair of linear coupled arrays the results must be
conservative. One way of stating this criterion is that the dependence arcs for a given
iteration space are always a subset of the arcs present in any iteration space that is a
superset of the given iteration space. Thus, increasing the iteration space does not
violate the conservative criteria.

W.-L. Chang, C.-P. Chu / Parallel Computing 26 (2000) 1275±1295 1279

Banerjee's in®nity test is based on such a criteria. It is similar to Banerjee's in-
equalities and Banerjee's algorithm when it is applied to rectangular and trapezoidal
iteration spaces. If the stride of the loop is a positive constant, then whenever a loop
lower limit is not known ÿ1 is assumed as its value, and whenever the loop upper
limit is not known �1 is assumed as its value. Since the given iteration space is a
subset of the new iteration space �ÿ1;�1�; any dependence arcs found over the
given iteration space will also be found in the iteration space �ÿ1;�1�: Therefore,
we suppose that fi and gi are the lower and the upper bound functions for the ith
variable in (1.1) with n-variables under the constraints of (1.2) to which loop-in-
variant variables are included in the fi and/or gi; where 16 i6 n: The original con-
straints (1.2) for the variable Xi in (1.1) are rewritten as

fi�X0; . . . ;Xiÿ1�6Xi6 gi�X0; . . . ;Xiÿ1�; �2:1�

where the loop-invariant variables in fi�X0; . . . ;Xiÿ1� and gi�X0; . . . ;Xiÿ1� will be
replaced by ÿ1 or �1 depending on they are in fi or gi; for 16 i6 n:

The only di�erence from the traditional Banerjee's inequalities and Banerjee's
algorithm is that the arithmetic is done in the extended real number system [12] (i.e.,
R [fÿ1;�1g� and the traditional conventions are made on the operations (e.g.,
n�1 � 1, n=1 � 0 if n is real).

Blume and Eigenmann [4] indicated that determining the cost of symbolic ex-
pression comparison is much more di�cult than that of linear expression compari-
son. The worst-case performance of symbolic comparisons is exponential on the size
of the expressions compared and upon the number of variables in the program.
Petersen [10] pointed out that Banerjee's in®nity test breaks dependences in more
than 9% for array references with unknown loop bounds.

3. The in®nity Lambda test

A data dependence problem is considered where coupled subscripts are linear in
terms of loop indexes. Bounds for coupled subscripts are presumed to be symbolic
loop limits. (Note: constant loop constraints are a special case of symbolic loop
bounds, so symbolic loop limits actually contain constant loop constraints.) De-
pendence directions may also be given if required. Given the data dependence
problem as speci®ed, the in®nity Lambda test examines a system of equalities and
deduces whether the system has real-valued solutions. In this section, the theo-
retical aspects and the worst-case time complexity of the in®nity Lambda test are
provided.

It is presupposed that there are no redundant equations in (1.1). Otherwise, they
can simply be eliminated. Furthermore, it is assumed that all array dimensions are
coupled. Otherwise, (1.1) can be broken into several disjoint subsystems and partial
solutions can be acquired for each subsystem and later merged together to form a
complete solution. In practice, the number of coupled dimensions m is very small.

1280 W.-L. Chang, C.-P. Chu / Parallel Computing 26 (2000) 1275±1295

The theories of the proposed method are started to state from the case of m � 2, for
the convenience of presentation.

3.1. The case of two-dimensional array references

In the case of two-dimensional array references, two equations in (1.1) are F1 � 0
and F2 � 0; where Fi � ai;0 � ai;1X1 � � � � � ai;nXn for 16 i6 2: A linear equation for
convenience is directly referred as a hyperplane in Rn: From [9], an arbitrary linear
combination of the two equations can be written as k1F1 � k2F2 �0. The domain of
�k1; k2� is the whole R2 space. Let Fk1;k2

� k1F1 � k2F2; that is Fk1;k2
� �k1a1;0 �

k2a2;0� � �k1a1;1 � k2a2;1�X1 � � � � � �k1a1;n � k2a2;n�Xn: Fk1;k2
is viewed in two ways.

With �k1; k2� ®xed, Fk1;k2
is a linear function of �X1; . . . ;Xn� in Rn: With �X1; . . . ;Xn�

®xed, it is a linear function of �k1; k2� in R2: Furthermore, the coe�cient of
each variable in Fk1;k2

is a linear function of �k1; k2� in R2; i.e.,
W�i� � k1a1;i � k2a2;i for 16 i6 n: The equation W�i� � 0; 16 i6 n; is called a W
equation. Each W equation corresponds to a line in R2, which is called a W line.
Each W line separates the whole space into two closed halfspaces
W�i � f�k1; k2� j W�i�P 0g and Wÿi � f�k1; k2� j W�i�6 0g that intersect at the
W line.

A nonempty set C � Rm is a cone if e~k 2 C for each ~k 2 C and e P 0: It is
obvious that each cone contains the zero vector. Moreover, a cone that includes at
least one nonzero vector ~k must consist of the ``ray'' of ~k; namely fe~k e P 0j g:
Such cones can clearly be viewed as the union of rays. There are at most n W lines
which together divide R2 into at most 2n regions. Each region contains the zero
vector. Any one nonzero element ~k and the zero vector in the region forms the ray
of ~k; namely fe~k e P 0j g: Therefore, each region can be viewed as the union of the
rays. It is very obvious from the de®nition of a cone that each region is a cone
[12,16].

In the following, Lemmas 3.1±3.3 are an extension of Lemmas 1±3 in [9], re-
spectively; De®nitions 3.1±3.3 are cited from [1,9] directly.

Lemma 3.1. Suppose that an unbounded convex set V is defined simply by the limits of
(2.1). (The dependence directions will be taken account of later.) If Fk1;k2

� 0 intersects
V for every �k1; k2� in every W line, then Fk1;k2

� 0 also intersects V for every �k1; k2� in
R2:

Proof. (1) From the well-known intermediate value theorem, Fk1;k2
� 0 intersects V if

and only if min�Fk1;k2
�6 06 max�Fk1;k2

�:
(2) Since V is de®ned by the constraints of (2.1) and Fk1;k2

is continuous on V,
when �k1; k2� is ®xed, there exist the minimum and maximum points for each variable
in Fk1;k2

such that min�Fk1;k2
� � Lb and max�Fk1;k2

� � Ub: Thus we directly compute
the limits for Fk1;k2

�X1; . . . ;Xn� � W�1�X1 � � � � �W�n�Xn: The method of calculating
the constraints is actually equivalent to the Banerjee in®nity test (Banerjee's in-
equalities and Banerjee's algorithm for testing single dimension with symbolic limits)

W.-L. Chang, C.-P. Chu / Parallel Computing 26 (2000) 1275±1295 1281

[2,10]. Banerjee's algorithm for checking loops with unknown bounds is ®rst applied
towards ®guring out the constraints.

Let hn�X1; . . . ;Xn� � Fk1;k2
�X1; . . . ;Xn�: Then we have

hn�x1; . . . ; xn�
6 hnÿ1�x1; . . . ; xnÿ1�;

where hnÿ1�x1; . . . ; xnÿ1� �

hn�x1; . . . ; xnÿ1; gn�x1; . . . ; xnÿ1��
if the coefficient of xn > 0;

hn�x1; . . . ; xnÿ1; fn�x1; . . . ; xnÿ1��
if the coefficient of xn < 0;

8>>><>>>:
..
.

6 hj�x1; . . . ; xj�;

where hj�x1; . . . ; xj� �

hj�1�x1; . . . ; xj; gj�1�x1; . . . ; xj��
if the coefficient of xj�1 > 0;

hj�1�x1; . . . ; xj; fj�1�x1; . . . ; xj��
if the coefficient of xj�1 < 0;

8>>><>>>:
..
.

6 h1�x1�6Ub;

where Ub �
h1�g1�x0�� if the coefficient of x1 > 0;

h1�f1�x0�� if the coefficient of x1 < 0:

�
Similarly, Lb6 Fk1;k2

�X1; . . . ;Xn� can also be inferred. We thus achieve Lb6
Fk1;k2
�X1; . . . ;Xn�6Ub:

Similarly, Banerjee's inequalities for checking loops with unknown bounds can be
also employed towards ®guring out the same constraints. Therefore, we have

Lb �
X

16 j6 n

LAj � �k1a1;0 � k2a2;0� and Ub �
X

16 j6 n

UAj � �k1a1;0 � k2a2;0�;

where

LAj � ÿ1 if k1a1;j � k2a2;j 6� 0;
0 if k1a1;j � k2a2;j � 0

�
and

UAj � �1 if k1a1;j � k2a2;j 6� 0;
0 if k1a1;j � k2a2;j � 0:

�
We obtain Lb6 Fk1;k2

�X1; . . . ; Xn�6Ub from the processing of Banerjee's inequalities.
(3) We have Lb � min�Fk1;k2

�6 06 max�Fk1;k2
� � Ub for any point �k1; k2� on every

W line according to the assumption of the lemma. It is immediately concluded that
min�Fk1;k2

�6 06 max�Fk1;k2
� for every point �k1; k2� on the boundaries of each cone.

(4) Every point in each cone can be expressed as a linear combination of some
points on the boundary of the same cone, as being a well-known fact in the convex

1282 W.-L. Chang, C.-P. Chu / Parallel Computing 26 (2000) 1275±1295

theory. Any point �k5; k6� in a cone is assumed to be capable of being represented as
�ek1 � sk3; ek2 � sk4�; where �k1; k2� and �k3; k4� are points in the boundary of the
cone and e P 0 and sP 0: Because

Fk5;k6
�X1; . . . ;Xn� � Fek1�sk3;ek2�sk4

�X1; . . . ;Xn�
� �ek1 � sk3��a1;1X1 � � � � � a1;nXn� � �ek2 � sk4�
� �a2;1X1 � � � � � a2;nXn�

� �ek1a1;1 � ek2a2;1�X1 � � � � � �ek1a1;n � ek2a2;n�Xn

� �sk3a1;1 � sk4a2;1�X1 � � � � � �sk3a1;n � sk4a2;n�Xn

� e��k1a1;1 � k2a2;1�X1 � � � � � �k1a1;n � k2a2;n�Xn�
� s��k3a1;1 � k4a2;1�X1 � � � � � �k3a1;n � k4a2;n�Xn�

� e � Fk1;k2
�X1; . . . ;Xn� � s � Fk3;k4

�X1; . . . ;Xn�;
we thus secure

min�Fk5;k6
� � e �min�Fk1;k2

� � s �min�Fk3;k4
�6 0

�since min�Fk1;k2
�6 0; min�Fk3;k4

�6 0; e P 0 and sP 0� and

max�Fk5;k6
� � e �max�Fk1;k2

� � s �max�Fk3;k4
�P 0

�since max�Fk1;k2
�P 0; max�Fk3;k4

�P 0; e P 0 and sP 0�:
We hence obtain min�Fk5;k6

�6 06 max�Fk5;k6
� for any point �k5; k6� in each cone. Of

course, it is also true in the whole R2 space. Therefore, for any point �k1; k2� in R2

space, Fk1;k2
� 0 intersects V in Rn space. �

If the constraints of (2.1) plus dependence directions de®ne V, we have a similar
lemma. Banerjee algorithm for testing loops with unknown limits will use the fol-
lowing de®nition cited from [1,2,10] to denote the new limits for each pair of relative
variables with a given dependence direction.

De®nition 3.1a. Given m linear equations (1.1) beneath the constraints of (2.1) and a
speci®c direction vector ~h � �h1; . . . ; hd�; where d refers to the number of common
loops. If hk 2 {<, >}, 16 k6 d; then the bounds of (2.1) for each pair of relative
variables will be rede®ned, assuming X2kÿ1hkX2k and X2kÿ1 and X2k refer to the same
loop indexed variable. The new constraints for X2kÿ1 and X2k are either (3.1) or (3.2).

If hk 2 f<g; then

f2kÿ1�X1; . . . ;X2kÿ2�6X2kÿ16 g2kÿ1�X1; . . . ; X2kÿ2�
and

f2k�X1; . . . ;X2kÿ1� � 1� X2kÿ16X2k 6 g2k�X1; . . . ;X2kÿ1�:

�3:1�

If hk 2 f>g; then

f2kÿ1�X1; . . . ;X2kÿ2�6X2Kÿ16 g2kÿ1�X1; . . . ;X2kÿ2�
and

f2k�X1; . . . ;X2kÿ1�6X2K 6X2kÿ1 ÿ 1 � g2k�X1; . . . ;X2kÿ1�:

�3:2�

W.-L. Chang, C.-P. Chu / Parallel Computing 26 (2000) 1275±1295 1283

Banerjee inequalities for testing loops with symbolic bounds will apply the fol-
lowing de®nition cited from [1,2,9,10] to de®ne the new limits for each pair of relative
variables with a given dependence direction.

De®nition 3.1b. Given m linear equations (1.1) beneath the constraints of (2.1) and a
speci®c direction vector ~h � �h1; . . . ; hd�; where d refers to the number of common
loops. If hk 2 f�; >;<g; 16 k6 d; then the bounds of (2.1) for each pair of relative
variables will be rede®ned, assuming X2kÿ1hkX2k and X2kÿ1 and X2k refer to the same
loop indexed variable. The new constraints for X2kÿ1 and X2k are shown below, where
A and B are equal to k1a1;2kÿ1 � k2a2;2kÿ1 and k1a1;2k � k2a2;2k; respectively.

Case 1: hk �`� '

f2kÿ1�X0; . . . ;X2kÿ2� � f2k�X0; . . . ;X2kÿ1� �
ÿ1 if A� B > 0;
�1 if A� B < 0;
d if A� B � 0;

8<:
g2kÿ1�X0; . . . ;X2kÿ2� � g2k�X0; . . . ;X2kÿ1� �

�1 if A� B > 0;
ÿ1 if A� B < 0;
e if A� B � 0;

8<:
where d and e are arbitrary values in ÿ1;�1� �:

Case 2: hk �`>'. If A > 0 and B < 0, then we have

f2kÿ1�X0; . . . ;X2kÿ2� �
ÿ1 if A� B > 0;
�1 if A� B < 0;
d if A� B � 0;

8<:
f2k�X0; . . . ;X2kÿ1� �

ÿ1 if A� B > 0;
�1 if A� B < 0;
e if A� B � 0;

8<:
otherwise, we have

f2kÿ1�X0; . . . ;X2kÿ2� �
ÿ1 if A > 0;
�1 if A < 0;
d if A � 0;

8<:
f2k�X0; . . . ;X2kÿ1� �

ÿ1 if B > 0;
�1 if B < 0;
e if B � 0;

8<:
where ÿ16 e6 �1 and e� 16 d 6 �1:

If A < 0 and B > 0, then we have

g2kÿ1�X0; . . . ;X2kÿ2� �
�1 if A� B > 0;
ÿ1 if A� B < 0;
d if A� B � 0;

8<:

1284 W.-L. Chang, C.-P. Chu / Parallel Computing 26 (2000) 1275±1295

g2k�X0; . . . ;X2kÿ1� �
�1 if A� B > 0;
ÿ1 if A� B < 0;
e if A� B � 0;

8<:
otherwise, we have

g2kÿ1�X0; . . . ;X2kÿ2� �
�1 if A > 0;
ÿ1 if A < 0;
d if A � 0;

8<:
g2k�X0; . . . ;X2kÿ1� �

�1 if B > 0;
ÿ1 if B < 0;
e if B � 0;

8<:
where ÿ16 e6 �1 and e� 16 d 6 �1:

Case 3: hk �`<'. If A < 0 and B > 0, then we have

f2kÿ1�X0; . . . ;X2kÿ2� �
ÿ1 if A� B > 0;
�1 if A� B < 0;
d if A� B � 0;

8<:
f2k�X0; . . . ;X2kÿ1� �

ÿ1 if A� B > 0;
�1 if A� B < 0;
e if A� B � 0;

8<:
otherwise, we have

f2kÿ1�X0; . . . ;X2kÿ2� �
ÿ1 if A > 0;
�1 if A < 0;
d if A � 0;

8<:
f2k�X0; . . . ;X2kÿ1� �

ÿ1 if B > 0;
�1 if B < 0;
e if B � 0;

8<:
where ÿ16 d 6 �1 and d � 16 e6 �1:

If A > 0 and B < 0, then we have

g2kÿ1�X0; . . . ;X2kÿ2� �
�1 if A� B > 0;
ÿ1 if A� B < 0;
d if A� B � 0;

8<:
g2k�X0; . . . ;X2kÿ1� �

�1 if A� B > 0;
ÿ1 if A� B < 0;
e if A� B � 0;

8<:

W.-L. Chang, C.-P. Chu / Parallel Computing 26 (2000) 1275±1295 1285

otherwise, we have

g2kÿ1�X0; . . . ;X2kÿ2� �
�1 if A > 0;
ÿ1 if A < 0;
d if A � 0;

8<:

g2k�X0; . . . ;X2kÿ1� �
�1 if B > 0;
ÿ1 if B < 0;
e if B � 0;

8<:
where ÿ16 d 6 �1 and d � 16 e6 �1:

Then we should discuss how to decide the minimum and maximum limits for each
pair of relative variables when their corresponding dependence directions are given.
Each dependence direction is known to relate a unique pair of loop indices, which
are associated with one of the common loops. Obviously, we should choose the new
constraints rede®ned as stated in De®nitions 3.1a and 3.1b for each pair of relative
variables and the original bounds (2.1) for other variables not to be constrained by
dependence directions such that Fk1;k2

has the minimum value and the maximum
value.

Let U�2kÿ1;2k� be the sum of the coe�cients of X2kÿ1 and X2k in Fk1;k2
, where X2kÿ1

and X2k are related by a dependence direction, i.e., U�2kÿ1;2k� � k1�a1;2kÿ1 � a1;2k��
k2�a2;2kÿ1 � a2;2k� [9]. The minimum point and maximum point of Fk1;k2

in V, in the
presence of dependence directions, depend not only on the sign of the coe�cient of
each variable but also on the sign of U�2kÿ1;2k�; as clearly undertaken from statements
above. From [9], the equation U�2kÿ1;2k� � 0 is called a U equation. Each U equation
corresponds to a U line in R2: There are at most n/2 U lines. All U lines and W lines
divide R2 space into at most 3n regions. Each region is still a cone.

Lemma 3.2. Suppose that an unbounded convex set V is denoted by the limits of (2.1)
as well as dependence directions. If Fk1;k2

� 0 intersects V for every �k1; k2� in every U
line and every W line, then Fk1;k2

� 0 also intersects V for every �k1; k2� in R2:

Proof. Follow the same arguments as that for Lemma 3.1. �

As a matter of fact, it su�ces to test a single point in each U line or each W line for
determining whether Fk1;k2

intersects V for every �k1; k2� in those lines.

Lemma 3.3. Suppose that an unbounded convex set V is denoted by the limit of (2.1)
and dependence directions. Given a line in R2 corresponding to an equation
ak1 � bk2 � 0; if Fk1;k2

� 0 intersects V in Rn for any fixed point �k0
1; k

0
2� 6� �0; 0� in the

line, then for every �k1; k2� in the line, Fk1;k2
� 0 also intersects V.

Proof. Note that Fk1;k2
� 0 intersects V if and only if min�Fk1;k2

�6 06 max�Fk1;k2
�

on V. Every point in the line can be expressed as �ek0
1; ek

0
2�; where ÿ1 < e < �1:

If e P 0; then min�Fek0
1
;ek0

2
� � e �min�Fk0

1
;k0

2
� and max�Fek0

1
; ek0

2
� � e �max�Fk0

1
;k0

2
�: It is

1286 W.-L. Chang, C.-P. Chu / Parallel Computing 26 (2000) 1275±1295

thus concluded that min�Fek0
1
;ek0

2
�6 06 max�Fek0

1
;ek0

2
�: Similarly, if e < 0; then

min�Fek0
1
;ek0

2
� � e �max�Fk0

1
;k0

2
� and max�Fek0

1
;ek0

2
� � e �min�Fk0

1
;k0

2
�: It is immediately

derived that min�Fek0
1
;ek0

2
�6 06 max�Fek0

1
;ek0

2
�: Therefore, for any �k1; k2� in the line,

Fk1;k2
intersects V. �

De®nition 3.2. Given an equation of the form ak1 � bk2� 0 where a; b are not 0
simultaneously, a canonical solution of the equation is de®ned as follows:

�k1; k2� � �1; 0� if a � 0;

�k1; k2� � �0; 1� if b � 0;

�k1; k2� � �1; 1� if both of a; b are 0;

�k1; k2� � �b;ÿa� if neither of a; b is 0:

De®nition 3.3. The K set is denoted to be the set of all canonical solutions to U
equations and W equations. The hyperplane in Rn corresponding to k1F1 � k2F2� 0,
where �k1; k2� is a canonical solution in the K set, is called a k plane.

There are at most n W equations if V is denoted by the bounds of (2.1) only. There
are at most n W and n/2 U equations if V is de®ned by the limits of (2.1) and de-
pendence directions. Each of the equations generates a canonical solution according
to De®nition 3.2. Each canonical solution forms a k plane in light of De®nition 3.3.
Obviously, k planes tested are at most n if V is de®ned by the constraints of (2.1)
only, and are at most 3n/2 if V is denoted by the bounds of (2.1) as well as depen-
dence directions. If V is denoted by constant loop constraints only, then there are no
more than n hyperplanes in the set [9]. If constant loop bounds as well as dependence
directions de®ne V, then there are no more than 3n/2 hyperplanes in the set [9]. It is
at once concluded that the number of k planes tested by the in®nity Lambda test is
the same as that of k planes checked by the Lambda test.

The Banerjee in®nity test is ®rst applied to test each hyperplane inferred from
every dimension of a two-dimensional coupled array. If every hyperplane intersects
V, then the in®nity Lambda test is employed to simultaneously check every hyper-
plane. The in®nity Lambda test examines the subscripts from two coupled dimen-
sions, and then ®gures out the K set from W equations and U equations. Each
element in the K set determines a k plane. Each k plane is tested to see if it intersects
V, by checking its minimum and maximum values as done in the Banerjee in®nity
test for testing each single dimension with unknown limits. If any k plane does not
intersect V, then there is no data dependence. If every k plane intersects V, then data
dependence should be assumed, unless further tests on integer solutions are to be
performed. For e�ciency, computation of the K set and the test on k planes are
performed alternately, i.e., a new element in the K set is computed only after it has
been tested that the previous k plane intersects V. Obviously, repeated canonical
solutions can be ignored.

W.-L. Chang, C.-P. Chu / Parallel Computing 26 (2000) 1275±1295 1287

We use the following example to explain the enhanced power of the in®nity
Lambda test over the Lambda test, when it is used to test data dependence for
unknown bounds and given dependence directions.

Consider the loop with induction variable in Fig. 2.
If we want to determine whether there exists output data dependence of the array

A with direction vector �<;<�, then the nonlinear expressions of the array A with
direction vector �<;<� can be transformed into the following nonlinear equations:

N � X1 ÿ N � X2 � X3 ÿ X4 � 0 �ex1�;
N � X1 ÿ N � X2 � X3 ÿ X4 � 0 �ex2�

subject to the symbolic bounds 16X1 and X26M , and 16X3 and X46N ; where M
and N are unknown limits, and the limits of a direction vector X1 < X2 and X3 < X4:

The U equations are generated if the in®nity Lambda test based on computational
principles of checking symbolic limits of Banerjee's inequalities is applied to resolve
the problem. The U equations are 0� k1 � 0� k2 � 0 and 0� k1 � 0� k2 � 0: The
K set from the U equations is easily determined: K� {(1, 1)}. The canonical solution
(1, 1) in the K set gives the k plane: 2� N � �X1 ÿ X2� � 2� �X3 ÿ X4� � 0: Let
h4�X1; . . . ;X4� � 2� N � �X1 ÿ X2� � 2� �X3 ÿ X4�; then according to Case 3 of
De®nition 3.1b, we have

h4�x1; . . . ; x4�6 2� N � �1� �d� � �ÿ1� � �d � 1�� � 2� �X3 ÿ X4�
(because the coe�cient of X1 > 0; the coe�cient of X2 < 0; and the sum of the co-
e�cients for X1 and X2 is equal to 0), and

h4�x1; . . . ; x4�6 ÿ 2� N � 2� �1� d � �ÿ1� � �d � 1�� � ÿ2ÿ 2� N

(because the coe�cient of X3 > 0, the coe�cient of X4 < 0; and the sum of the co-
e�cients for X3 and X4 is equal to 0).

The maximum bound for the k plane is immediately inferred to be ÿ2ÿ 2� N :
Similarly, the minimum limit to the k plane is at once concluded to be ÿ1: Since the
maximum value for the k plane is less than 0, the in®nity Lambda test based on
computational principles of checking symbolic limits of Banerjee's inequalities in
light of Lemmas 3.1±3.3 infers that there is no real-valued solution.

The same U equations are also generated if the in®nity Lambda test based on
computational principles of checking symbolic limits of Banerjee's algorithm is ap-
plied to resolve the same problem. The U equations are 0� k1 � 0� k2 � 0 and
0� k1 � 0� k2 � 0: The K set from the U equations is easily determined:
K� {(1, 1)}. The canonical solution (1, 1) in the K set gives the k plane:

Fig. 2. Before and after induction variable substitution.

1288 W.-L. Chang, C.-P. Chu / Parallel Computing 26 (2000) 1275±1295

2� N � �X1 ÿ X2� � 2� �X3 ÿ X4� � 0: In the light of the second step in the proof of
Lemma 3.1, let h4�X1; . . . ;X4� � 2� N � �X1 ÿ X2� � 2� �X3 ÿ X4�: Then we have

h4�x1; . . . ; x4�6 h3�x1; . . . ; x3�;
where

h3�x1; . . . ; x3� � 2� N � �x1 ÿ x2�
� 2� �x3 ÿ �1� x3�� since the coefficient of x4� < 0�;

..

.

6 h1�x1� � 2� N � �x1 ÿ �1� x1�� ÿ 2 � ÿ2ÿ 2� N

since the coefficient of x2� < 0�:
The maximum value for the k plane is immediately inferred to be ÿ2ÿ 2� N :
Similarly, the minimum value to the k plane can also be derived to be ÿ1: Since the
maximum value for the k plane is less than 0, the in®nity Lambda test in light of
Lemmas 3.1±3.3 infers that there is no real-valued solution.

3.2. The case of multi-dimensional array references

We take account of m linear equations in (1.1) with m > 2 for generalizing the
in®nity Lambda test. All m linear equations are assumed to be connected; otherwise
they can be partitioned into smaller systems. As stated before, we can hypothesize
that there are no redundant equations. By Dongar et al. [9], an arbitrary linear
combination of m linear equations can be written as

Pm
i�1 kiFi � 0; where

Fi �
Pn

j�1 ai;jXi;j: Let Fk1;...;km �
Pm

i�1 kiFi; and then

Fk1;...;km �
Xm

j�1

kjaj;1

 !
X1 � � � � �

Xm

j�1

kjaj;n

 !
Xn:

It is to be determined whether Fk1;...;km � 0 intersects V in Rn space for arbitrary
�k1; . . . ; km�:The coe�cient of each variable in Fk1;...;km is a linear function of �k1; . . . ; km�
in Rm;which is W�i� �Pm

j�1 kjaj;i for 16 i6 n:The equation W�i� � 0; 16 i6 n; is called
a W equation. A W equation corresponds to a hyperplane in Rm; called a W plane. Each
W plane divides the whole space into two closed halfspaces X�i �
f�k1; . . . ; km�jW�i�P 0g and Xÿi � f�k1; . . . ; km�jW�i�6 0g Let U�2kÿ1;2k� be the sum of
the coe�cients of X2kÿ1 and X2k in Fk1;...; km , where X2kÿ1 and X2k are related by a de-
pendence direction, i.e., U�2kÿ1;2k� �

Pm
i�1 ki�ai;2kÿ1 � ai;2k�: The equation U�2kÿ1;2k� � 0;

is called a U equation. A U equation corresponds to a hyperplane in Rm, which is called a
U plane. Each U plane separates the whole space into two closed halfspaces
d��2kÿ1;2k� � �k1; . . . ; km�jU�2kÿ1;2k�P 0g�

and dÿ�2kÿ1;2k� � �k1; . . . ; km� U�2kÿ1;2k�6 0g���
: If

V is de®ned by the constraints of (2.1) only, then a nonempty set
Tn

i�1 Xi; where
Xi 2 X�i ; Xÿi

	�
; is called a k region. If the bounds of (2.1) as well as dependence di-

rections denote V, then a nonempty set �Tn
i�1 Xi� \ �

Td
k�1 d�2kÿ1;2k��; where

Xi 2 X�i ; Xÿi
	�

and d�2kÿ1;2k� 2 fd��2kÿ1;2k�; d
ÿ
�2kÿ1;2k�g; is called a k region. The intersec-

tion of d�2kÿ1;2k� is taken for all pairs of index variables, which are related by a depen-

W.-L. Chang, C.-P. Chu / Parallel Computing 26 (2000) 1275±1295 1289

dence direction. Every k region is a cone in Rm space. The k regions in Rm space have
several lines as the frame of their boundaries. Each line (called a k line) is the inter-
section of some W and U planes.

In the following, Lemmas 3.4 and 3.5 are an extension of Lemmas 5 and 6 in [9],
respectively.

Lemma 3.4. If Fk1;...;km � 0 intersects V for every �k1; . . . ; km� in every k line, then
Fk1;...;km � 0 also intersects V for every �k1; . . . ; km� in Rm space.

Proof. Similar to Lemma 3.1. �

Lemma 3.5. Given a line in Rm space which crosses the origin of the coordinates, if
Fk1;...;km � 0 intersects V in Rn space for any fixed point �k0

1; . . . ; k0
m� 6� �0; . . . ; 0� in the

line, then for every �k1; . . . ; km� in the line, Fk1;...;km � 0 also intersects V.

Proof. Similar to Lemma 3.3. �

There is a ®nite set of hyperplanes in Rm space such that S intersects V if and only
if every hyperplane in the set intersects V. If V is denoted by constant loop con-

straints only, then there are no more than
n

mÿ 1

� �
hyperplanes in the set [9]. If V is

de®ned by the limits of (2.1) only, then the number of hyperplanes in the set is also at

most
n

mÿ 1

� �
: If V is denoted by constant loop constraints as well as dependence

directions, then there are no more than
3n=2
mÿ 1

� �
hyperplanes in the set [9]. If V is

de®ned by the limits of (2.1) and dependence directions, then the number of hy-

perplanes is also at most
3n=2
mÿ 1

� �
in the set. It is right away derived that the

number of k planes tested in the in®nity Lambda test is the same as that of k planes
checked in the Lambda test. The detail of the in®nity Lambda test in the general case
is not considered since the discussion is similar to the case of m � 2.

3.3. Time complexity

The common phases for the Lambda test and the in®nity Lambda test include:
(1) calculating k values and (2) examining each k plane. k values are easily deter-
mined according to U equations, W equations and De®nition 3.2. It is clear that the
time complexity to computing a k value is O y� � from De®nition 3.2, where y is a
constant. Each k value corresponds to a k plane. The time complexity of determining
a k plane from one k value is O n� �; where n is the number of variables in coupled
references. Each k plane is tested to see if it intersects V, by checking its minimum
and maximum values. The extreme values can be calculated from the Banerjee in-
equalities and also computed from the second step in the proof of Lemma 3.1. The
second step in the proof of Lemma 3.1 is exactly equivalent to the Banerjee in®nity

1290 W.-L. Chang, C.-P. Chu / Parallel Computing 26 (2000) 1275±1295

test (the Banerjee algorithm and the Banerjee inequalities for testing single dimension
with symbolic bounds). The time complexity of the Banerjee inequalities and the
Banerjee in®nity test is both O z� �; where z is the number of variables in the k plane
[2,10]. Hence, the time complexity of the Lambda test and the in®nity Lambda test
for examining a k plane is at once derived to be O z� n� y� �: The number of k planes
checked in the Lambda test and in the in®nity Lambda test is the same, and is at

most
3n=2
mÿ 1

� �
; where m is the number of coupled dimensions and n is the number

of variables in coupled references, in light of statements in Section 3.3 [9]. Therefore,
the worst-case time complexity for the Lambda test and the in®nity Lambda test is
immediately inferred to be

O
3n=2
mÿ 1

� �
� z�

�
� n� y�

�
:

Two-dimensional arrays with coupled subscripts appear quite frequently in real
programs, as clearly indicated from statements in Section 1. The number of k planes
examined to each two-dimensional array tested is at most 3n=2 according to state-
ments in Section 3.2 [9]. If the Lambda test and the in®nity Lambda test are
applied to deal with the array, then their worst-case time complexity is
O �3n=2� � z� n� y� �� �: The number of k planes checked is almost 1 due to the
regularity of coe�cients in coupled subscripts in real two-dimensional arrays tested.
Hence, the worst-case time complexity of the Lambda test and the in®nity Lambda
test for testing those real two-dimensional arrays is nearly equal to O z� n� y� �: The
in®nity Lambda test preserves the e�ciency of the Lambda test.

4. Experimental results

We tested the in®nity Lambda test and performed experiments on Personal
Computer Intel 80486 through the codes cited from ®ve numerical packages EI-
SPACK, LINPACK, Parallel loops, Livermore loops and Vector loops [3,13,19].
The codes include more than 37 000 lines of statements, and 17 433 pairs of array
references consisting of the same pair of array references with di�erent direction
vectors and unknown limits were found to have coupled subscripts. The in®nity
Lambda test checked that there were no data dependences for 2092 pairs of coupled
arrays beneath symbolic limits as well as any given direction vectors.

The in®nity Banerjee test is only used to check those arrays with one-dimensional
arrays. Also, the Lambda test is only applied towards determining those arrays with
coupled subscripts under constant bounds. The in®nity Lambda test in our experi-
ments is only applied to test those arrays with coupled subscripts under symbolic
bounds. The in®nity Lambda test found 2092 cases that had no data dependence.
The improvement rate can be a�ected by two factors. First, the frequency of coupled
subscripts. Second, the ``success rate'' of the in®nity Lambda test, by which we mean
how often an in®nity Lambda test detects a case where there is no data dependence.
Let b be the number of the coupled subscripts found in our experiments, and let c be

W.-L. Chang, C.-P. Chu / Parallel Computing 26 (2000) 1275±1295 1291

the number that is detected to have no data dependence from the coupled subscripts.
Thus the success rate is denoted to be equal to c=b: In our experiments, 17 433 pairs
of array references were found to have coupled subscripts, and 2092 of them were
found to have no data dependence. So the success rate in our experiments was about
equal to 12%. The in®nity Lambda test increases the success rate of the Lambda test.
The increasing success rate was about 12%.

In our experiments, it is found that there are di�erent frequencies of coupled
subscripts in di�erent benchmark codes. Success rate for each benchmark is shown in
Table 1 in which each row shows how many cases for each benchmark were checked
to have no data dependence. For instance, the ®rst row reveals that 7722 pairs of
array references from EISPACK were found to have coupled subscripts, and 540 of
them were found to have no data dependence. Therefore, the success rate of the
in®nity Lambda test for EISPACK is 7%. For all of benchmark codes in our ex-
periments, the success rate to each benchmark was from 7% to 17%. This indicates
that for multi-dimensional arrays with coupled subscripts the success rate of the
in®nity Lambda test varies with the benchmark tested.

In our experiments, the Power test was also employed to resolve 17 433 pairs of
arrays with coupled references and unknown limits. The Power test was found to
detect 1932 cases with no data dependences. Table 2 shows the accuracy of the in-
®nity Lambda test over the Power test for those 17 433 pairs of array with results. It
is very clear from Table 2 that the in®nity Lambda test is slightly superior to the
Power test in terms of analyzing accuracy.

Suppose that kg and kp are the execution times to treat data dependence
problem of a coupled-subscript array for the in®nity Lambda test and Power test,
subsequently. The speed-up in Table 3 is de®ned to be the set of kp=kg. Each row
in Table 3 shows how many times the execution time of the Power test took
longer than the execution time of the in®nity Lambda test. For example, the ®rst
row shows that there were 63 subroutines in which the execution time of the

Table 1

The success rate of the in®nity Lambda test for array references in each benchmark

Benchmark Pairs of arrays

checked

Pairs of examined arrays

without data dependence

Success rate (%)

EISPACK 7722 540 7

LINPACK 1458 160 11

Parallel loops 7867 1336 17

Livermore loops 215 32 15

Vector loops 171 24 14

Table 2

The accuracy of the in®nity Lambda test when compared with the Power test

Data dependence testing methods Proved independent

In®nity Lambda test 2092

Power test 1932

1292 W.-L. Chang, C.-P. Chu / Parallel Computing 26 (2000) 1275±1295

Power test took from 10.1 to 20.3 times longer than that of the in®nity Lambda
test. For all of the subroutines in our experiments, the execution time of the
Power was indicated to take from 6.2 to 20.3 times longer than the execution time
of the in®nity Lambda test. This indicates that for multi-dimensional arrays with
coupled subscripts the e�ciency of the in®nity Lambda test is much better than
that of the Power test. This is because the Power test cannot deal with the loops
with induction variable.

5. Conclusions

The in®nity Lambda test enhances data dependence analysis signi®cantly when
there are coupled subscripts in multi-dimensional array references with unknown
limits. The in®nity Lambda test only ascertains whether real-valued solutions exist
because, like the Lambda test or the generalized Lambda test, it is based on equality
consistency checking. The in®nity Lambda test is exactly equivalent to a multi-
dimensional version of the Banerjee in®nity test (the Banerjee algorithm and the
Banerjee inequalities for testing single dimension with unknown bounds) because it
can determine simultaneous constrained real-valued solutions. Petersen [10] pointed
out that Banerjee's in®nity test breaks dependences in more than 9% of the cases
when it is applied before Banerjee's inequalities and algorithm, and the application
of Banerjee's inequalities and algorithm contributes nothing extra. Li et al. [9] found
that the Lambda test for coupled array references under constant bounds usually
increases the cost of the Banerjee inequalities by a factor of 2 or less. It is found that
the generalized Lambda test for coupled array references under variable bounds
usually increases the cost of the Banerjee algorithm by a factor of 2 or less [5]. The
in®nity Lambda test for coupled array references beneath symbolic limits usually
also increases the cost of the Banerjee in®nity test by a factor of 2 or less, as shown
from our time complexity.

The Power test is a combination of Fourier±Motzkin variable elimination with an
extension of Euclid's GCD algorithm [17,18]. The Omega test combines new
methods for eliminating equality constraints with an extension of Fourier±Motzkin
variable elimination [11]. The two tests currently have the highest precision and the
widest applicable range for checking linear arrays in the ®eld of data dependence
testing. However, the cost of the Power and Omega tests is very expensive because
the worst-case of Fourier±Motzkin variable elimination is exponential in the number
of free variables [11,17,18]. It is pointed out [15,17,18] that using Fourier±Motzkin
variable elimination for dependence testing takes from 22 to 28 times longer than the

Table 3

The speed-up of the in®nity Lambda test when compared with the Power test

Speed-up Total number of subroutines

10.1±20.3 63

6.2±9.5 10

W.-L. Chang, C.-P. Chu / Parallel Computing 26 (2000) 1275±1295 1293

Banerjee inequalities. In [17,18] it is also indicated that the Lambda test is a very
precise and e�cient method for testing two-dimensional coupled arrays with con-
stant bounds. The Range test currently has the highest precision and the widest
applicable range for checking nonlinear arrays in the ®eld of data dependence testing
[4].

The generalized Lambda test, a generalized version of the Lambda test proposed
in [5], is an e�cient and precise method to ascertain whether there exists data de-
pendence for coupled arrays with constant or variable loop bounds. The in®nity
Lambda test extends the applicable range of the Lambda test and the generalized
Lambda test to deal with arrays references with unknown bounds. Therefore, inte-
grating the Lambda test, the generalized Lambda test and the in®nity Lambda test
seems to be a practical scheme to analyze data dependence for coupled-subscript
array references.

References

[1] U. Banerjee, Dependence Analysis for Supercomputing, Kluwer Academic Publishers, Norwell, MA,

1988.

[2] U. Banerjee, Dependence Analysis, Kluwer Academic Publishers, Norwell, MA, 1997.

[3] D. Callahan, J. Dongarra, D. Levine, Test suite for vectorizing compilers, Version 3.0, Argonne

National Laboratory, 1991.

[4] W. Blume, R. Eigenmann, Nonlinear and symbolic data dependence testing, IEEE Transaction on

Parallel and Distributed Systems 9 (12) (1998) 1180±1194.

[5] W.-L. Chang, C.-P. Chu, J. Wu, The generalized Lambda test, in: Proceedings of the First Merged

Symposium on IPPS/SPDP, Orlando, FL, March 1998, pp. 181±186.

[6] M. Haghighat, C. Polychronopoulos, Symbolic dependence analysis for high-performance paralle-

lizing compilers, in: Parallel and Distributed Computing: Advances in Languages and Compilers for

Parallel Processing, MIT Press, Cambrige, MA, 1991, pp. 310±330.

[7] X. Kong, D. Klappholz, K. Psarris, The i test, IEEE Transaction on Parallel and Distributed Systems

2 (3) (1991) 342±359.

[8] X. Kong, D. Klappholz, K. Psarris, The direction vector i test, IEEE Transaction on Parallel and

Distributed Systems 4 (11) (1993) 1280±1290.

[9] Z. Li, P.-C. Yew, C.-Q. Zhu, An e�cient data dependence analysis for parallelizing compilers, IEEE

Transaction on Parallel and Distributed Systems 1 (1) (1990) 26±34.

[10] P.M. Petersen, Evaluation of programs and parallelizing compilers using dynamic Analysis

techniques, Ph.D. Thesis, University of Illinois at Urbana±Champaign, January 1993.

[11] W. Pugh, A practical algorithm for exact array dependence analysis, Communication of the ACM 35

(8) (1992) 102±114.

[12] W. Rudin, Principles of Mathematical Analysis, International Series in Pure and Applied

Mathematics, McGraw-Hill, New York, 1964.

[13] B.T. Smith, et al., Matrix Eigensystem Routines-Eispack Guide, Springer, Heidelberg, 1976.

[14] Z. Shen, Z. Li, P.-C. Yew, An empirical study of Fortran programs for parallelizing compilers, IEEE

Transaction on Parallel and Distributed Systems 1 (3) (1990) 356±364.

[15] R. Triolet, F. Irigoin, P. Feautrier, Direct parallelization of call statements, in: Proceedings of the

SIGPLAN Symposium on Compiler Construction, Palo Alto, CA, June 1986, pp. 176±185.

[16] W.J. Vaughan, A residuals management model of the iron and steel industry: a linear programming

approach, University of Micro®lms International, Ann Arbor, MI, 1986.

[17] M. Wolfe, C.-W. Tseng, The power test for data dependence, IEEE Transaction on Parallel and

Distributed Systems 3 (5) (1992) 591±601.

1294 W.-L. Chang, C.-P. Chu / Parallel Computing 26 (2000) 1275±1295

[18] M. Wolfe, High Performance Compilers for Parallel Computing, Addison-Wesley, Redwood City,

CA, 1996.

[19] J. Dongar, M. Furtney, S. Reinhardt, Parallel loops ± a test Suite for parallel compilers: description

and example results, Parallel Computing 17 (1991) 1247±1255.

W.-L. Chang, C.-P. Chu / Parallel Computing 26 (2000) 1275±1295 1295

