
A precise dependence analysis for multi-dimensional arrays
under specific dependence direction

Weng-Long Chang a, Chih-Ping Chu b,*, Jia-Hwa Wu b

a Department of Information Management, Southern Taiwan University of Technology, Tainan 701, Taiwan, ROC
b Department of Computer Science and Information Engineering, National Cheng Kung University, No. 1, Ta-Hsueh Road, Tainan 701, Taiwan, ROC

Received 28 October 2000; received in revised form 8 January 2001; accepted 26 June 2001

Abstract

In process of automatic parallelizing/vectorizing constant-bound loops with multi-dimensional arrays under specific dependence

direction, the Lambda test is claimed to be an efficient and precise data dependence analysis method that can check whether there

exist generally inexact ‘real-valued’ solutions to the derived dependence equations. In this paper, we propose a precise data de-

pendence analysis method – the multi-dimensional direction vector I test. The multi-dimensional direction vector I test can be

applied towards testing whether there exist generally accurate ‘integer-valued’ solutions to the dependence equations derived from

multi-dimensional arrays under specific dependence direction in constant-bound loops. Experiments with benchmark showed that

the accuracy rate and the improvement rate for the proposed method are approximately 33.3% and 21.6%, respectively.

� 2001 Elsevier Science Inc. All rights reserved.

Keywords: Parallelizing/vectorizing compilers; Data dependence analysis; Loop parallelization; Supercomputing

1. Introduction

Multi-dimensional arrays occur quite frequently in
real programs in light of an empirical study reported in
Shen et al. (1992). That study also shows that two-
dimensional array references account for 36% and three-
dimensional array references account for 7% among
array references examined. Such a finding highlights a
fact, that is, to parallelize/vectorize a loop, an efficient
and precise testing method for the data dependence of
multi-dimensional arrays is very important.
The question of whether multi-dimensional array

references in a loop may be parallelized/vectorized de-
pends upon the resolution of those multi-dimensional
array aliases. The resolution of multi-dimensional array
aliases is to ascertain whether two references to the same
multi-dimensional array within a general loop may refer
to the same element of that multi-dimensional array.
This problem of m-dimensional arrays, each dimension’s

expression is the function of n loop index variables, can
be reduced to that of checking whether a system of m
linear equations with n unknown variables has a simul-
taneous integer solution, which satisfies the constraints
for each variable in the system. It is assumed that m
linear equations in a system are written as

a1;1X1þa1;2X2þ�� �þa1;n�1Xn�1þa1;nXn¼ a1;0
..
.

am;1X1þam;2X2þ�� �þam;n�1Xn�1þam;nXn¼ am;0;

ð1:1Þ

where each ai;j is a constant integer for 16 i6m and
16 j6 n. It is postulated that the constraints to each
variable in (1.1) are represented as

Pr;0 þ
Xr�1
s¼1
Pr;sXs6Xr6Qr;0 þ

Xr�1
s¼1
Qr;sXs; ð1:2Þ

where Pr;0, Qr;0, Pr;s and Qr;s are constant integers for
16 r6 n. That is, the bounds for each variable Xr are
variable.
If each of Pr;s and Qr;s is zero in the limits of (1.2),

then (1.2) will be reduced to

Pr;06Xr6Qr;0; where 16 r6 n: ð1:3Þ

The Journal of Systems and Software 63 (2002) 99–112

www.elsevier.com/locate/jss

*Corresponding author. Tel.: +886-6-27-57-575x62527; fax: +886-6-

27-470-76.

E-mail address: chucp@csie.ncku.edu.tw (C.-P. Chu).

0164-1212/01/$ - see front matter � 2001 Elsevier Science Inc. All rights reserved.

PII: S0164-1212 (01 )00118-2

mail to: chucp@csie.ncku.edu.tw


That is, the bounds for each variable Xr are constants.
Let us use an example to make clear the illustrations
stated above. Consider the nested do-loop in Fig. 1.
The lower and upper bounds of the first (outer) and

the second (inner) loops are 1 and 100 and 1 and 10,
respectively. Therefore, the bounds of the do-loop are
constants. This do-loop executes 1000 iterations by
consecutively assigning the values 1; 2; . . . ; 100 to J and
1; 2; . . . ; 10 to I and by executing the body (the statement
S) exactly once in each iteration. The net effect of the
do-loop execution is then the ordered execution of the
statements:

Að1; 1Þ ¼ Bð1; 1Þ þ 1
Að2; 2Þ ¼ Bð2; 1Þ þ 1

..

.

Að999; 999Þ ¼ Bð9; 100Þ þ 1:
Að1000; 1000Þ ¼ Bð10; 100Þ þ 1:

To ascertain whether two references to the multi-
dimensional array A may refer to the same element of A,
we have to check if the following two linear equations:

10� X1 � 10� X2 þ X3 � X4 ¼ 0;

10� X1 � 10� X2 þ X3 � X4 ¼ 0

have a simultaneous integer solution under the constant
bounds 16X1;X26 100, and 16X3;X46 10.
It is well known that the problem of finding integer

valued solutions to a system of linear equations is NP-
hard. Therefore, in practice, most well-known data de-
pendence analysis algorithms are used to solve as many
particular cases of this problem as possible. The Ba-
nerjee inequalities handle real-valued solutions of one
linear equation under the bounds of (1.3) (Banerjee,
1997, 1988). The Banerjee–Wolfe inequalities deal with
real solutions of one linear equation under the bounds
of (1.3) and given direction vectors (Banerjee, 1997,
1988). The Banerjee algorithm determines real solutions
of one linear equation under the limits of (1.2) and given
direction vectors (Banerjee, 1997, 1988). The Banerjee
infinity test checks real solutions of one linear equation
with symbolic (unknown at compile time) bounds and
given direction vectors (Banerjee, 1997; Petersen, 1993).
For m linear equation (1.1) with the same constraints,
each linear equation has to be tested separately. The
Banerjee test in this case may generally lose the accuracy

in many practical cases. The I test and the direction
vector I test are a combination of the Banerjee in-
equalities (Banerjee inequalities and Banerjee–Wolfe in-
equalities) and the GCD test (Kong et al., 1991, 1993).
They figure out integer solutions for one linear equation
with constant bounds and given direction vectors. The
I+ test and the extended version of direction vector I test
are a combination of the Banerjee algorithm and the
GCD test (Chu and Chang, 1998, 1999). They figure out
integer solutions for one linear equation with the bounds
of (1.2) and given direction vectors. The Lambda test
extends the Banerjee inequalities to allow m linear
equation (1.1) under the constraints of (1.3) and given
direction vectors to be tested simultaneously (Li et al.,
1990). The generalized Lambda test extends the Baner-
jee algorithm to allow m linear equation (1.1) under the
constraints of (1.2) and given direction vectors to be
tested simultaneously (Chang et al., 1999). The infinity
Lambda test extends the Banerjee infinity test to allow
m linear equation (1.1) or m nonlinear subscripts with
symbolic limits and given direction vectors to be tested
simultaneously (Chang and Chu, 2000a). The multi-
dimensional I test is extended from the I test and the
Lambda test (Chang and Chu, 2000b). It figures out
integer solutions for linear equations with the bounds
of (1.3). The Power test is a combination of Fourier–
Motzkin variable elimination with an extension of
Euclid’s GCD algorithm (Wolfe and Tseng, 1992;
Wolfe, 1996). The Omega test combines new methods
for eliminating equality constraints with an extension
of Fourier–Motzkin variable elimination to integer pro-
gramming (Pugh, 1992). Though both of the methods
gain more accurate outcomes, they have exponential
worst-case time complexity. For array references with
nonlinear subscripts, the range test can be applied to test
data dependency (Blume and Eigenmann, 1998).
In this paper, the Lambda test and the direction

vector I test are extended and integrated to treat whether
m linear equation (1.1) under the bounds of (1.3) have
integer solutions. A theoretical analysis explains that we
take advantage of the rectangular shape of the convex
sets derived from m linear equations under constant
limits in a data dependence testing. An algorithm called
the multi-dimensional direction vector I test has been
implemented and several measurements have also been
performed.
The rest of this paper is proffered as follows. In

Section 2, the problem of data dependence subject to
direction vectors is reviewed. The summary accounts of
the direction vector I test and the Lambda test are
presented. In Section 3, the theoretical aspects and the
worst-case time complexity of the multi-dimensional
direction vector I test are described. Experimental re-
sults showing the advantages of the multi-dimensional
direction vector I test are given in Section 4. Finally,
brief conclusions are drawn in Section 5.Fig. 1. A nested do-loop in Fortran language.

100 W.-L. Chang et al. / The Journal of Systems and Software 63 (2002) 99–112



2. Background

The concept of data dependence and the summary
accounts of the direction vector I test and the Lambda
test are mainly introduced in this section.

2.1. Data dependence

Consider a general loop shown in Fig. 2. It is assumed
that S1 and S2 are two statements within a general loop.
Statements S1 and S2 are postulated to be embedded in
d þ p loops and d þ q loops, respectively. Therefore, d
loops simultaneously contain statements S1 and S2. The
d loops are called common loops for statements S1 and
S2. An array A appears simultaneously within state-
ments S1 and S2. In execution of this general loop, if
statement S2 uses the element of array A defined first by
statement S1, then S2 is true-dependent on S1. If state-
ment S2 defines the element of array A used first by
statement S1, then S2 is anti-dependent on S1. If state-
ment S2 redefines the element of array A defined first by
statement S1, then S2 is output-dependent on S1.
Each iteration of a general loop is identified by an

iteration vector whose elements are the values of the
iteration variables for that iteration. For example, the
instance of the statement S1 during iteration ~ii ¼
ði1; . . . ; id ; . . . ; idþpÞ is denoted S1ð~iiÞ; the instance of the
statement S2 during iteration~jj ¼ ðj1; . . . ; jd ; . . . ; jdþqÞ is
denoted S2ð~jjÞ. If ði1; . . . ; id ; . . . ; idþpÞ is identical to
ðj1; . . . ; jd ; . . . ; jdþqÞ or ði1; . . . ; id ; . . . ; idþpÞ precedes
ðj1; . . . ; jd ; . . . ; jdþqÞ lexicographically, then S1ð~iiÞ is said
to precede S2ð~jjÞ, denoted S1ð~iiÞ < S2ð~jjÞ. Otherwise, S2ð~jjÞ
is said to precede S1ð~iiÞ, denoted S1ð~iiÞ > S2ð~jjÞ. In the
following, Definition 2.1 defines direction vectors.

Definition 2.1. A vector of the form ~hh ¼ ðh1; . . . ; hdÞ is
termed as a direction vector. The direction vector
ðh1; . . . ; hdÞ is said to be the direction vector from S1ð~iiÞ
to S2ð~jjÞ if for 16 k6 d, ikhkjk, i.e., the relation hk is
defined by

hk ¼

< if ik < jk;
¼ if ik ¼ jk;
> if ik > jk;
� the relation of ik and jk can be ignored;

i:e:; can be any one of f<;¼; >g:

8>>>><
>>>>:

2.2. The direction vector I test

A linear equation with the bounds of (1.3) and any
given direction vectors will be said to be integer solvable
if the linear equation has an integer solution to satisfy
the bounds of (1.3) and any given direction vectors for
each variable in the linear equation. The direction vector
I test deals with a linear equation by first transforming it
to an interval equation. Definitions 2.2 and 2.3 cited
from (Kong et al., 1991, 1993) define integer intervals
and an interval equation.

Definition 2.2. Let ½a1; a2� represent the integer intervals
from a1 to a2, i.e., the set of all integers between a1 and
a2.

To avoid redundancy, throughout this paper we will use
the term interval to refer to the integer interval.

Definition 2.3. Let a1; . . . ; an�1; an, L and U be integers. A
linear equation

a1X1 þ a2X2 þ � � � þ an�1Xn�1 þ anXn ¼ ½L;U �; ð2:1Þ

which is referred to as an interval equation, will be used
to denote the set of ordinary equations consisting of:

a1X1 þ a2X2 þ � � � þ an�1Xn�1 þ anXn ¼ L;

a1X1 þ a2X2 þ � � � þ an�1Xn�1 þ anXn ¼ Lþ 1;

..

.

a1X1 þ a2X2 þ � � � þ an�1Xn�1 þ anXn ¼ U :

Similarly, we will use the term interval equation to
refer to the integer interval equation throughout this
paper. An interval equation (2.1) will be said to be
integer solvable if one of the equations in the set, which
it defines, is integer solvable. The immediate way to
determine this is to test if an integer in between L and U
is divisible by the GCD of the coefficients of the left-
hand side terms. If L > U in an interval equation (2.1),
then there are no integer solutions for the interval
equation (2.1). If the expression on the left-hand side ofFig. 2. A general loop with two statements S1 and S2.

W.-L. Chang et al. / The Journal of Systems and Software 63 (2002) 99–112 101



an interval equation (2.1) is reduced to zero items, in the
processing of testing, then the interval equation (2.1)
will be said to be integer solvable if and only if
U P 0P L. The following definition and theorems, cited
from (Kong et al., 1991, 1993), state in detail how the
direction vector I test determines integer solutions of an
interval equation under constant bounds and any given
direction vectors.

Definition 2.4. Let a variable ai be an integer 16 i6 n.
The positive part aþi and the negative part a

�
i of an

integer ai are defined by aþi ¼MAXfai; 0g, and a�i ¼
MAXf�ai; 0g.

Theorem 2.1. Given the interval equation (2.1) subject to
the constraints of (1.3) and a specific direction vector
~hh ¼ ðh1; . . . ; hdÞ, where d is the number of common loops
and for all k, 16 k6 d, hk ¼<. Let

t¼
(
maxðja2k�1j; ja2kjÞ if a2k�1 �a2k>0
maxðminðja2k�1j; ja2kjÞ; ja2k�1þa2kjÞ if a2k�1 �a2k<0:

If t6U � Lþ 1, then the interval equation

a1X1 þ � � � þ a2d�1X2d�1 þ a2dX2d þ � � � þ anXn ¼ ½L;U �

is (P2k;06X2k�1 < X2k 6Q2k;0 for 16 k6 d, and Pr;06
Xr6Qr;0 for 2d þ 16 r6 n)-integer solvable if and only if
the interval equation

a1X1 þ � � � þ a2k�2X2k�2 þ a2kþ1X2kþ1 þ � � � þ anXn

¼ ½L� ðaþ2k�1 þ a2kÞ
þðQ2k;0 � P2k;0 � 1Þ � ða2k�1 þ a2kÞ

� P2k;0 � a2k;U þ ða�2k�1 � a2kÞ
þðQ2k;0 � P2k;0 � 1Þ

� ða2k�1 þ a2kÞ � P2k;0 � a2k�

is (P2p;06X2p�1 < X2p6Q2p;0 for 16 p6 d, p 6¼ k, and
Pr;06Xr6Qr;0, 2d þ 16 r6 n)-integer solvable.

Proof. Refer to Kong et al. (1993). �

It is very obvious from Theorem 2.1 that the direction
vector I test considers a pair of same index variables to
justify the movement of the two variables to the right. It
is indicated from Theorem 2.1 that a pair of same index
variables in Eq. (2.1) can be moved to the right if the
coefficients of the two variables have small enough va-
lues to justify the movement of the two variables to the
right. If all coefficients for variables in Eq. (2.1) have
no sufficiently small values to justify the movements of
variables to the right, then Theorem 2.1 cannot be ap-
plied to result in the immediate movement. While every
variable in Eq. (2.1) can not be moved to the right,
Theorem 2.2 describes a transformation using the GCD
test which enables additional variables to be moved.

Theorem 2.2. Given the interval Eq. (2.1) subject to the
constraints of (1.3) and a specific direction vector
~hh ¼ ðh1; . . . ; hdÞ, where d is the number of common loops
and for all k, 16 k6 d, hk ¼<. Let g ¼ gcdða1; . . . ;
an�1; anÞ. The interval equation

a1X1 þ � � � þ a2dX2d þ � � � þ anXn ¼ ½L;U �

is (P2k;06X2k�1 < X2k 6Q2k;0 for 16 k6 d, and Pr;06
Xr6Qr;0 for 2d þ 16 r6 n)-integer solvable if and only if
the interval equation

ða1=gÞX1 þ � � � þ ða2d=gÞX2d þ � � � þ anXn
¼ ½dL=ge; bU=gc�

is (P2k;06X2k�1 < X2k 6Q2k;0 for 16 k6 d, and Pr;06
Xr6Qr;0, 2d þ 16 r6 n)-integer solvable.

Proof. Refer to Kong et al. (1993). �

2.3. The Lambda test

Geometrically, each linear equation in (1.1) defines a
hyperplane p in Rn spaces. The intersection S of m hy-
perplanes corresponds to the common solutions to all
linear equations in (1.1). Obviously, if S is empty then
there is no data dependence. Inspecting whether S is
empty is trivial in linear algebra (Vaughan, 1986). The
bounds of (1.3) and any given direction vectors define a
bounded convex set V in Rn. If any of the hyperplanes in
(1.1) does not intersect V, then obviously S cannot
intersect V. However, even if every hyperplane in (1.1)
intersects V, it is still possible that S and V are disjoint.
In Fig. 3 from Li et al. (1990), p1 and p2 are two such
hyperplanes representing two linear equations in (1.1),
each of which intersects V. But the intersection of p1 and
p2 is outside of V. If a new hyperplane which contains
the intersection of p1 and p2 is found but is disjoint from
V, then S and V are immediately gathered not to
intersect. In Fig. 3, p3 is such a new hyperplane. If S and
V are disjoint, then there exists a hyperplane which
contains S and is disjoint from V. Furthermore, this
hyperplane is a linear combination of hyperplanes in
(1.1). On the other hand, if S and V intersect, then no
such linear combination exists (Li et al., 1990).

Fig. 3. A geometrical illustration.

102 W.-L. Chang et al. / The Journal of Systems and Software 63 (2002) 99–112



In general, the Banerjee inequalities are first applied
to test each hyperplane in (1.1). If every hyperplane
intersects V, then the Lambda test is employed to
simultaneously check every hyperplane.The Lambda
test is an efficient and precise data dependence method
to deal with (1.1) beneath V. The Lambda test is actually
equivalent to the multi-dimensional version of the Ba-
nerjee inequality because it can determine simultaneous
constrained real-valued solutions. The test forms linear
combinations of references that eliminate one or more
instances of index variables when direction vectors are
not considered. While direction vectors are considered,
the Lambda test generates new linear combinations that
use a pair of relative index variables. Simultaneous
constrained real-valued solutions exist if and only if the
Banerjee inequalities find solutions in all the linear
combinations generated (Li et al., 1990).

2.4. The multi-dimensional I test

The I test is an efficient and precise data dependence
method to ascertain whether there exist integer solutions
for one-dimensional arrays with constant bounds with-
out direction vectors. The Lambda test is an efficient
and precise data dependence method to check whether
there exist real solutions for multi-dimensional arrays
with constant bounds. In our previous work (Chang
and Chu, 2000b), we extended the I test and the Lambda
test and developed the multi-dimensional I test. The
multi-dimensional I test can be applied towards test-
ing whether there are integer solutions for multi-
dimensional arrays with constant limits without direction
vectors. Experiments with benchmark showed that the
accuracy rate and the improvement rate for the multi-
dimensional I test are approximately 29.6% and 19.2%,
respectively.

3. The multi-dimensional direction vector I test

A data dependence problem is considered where
subscripts are linear in terms of loop indexes. Bounds
for subscripts are presumed to be constant. Given the
data dependence problem as specified, the multi-
dimensional direction vector I test examines a system of
equalities and deduces whether the system has integer-
valued solutions. In this section, the theoretical aspects
and the worst-case time complexity of the multi-
dimensional direction vector I test are provided.
Our method is best explained with the aid of a geo-

metrical illustration. Suppose that Fi is the ith interval
equation in a system of m interval equations with n
unknown variables under the constraints of (1.3), where
16 i6m. It is assumed that m interval equations are
written as:

a1;1X1þ a1;2X2þ� � �þ a1;n�1Xn�1þ a1;nXn ¼ ½L1;U1�;

..

.

am;1X1þ am;2X2þ �� �þ am;n�1Xn�1þ am;nXn ¼ ½Lm;Um�;

ð3:1Þ

where each ai;j is a constant integer for 16 i6m and
16 j6 n. It is postulated that the constraints to each
variable in (3.1) are represented as

Pr;06Xr6Qr;0; ð3:2Þ
where Pr;0 and Qr;0 are constant integers for 16 r6 n. It
is easy to see that the linear equations (1.1) are integer
solvable if and only if the interval equations,

a1;1X1 þ a1;2X2 þ � � � þ a1;n�1Xn�1 þ a1;nXn ¼ ½a1;0; a1;0�;

..

.

am;1X1 þ am;2X2 þ � � � þ am;n�1Xn�1 þ am;nXn ¼ ½am;0; am;0�;

are integer solvable.
Geometrically, the ith interval equation in (3.1) con-

sists of Ui � Li þ 1 linear equations in which each linear
equation is parallel each other. Hence, the ith interval
equation in (3.1) contains Ui � Li þ 1 hyperplanes in
which each hyperplane is parallel each other. The
intersection S of m interval equations corresponds to the
common solutions to all interval equations in (3.1).
Obviously, if S is empty then there is no data depen-
dence. The bounds of (3.2) and any given direction
vectors define a bounded convex set V in Rn. If any of
interval equations in (3.1) does not intersect V, then
obviously S cannot intersect V. However, even if every
interval equation in (3.1) intersects V, it is still possible
that S and V are disjoint. It is assumed that two interval
equations in (3.1), respectively, intersect V. But the
intersection of them is outside of V. If one can find a
new interval equation which contains S but is disjoint
from V, then it immediately follows that S and V do not
intersect. The following theorem is an extension of
Theorem 1 in (Li et al., 1990) and guarantees that if S
and V are disjoint, then there must be an interval
equation which consists of S and is disjoint from V.
Furthermore, this interval equation is a linear combi-
nation of equations in (3.1). On the other hand, if S and
V intersect, then no such linear combination exists.

Theorem 1. S \ V ¼ U if and only if there exists an
interval equation, b, only consisting of a linear equations,
which corresponds to a linear combination of equations in
(3.1):

Xm
i¼1

ki �~aai; ~XX
* +

¼
Xm
i¼1

ki � ai;0;
Xm
i¼1

ki � ai;0

" #
;

where Li6 ai;06Ui for 16 i6m, such that b \ V ¼ U.
h~aai; ~XX i denotes the inner product of~aai ¼ ðai;1; . . . ; ai;nÞ and
X
*

¼ ðX1; . . . ;XnÞ.

W.-L. Chang et al. / The Journal of Systems and Software 63 (2002) 99–112 103



Proof. See Appendix A. �

An array ðk1; . . . ; kmÞ in Theorem 1 determines an
interval equation that contains S. There are infinite
number of such interval equations. The tricky part in the
multi-dimensional direction vector I test is to examine as
few interval equations as necessary to determine whether
S and V intersect. We start from the case of m ¼ 2, both
for convenience of presentation and for practical im-
portance of this case, as described above.

3.1. The case of two dimensional array references

In the case of two dimensional array references, two
interval equations in (3.1) are F1 ¼ ½L1;U1� and F2 ¼
½L2;U2�, where Fi ¼ ai;1X1 þ � � � þ ai;nXn for 16 i6 2.
An arbitrary linear combination of the two interval
equations can be written as k1F1 þ k2F2 ¼ ½k1 � a1;0þ
k2 � a2;0; k1 � a1;0 þ k2 � a2;0�, where L16 a1;06U1 and
L26 a2;06U2. The domain of ðk1; k2Þ is the whole R2
space. Let Fk1;k2 ¼ k1F1 þ k2F2 ¼ ½k1 � a1;0 þ k2 � a2;0;
k1 � a1;0 þ k2 � a2;0�, that is, Fk1;k2 ¼ �ðk1a1;0 þ k2a2;0Þþ
ðk1a1;1þ k2a2;1ÞX1 þ � � � þ ðk1a1;n þ k2a2;nÞXn ¼ 0. By (Li
et al., 1990), Fk1;k2 is viewed in two ways. With ðk1; k2Þ
fixed, Fk1;k2 is a linear function of ðX1; . . . ;XnÞ in Rn. With
ðX1; . . . ;XnÞ fixed, it is a linear function of ðk1; k2Þ in R2.
Furthermore, the coefficient of each variable in Fk1;k2 is a
linear function of ðk1; k2Þ in R2, i.e., WðiÞ ¼ k1a1;i þ k2a2;i
for 16 i6 n. The equation WðiÞ ¼ 0, 16 i6 n, is called a
W equation. EachW equation corresponds to a line in R2,
which is called a W line. Each W line separates the whole
space into two closed halfspacesWþ

i ¼ fðk1; k2ÞjWðiÞ P 0g
and W�

i ¼ fðk1; k2ÞjWðiÞ
6 0g that intersect at the W line.

Let Uð2k�1;2kÞ be the sum of the coefficients of X2k�1 and
X2k in Fk1;k2 , where X2k�1 and X2k are related by a de-
pendence direction, i.e., Uð2k�1;2kÞ ¼ k1ða1;2k�1 þ a1;2kÞ þ
k2ða2;2k�1 þ a2;2kÞ (Li et al., 1990). From Li et al. (1990),
the equation Uð2k�1;2kÞ ¼ 0 is called a U equation. Each U
equation corresponds to a U line in R2. Each U line
separates the whole space into two closed halfspaces
Uþ
i ¼ fðk1; k2ÞjUðiÞ P 0g and U�

i ¼ fðk1; k2ÞjUðiÞ
6 0g

that intersect at the U line.
A nonempty set C � Rm is a cone if e~kk 2 C for each

~kk 2 C and e P 0 (Vaughan, 1986). It is obvious that each
cone contains the zero vector. Moreover, a cone that
includes at least one nonzero vector ~kk must consists of
the ‘‘ray’’ of ~kk, namely, fe~kkje P 0g. Such cones can be
clearly viewed as the union of rays. There are at most nW
lines and n=2 U lines, respectively. All W lines and U
lines divide R2 space into at most 3n regions. Each re-
gion contains the zero vector. Any one nonzero element
~kk and the zero vector in the region forms the ray of ~kk,
namely, fe~kkje P 0g. Therefore, each region can be
viewed as the union of the rays. It is very obvious from
the definition of a cone that each region is a cone
(Vaughan, 1986).

In the following, Lemmas 3.1–3.3 are extended from
Theorems and Lemmas in Kong et al. (1991, 1993) and
Li et al. (1990). Definitions 3.1 and 3.2 are cited from
Banerjee (1997, 1988) and Li et al. (1990) directly.

Lemma 3.1. Suppose that a bounded convex set V is
defined simply by the limits of (3.2) and a specific direc-
tion vector ~hh ¼ ðh1; . . . ; hdÞ, where d is the number of
common loops and for all k; 16 k6 d, hk 2 f<;¼; >g. If
Fk1;k2 ¼ ½k1 � a1;0 þ k2 � a2;0; k1 � a1;0 þ k2 � a2;0� is (P2k;06
X2k�1hkX2k 6Q2k;0, for 16 k6 d, and Pr;06Xr6Qr;0 for
2d þ 16 r6 n)-integer solvable for every ðk1; k2Þ in every
U line, then Fk1;k2 ¼ ½k1 �a1;0þk2 �a2;0;k1 �a1;0þk2 �a2;0�
is also (P2k;06X2k�1hkX2k6Q2k;0, for 16k6d, and
Pr;06Xr6Qr;0 for 2dþ16r6n)-integer solvable for every
ðk1;k2Þ in R2.

Proof. See Appendix A. �

It is very obvious from Lemma 3.1 that the multi-
dimensional direction vector I test considers a pair of
same index variables to justify the movement of the two
variables in one new interval equation to the right of the
new interval equation. It is indicated from Lemma 3.1
and Theorem 2.1 that a pair of same index variables in
one new interval equation can be moved to the right if
the coefficients of the two variables in the new interval
equation have small enough values to justify the move-
ment of the two variables to the right. If all coefficients
for variables in one new interval equation have no suf-
ficiently small values to justify the movements of vari-
ables to the right of the new interval equation, then
Lemma 3.1 and Theorem 2.1 cannot be applied to result
in the immediate movement. While every variable in one
new interval equation cannot be moved to the right,
Lemma 3.2 describes a transformation using the GCD
test which enables additional variables to be moved.

Lemma 3.2. Suppose that a bounded convex set V is
defined simply by the limits of (3.2) and a specific direc-
tion vector ~hh ¼ ðh1; . . . ; hdÞ, where d is the number of
common loops and for all k, 16 k6 d, hk 2 f<;¼; >g.
Let g ¼ gcdðk1a1;1 þ k2a2;1; . . . ; k1a1;n þ k2a2;nÞ. If ð1=gÞ �
Fk1;k2 ¼ ½dðk1 � a1;0 þ k2 � a2;0Þ=ge; bðk1 � a1;0 þ k2 � a2;0Þ=
gc� is (P2k;06X2k�1hkX2k 6Q2k;0, for 16 k6 d; and Pr;06
Xr6Qr;0 for 2d þ 16 r6 n)-integer solvable for every
ðk1; k2Þ in every U line, then ð1=gÞ � Fk1;k2 ¼ ½dðk1 �
a1;0 þ k2 � a2;0Þ=ge; bðk1 � a1;0 þ k2 � a2;0Þ=gc� is also
(P2k;06X2k�1hkX2k 6Q2k;0 for 16 k6 d, and Pr;06Xr
6Qr;0 for 2d þ 16 r6 nÞ-integer solvable for every
ðk1; k2Þ in R2.

Proof. Similar to Lemma 3.1. �

As a matter of fact, it suffices to test a single point in
each U line for determining whether Fk1;k2 ¼ ½k1 � a1;0þ

104 W.-L. Chang et al. / The Journal of Systems and Software 63 (2002) 99–112



k2 � a2;0; k1 � a1;0 þ k2 � a2;0� or ð1=gÞ � Fk1;k2 ¼ ½dðk1 �
a1;0 þ k2 � a2;0Þ=ge; bðk1 � a1;0 þ k2 � a2;0Þ=gc� is (P2k;06
X2k�1hkX2k 6Q2k;0, for 16 k6 d, and Pr;06Xr6Qr;0 for
2d þ 16 r6 nÞ-integer solvable for every ðk1; k2Þ in
those lines.

Lemma 3.3. Suppose that a bounded convex set V is
denoted by the limit of (3.2) and a specific direction vector
~hh ¼ ðh1; . . . ; hdÞ, where d is the number of common loops
and for all k, 16 k6 d, hk 2 f<;¼; >g. Let g ¼
gcdðk1a1;1 þ k2a2;1; . . . ; k1a1;n þ k2a2;nÞ. Given a line in R2
corresponding to an equation ak1 þ bk2 ¼ 0, if Fk1;k2 ¼
½k1 � a1;0 þ k2 � a2;0; k1 � a1;0 þ k2 � a2;0� or ð1=gÞ � Fk1;k2 ¼
½dðk1� a1;0 þ k2 � a2;0Þ=ge; bðk1 � a1;0 þ k2 � a2;0Þ=gc� is
(P2k;06X2k�1hkX2k 6Q2k;0 for 16 k6 d, and Pr;06Xr6
Qr;0 for 2d þ 16 r6 nÞ-integer solvable in Rn space for
any fixed point ðk01; k

0
2Þ 6¼ ð0; 0Þ in the line, then for every

ðk1; k2Þ in the line, Fk1;k2 ¼ ½k1 � a1;0 þ k2 � a2;0; k1�
a1;0 þ k2 � a2;0� or ð1=gÞ � Fk1;k2 ¼ ½dðk1� a1;0 þ k2 � a2;0Þ=
ge; bðk1 � a1;0 þ k2 � a2;0Þ=gc� is also (P2k;06X2k�1hkX2k 6
Q2k;0 for16 k6 d, and Pr;06Xr6Qr;0 for 2d þ 16 r6 nÞ-
integer solvable in Rn space.

Proof. Similar to Lemma 3.1. �

Definition 3.1. Given an equation of the form
ak1 þ bk2 ¼ 0, a canonical solution of the equation is
defined as follows:

ðk1; k2Þ ¼ ð1; 0Þ; if a ¼ 0;

ðk1; k2Þ ¼ ð0; 1Þ; if b ¼ 0;

ðk1; k2Þ ¼ ðb;�aÞ; if neither of a; b is zero;

ðk1; k2Þ ¼ ð1; 1Þ; if both of a and b are zero:

Definition 3.2. The K set is denoted to be the set of
all canonical solutions to U equations. Each element,
ðk1; k2Þ; in the K set corresponds to one interval equation
Fk1;k2 ¼ ½k1 � a1;0 þ k2 � a2;0; k1 � a1;0 þ k2 � a2;0�.

There are at most n=2 U equations if V is denoted by the
bounds of (3.2) and any given direction vectors. Each
of U equations generates a canonical solution according
to Definition 3.1. Each canonical solution forms a new
interval equation, only containing the only linear equa-
tion in light of Definition 3.2. Obviously, new interval
equations tested are at most n=2 if V is defined by the
constraints of (3.2) and any given direction vectors.
The multi-dimensional direction vector I test is em-

ployed to simultaneously check every interval equation.
The multi-dimensional direction vector I test examines
the subscripts from two dimensions, and then figures out
the K set from U equations. Each element in the K set
determines a new interval equation. The new interval
equation is tested to see if it intersects V, by moving

variables on left-hand side of one interval equation to
right-hand side of the interval equation as done in the
direction vector I test for testing each single dimension.
We now use the following example to explain the

power of the multi-dimensional direction vector I test.
Consider the do-loop in Fig. 1. If we want to deter-

mine whether there exists output data dependence of the
array A with direction vector ð<;<Þ in Fig. 1, then the
linear expressions of the array A with direction vector
ð<;<Þ can be transformed into the following linear
equations:

10� X1 � 10� X2 þ X3 � X4 ¼ 0;
10� X1 � 10� X2 þ X3 � X4 ¼ 0;
subject to the constant bounds 16X1 and X26 100, and
16X3 and X46 10, and the limits of a direction vector
X1 < X2 and X3 < X4.
If the multi-dimensional direction vector I test is

applied to resolve the problem, the U equations are
generated. The U equation is 0 � k1 þ 0 � k2 ¼ 0. The U
equation has one canonical solutions (1; 1) in light of
Definition 3.1. According to Definition 3.2, the canon-
ical solution (1; 1) yields the following interval equations

20� X1 � 20� X2 þ 2X3 � 2X4 ¼ ½0; 0�: ðEx1Þ
Now the multi-dimensional direction vector I test ap-
plies the direction vector I test (Kong et al., 1993) to
resolve the interval equation (Ex1). Because there are
no sufficiently small values to justify the movement of
variables to the right in light of Lemma 3.1 and The-
orem 2.1, the multi-dimensional direction vector I test
applies Lemma 3.2 to resolve the interval equation
(Ex1), and then gains the new interval equation

10� X1 � 10� X2 þ X3 � X4 ¼ ½0; 0�: ðEx2Þ
Next, the multi-dimensional direction vector I test ap-
plies Lemma 3.1 and Theorem 2.1 to resolve the
interval equation (Ex2), and then the pair of terms X3
and X4 in the interval equation (Ex2) is moved to the
right-hand side of (Ex2) to gain the new interval equa-
tion

10� X1 � 10� X2 ¼ ½1; 9�: ðEx2:1Þ
Now the length of the right-hand side interval has been
increased to 9. But there is no suitable value for t to
justify the movement of the two terms X1 and X2 to the
right according to Lemma 3.1 and Theorem 2.1. So
Lemma 3.2 is again employed to resolve the interval
equation (Ex2.1), and then acquires the new interval
equation

X1 � X2 ¼ ½1; 0�: ðEx2:2Þ

Because 16 0 is false, it is right away inferred that the
interval equation (Ex2) is not integer solvable. There-
fore, the multi-dimensional direction vector I test in
light of Lemmas 3.1–3.3 infers that there is no integer-
valued solution.

W.-L. Chang et al. / The Journal of Systems and Software 63 (2002) 99–112 105



3.2. The case of multi-dimensional array references

We take account of m interval equations in (3.1) with
m > 2 for generalizing the multi-dimensional direction
vector I test. All m interval equations are assumed to
be connected; otherwise they can be partitioned into
smaller systems. As stated before, we can hypothesize
that there are no redundant equations. An arbitrary
linear combination of m interval equations in (3.1) can
be written as

Fk1;...;km ¼
Xm
i¼1

ki �~aai; ~XX
* +

¼
Xm
i¼1

ki � ai;0;
Xm
i¼1

ki � ai;0

" #
;

where Li6 ai;06Ui for 16 i6m and h~aai; ~XX i denotes the
inner product of~aai ¼ ðai;1; . . . ; ai;nÞ and X

*

¼ ðX1; . . . ;XnÞ.
Assume that g ¼ gcdð

Pm
i¼1 ki � ai;1; . . . ;

Pm
i¼1 ki � ai;nÞ.

It is to be determined whether

Fk1;...;km ¼
Xm
i¼1

ki � ai;0;
Xm
i¼1

ki � ai;0

" #

or

ð1=gÞ � Fk1;...;km

¼
Xm
i¼1

ki � ai;0

 !,
g

& ’
;

Xm
i¼1

ki � ai;0

 !,
g

$ %" #

is (P2k;06X2k�1hkX2k 6Q2k;0 for 16 k6 d, and Pr;06
Xr6Qr;0 for 2d þ 16 r6 n)-integer solvable in Rn space
for arbitrary ðk1; . . . ; kmÞ, where hk is one of three dif-
ferent direction vectors and d is the number of common
loops. By (Li et al., 1990), the coefficient of each variable
in Fk1;...;km is a linear function of ðk1; . . . ; kmÞ in Rm, which
is UðiÞ ¼

Pm
j¼1 kjðaj;2k�1 þ aj;2kÞ for 16 i6 d. The equa-

tion UðiÞ ¼ 0, 16 i6 d; is called a U equation. A U
equation corresponds to a hyperplane in Rm, called a U
plane. Each U plane divides the whole space into two
closed halfspaces Xþ

i ¼ fðk1; . . . ; kmÞjUðiÞ P 0g and X�
i ¼

fðk1; . . . ; kmÞjUðiÞ
6 0g. If V is defined by the constraints

of (3.2) and any given direction vectors, then a
nonempty set

Tn
i¼1 Xi, where Xi 2 fXþ

i ;X
�
i g, is called a k

region. Every k region is a cone in Rm space (Li et al.,
1990; Vaughan, 1986). The k regions in Rm space have
several lines as the frame of their boundaries. Each line
(called a k line) is the intersection of some U equations
(Li et al., 1990; Vaughan, 1986).
In the following, Lemmas 3.4 and 3.5 are an ex-

tension of Theorems and Lemmas in (Kong et al., 1993;
Li et al., 1990), respectively.

Lemma 3.4. Suppose that a bounded convex set V is
defined simply by the limits of (3.2) and a specific direc-
tion vector ~hh ¼ ðh1; . . . ; hdÞ, where d is the number of
common loops and for all k, 16 k6 d, hk 2 f<;¼; >g.
Let g ¼ gcdð

Pm
i¼1 ki � ai;1; . . . ;

Pm
i¼1 ki � ai;nÞ. If

Fk1;...;km ¼
Xm
i¼1

ki � ai;0;
Xm
i¼1

ki � ai;0

" #

or

ð1=gÞ � Fk1;...;km

¼
Xm
i¼1

ki � ai;0

 !,
g

& ’
;

Xm
i¼1

ki � ai;0

 !,
g

$ %" #

is (P2k;06X2k�1hkX2k 6Q2k;0, for 16 k6 d, and Pr;06Xr
6Qr;0 for 2d þ 16 r6 n)-integer solvable for every
ðk1; . . . ; kmÞ in every k line, then

Fk1;...;km ¼
Xm
i¼1

ki � ai;0;
Xm
i¼1

ki � ai;0

" #

or

ð1=gÞ � Fk1;...;km

¼
Xm
i¼1

ki � ai;0

 !,
g

& ’
;

Xm
i¼1

ki � ai;0

 !,
g

$ %" #

is also (P2k;06X2k�1hkX2k 6Q2k;0 for 16 k6 d; and
Pr;06Xr6Qr;0 for 2d þ 16 r6 nÞ-integer solvable for
every ðk1; . . . ; kmÞ in Rm space.

Proof. Similar to Lemma 3.1. �

Lemma 3.5. Given a line in Rm which crosses the origin of
the coordinates and let g ¼ gcdð

Pm
i¼1 ki � ai;1; . . . ;Pm

i¼1 ki � ai;nÞ. If

Fk1;...;km ¼
Xm
i¼1

ki � ai;0;
Xm
i¼1

ki � ai;0

" #

or

ð1=gÞ � Fk1;...;km

¼
Xm
i¼1

ki � ai;0

 !,
g

& ’
;

Xm
i¼1

ki � ai;0

 !,
g

$ %" #

is (P2k;06X2k�1hkX2k 6Q2k;0 for 16 k6 d, and Pr;06
Xr6Qr;0 for 2d þ 16 r6 nÞ-integer solvable in Rn space
for any fixed point ðk01; . . . ; k

0
mÞ 6¼ ð0; . . . ; 0Þ in the line,

then for every ðk1; . . . ; kmÞ in the line,

Fk1;...;km ¼
Xm
i¼1

ki � ai;0;
Xm
i¼1

ki � ai;0

" #

or

ð1=gÞ � Fk1;...;km

¼
Xm
i¼1

ki � ai;0

 !,
g

& ’
;

Xm
i¼1

ki � ai;0

 !,
g

$ %" #

is also (P2k;06X2k�1hkX2k 6Q2k;0, for 16 k6 d, and Pr;06
Xr6Qr;0 for 2d þ 16 r6 nÞ-integer solvable in Rn space.

106 W.-L. Chang et al. / The Journal of Systems and Software 63 (2002) 99–112



Proof. Similar to Lemma 3.3. �

The detail of the multi-dimensional direction vector I
test in the general case is not considered since the dis-
cussion is similar to the case of m ¼ 2.

3.3. The algorithm

We now summarize the illustration into an algorithm.
The algorithm is described below.

Input: M interval equation (3.1), the constraints (3.2)
to each variable in (3.1) and a set of k values
ðk1; . . . ; kmÞ.
Output:

no: Eq. (3.1) under the constraints (3.2) have no in-
teger valued solutions.
yes: Eq. (3.1) under the constraints (3.2) have in-
teger valued solutions.
maybe: The proposed method cannot conclude
whether Eq. (3.1) under the constraints (3.2) have
integer valued solutions.

Method:

Step 1. According to ðk1; . . . ; kmÞ; we can obtain a
new interval equation,

Fk1;...;km ¼
Xm
i¼1

ki �~aai; ~XX
* +

¼
Xm
i¼1

ki � ai;0;
Xm
i¼1

ki � ai;0

" #
;

where h~aai; ~XX i denotes the inner product of ~aai ¼
ðai;1; . . . ; ai;nÞ and X

*

¼ ðX1; . . . ;XnÞ.
Step 2. The direction vector I test is applied to deal

with the new interval equation.
Step 3. If the direction vector I test finds there exists

an integer solution, then a result of yes is returned and
the processing is terminated. Otherwise, go to Step 4.
Step 4. If the direction vector I test determines there

exist no integer solutions, then a result of no is returned
and the processing is terminated. Otherwise, go to Step 5.
Step 5. The direction vector I test cannot determine if

there exists an integer solution. A result of maybe is
returned and the processing is terminated.
If the multi-dimensional direction vector I test returns

a result of yes or no, then that result is accurate; i.e., a
returned value of yes means that the equations have
integer-valued solutions and a returned value of no

means that the equations have no integer-valued solu-
tions. A returned value of maybe, on the other hand,
means that the multi-dimensional direction vector I test
does not derive whether the equations have integer va-
lued solutions.

3.4. Time complexity

The main phases for the multi-dimensional direction
vector I test include: (1) calculating k values and (2)
examining each interval equation. k values are easily

determined according to U equations and Definition 3.1.
It is clear that the time complexity to computing a k
value is OðyÞ from Definition 3.1, where y is a constant.
Each k value corresponds to an interval equation. Each
interval equation is tested to see if it intersects V, by
moving the pairs of variables in left-hand side of one
interval equation to right-hand side of the interval
equation as done in the direction vector I test for one
single dimension. The worst-case time complexity of the
direction vector I test is Oðn2�y þ n�yÞ (Kong et al.,
1991, 1993), where n is the number of variables in
interval equations. Hence, the time complexity of for the
multi-dimensional direction vector I test examining an
interval equation is at once derived to be Oðn2�yþ
n�y þ yÞ. The number of interval equations checked
in the multi-dimensional direction vector I test is at
mostYm
i¼1

ðUi � Li þ 1Þ �
n
2

m� 1

� �
;

where m is the number of original references and Li and
Ui are lower and upper bounds in right-hand side of
original interval equations for 16 i6m, in light of
statements in Sections 3.1 and 3.2 and (Li et al., 1990).
Therefore, the worst-case time complexity for the multi-
dimensional direction vector I test is immediately in-
ferred to be

O
n
2

m� 1

� �
� ðn2 � y

 
þ n � y þ yÞ �

Ym
i¼1

ðUi

 
� Li þ 1Þ

!!
:

Two-dimensional arrays with linear subscripts appear
quite frequently in real programs, as clearly indicated
from statements in Section 1. Lower and upper bounds
are the same in right-hand side of original inter-
val equations in original references in real programs.
Therefore, the number of interval equations examined in
each two-dimensional array tested is at most n=2 ac-
cording to statements in Section 3.1 and (Li et al., 1990).
If the multi-dimensional direction vector I test is applied
to deal with the array, then their worst-case time com-
plexity is Oððn=2Þ � ðn2 � y þ n � y þ yÞÞ. The worst-case
time complexity for the Lambda test dealing with the
same array is Oðð3n=2Þ � ðnþ yÞÞ. However, in general,
the efficiency of the multi-dimensional direction vector I
test is only slightly poorer than that of the Lambda test
and the direction vector I test because the number of
variables, n, in the interval equation tested is generally
very small.

4. Experimental Results

We tested the multi-dimensional direction vector I
test and performed experiments on Personal Computer
Intel Pentium III through the benchmark codes cited

W.-L. Chang et al. / The Journal of Systems and Software 63 (2002) 99–112 107



from five numerical packages EISPACK, LINPACK,
Parallel Loops, Livermore Loops and Vector Loops
(Smith, 1976; Dongarra et al., 1991; Levine et al., 1991).
17,433 pairs of array references with the same pair of
array references but with different direction vectors were
found to have coupled subscripts (coupled references are
groups of reference positions sharing one or more index
variables (Li et al., 1990; Wolfe and Tseng, 1992)).
Meanwhile, it is also found that all of the lower bounds
are constants and all of the upper bounds are unknown
variables at compile time. Therefore, those symbolic
upper bounds are assumed to be constants 100. The
choice of 100 as the upper bound is arbitrary. In (Peter-
sen, 1993) it is reported that for the Perfect Benchmarks
data dependence testing results (number of dependen-
cies, independencies and unanalyzable subscripts) from
the original unknown loop bounds are quite close to
that from the assumed constant loop bounds. This im-
plies that our assumption to the constant bounds does
not change the dependence features existed in the orig-
inal benchmarks. The multi-dimensional I test is only
applied to test those arrays with linear subscripts and
under constant bounds.
The results obtained (Table 1) reveals the multi-

dimensional direction vector I test determined that there
were definite (yes or no) results for 3765 pairs of coupled
arrays under constant bounds. The multi-dimensional
direction vector I test in this experiment is only applied
to test those arrays with coupled subscripts and under
constant bounds, and it found in total 3765 cases that
had definite (yes or no) results. The ’’accuracy rate’’ in
Table 1 refers to, when given a set of coupled subscripts
with constant bounds, how often the multi-dimensional
direction vector I test detects a case where there is a
definite (yes or no) result. Let b be the number of the
coupled subscripts with constant bounds found in our

experiments, and let c be the number that is detected to
have definite (yes or no) results. Thus the accuracy rate is
denoted to be equal to c=b. In our experiments, 11,312
pairs of array references were found to have coupled
subscripts and constant bounds, and 3765 of them were
found to have definite (yes or no) results. So the accuracy
rate for the multi-dimensional direction vector I test was
about 33.3%. Similarly, the ’’improvement rate’’ refers
to how often the multi-dimensional direction vector
I test gives a definitive (yes/no) result for a set of cou-
pled subscripts with constant, variable, and unknown
bounds. Let d be the number of the coupled subscripts
with constant, variable, and symbolic bounds found in
our experiments. Thus the improvement rate is denoted
to be equal to c=d. In our experiments, 17,433 pairs of
array references were found to have coupled subscripts
with constant, variable and symbolic bounds, and 3765
of them were found to have definite (yes or no) results.
So the improvement rate for the multi-dimensional di-
rection vector I test was equal to 21.6%.
In our experiments, it is found that there are different

frequencies of coupled subscripts in different benchmark
codes. Improvement rate for each benchmark is shown
in Table 2 in which each row shows how many cases for
each benchmark were checked to have definitive results.
For instance, the first row reveals that 7722 pairs of
array references with the same pairs of array references
but with different direction vectors from EISPACK were
found to have coupled subscripts, and 975 of them were
found to have definitive results. Therefore, the im-
provement rate of the multi-dimensional direction vec-
tor I test for EISPACK is 12.6%. For all of benchmark
codes in our experiments, the improvement rate to each
benchmark was from 12.6% to 48.4%. This indicates
that for multi-dimensional arrays with coupled sub-

Table 2

The improvement rate of the multi-dimensional direction vector I test for array references in different benchmark

Benchmark Pairs of arrays checked Pairs of examined arrays with definitive results Improvement rate (%)

EISPACK 7722 975 12.6

LINPACK 1458 331 22.7

Parallel loops 7867 2273 28.9

Livermore loops 215 104 48.4

Vector loops 171 82 47.9

Table 1

Testing capability of the multi-dimensional direction vector I test for 17,433 pairs of benchmark array references with the same pairs of array

references but with different direction vectors

Pairs of arrays with definitive results Accuracy rate Improvement rate

Constant bounds (11,312)a Variable bounds (6121)a Overall (17,433)a

3765 Not applicable 3765 33.3% 21.6%
aNumber of array reference pairs.

108 W.-L. Chang et al. / The Journal of Systems and Software 63 (2002) 99–112



scripts the improvement rate of the multi-dimensional
direction vector I test varies with the benchmark tested.
The Omega test analyzer and the Power test an-

alyzer, we implemented them according to the proposed
algorithm in (Pugh, 1992; Wolfe and Tseng, 1992), were
also employed to resolve the same benchmark. The
results obtained (Table 3) reveals the Omega test de-
termined that there were definitive results (yes or no)
for 7232 pairs of coupled arrays under constant bounds
and 3871 pairs of coupled arrays under variable bounds.
The results obtained (Table 3) also shows the Power
test determined that there were definitive results (no) for
6722 pairs of coupled arrays under constant bounds
and 3826 pairs of coupled arrays under variable
bounds. The results reflect that the Omega test and the
Power test are more precise than the multi-dimensional
direction vector I test. This is because that the coeffi-
cients of a number of loop index variables in coupled
arrays checked in the benchmark are equal to zero,
causing the multi-dimensional direction vector I test fail
to be used under such a condition. Besides, in our ex-
periments, it is also found that using the multi-dimen-
sional direction vector I test to analyze the dependence
for those array elements with subscripts transformed
from induction variable substitution is quite precise and
efficient.
Suppose that KMDVI, KP and kO are the execution time

to treat data dependence problem of a coupled-subscript
array for the multi-dimensional direction vector I test,
the Power test and the Omega test, subsequently. Table
4 shows the speed-up of the multi-dimensional direction
vector I test against the Power test and the Omega test.
Each row in Table 4 shows how many times the execu-
tion time of the Power test and the Omega test took
longer than the execution time of the multi-dimensional
direction vector I test. For example, the first row shows
that there were 48 subroutines in which the execution
time of the Power test took from 4.1 to 9.7 times longer
than that of the multi-dimensional direction vector I
test. The third row shows that there were 57 subroutines
in which the execution time of the Omega test took from
5.2 to 10.8 times longer than that of the multi-dimen-
sional direction vector I test. In our experiments, the
execution time per analysis of the Power test and the
Omega test was indicated to take from 4.1 to 16.3 times

and from 5.2 to 18.7 times longer than that of the multi-
dimensional direction vector I test, respectively.
The superiority of testing efficiency of the multi-

dimensional direction vector I test over that of the
Omega test for the stated dependence problem can also
be deduced from time complexity analysis. The Omega
test based on the least remainder algorithm, a variation
of Euclid’s algorithm, and Fourier’s elimination method
(Banerjee, 1997; Pugh, 1992) consists of three major
computations: eliminating equality constraints, elimi-
nating variables in inequality constraints, and find-
ing integer solutions (that is an integer programming
problem). The time complexity for these steps are
Oðmn log jcj þ mnp þ mnÞ, Oðn2s2Þ and OðknÞ (Banerjee,
1997; Pugh, 1992), respectively, where m, n, c, p, s, k
denote the number of equality constraints, the number
of variables, the coefficient with the largest absolute
value in equality constraints, the number of passes to
eliminate all the variables that become unbound, the
number of inequality constraints, and the absolute value
of coefficient of variable in inequality constraints,
subsequently. So the overall time complexity of the
Omega test is Oðmn log jcj þ mnp þ mnþ n2s2 þ knÞ.
Obviously, the multi-dimensional direction vector I test
is significantly superior to that of the Omega test in
terms of testing efficiency. In (Pugh, 1992) it is reported
that the Omega test has exponential worst-case time
complexity. Wolfe (Wolfe and Tseng, 1992) and Triolet
(Triolet et al., 1986) also found that Fourier–Motzkin
variable elimination for dependence testing takes from
22 to 28 times longer than Banerjee method, a part of
the multi-dimensional direction vector I test.
The study in Pugh (1992) stated that (1) the cost of

scanning array subscripts and loop bounds to build a

Table 3

Testing capability of the Omega test and the Power test for the same benchmark

Testing methods Pairs of arrays with definitive results Accuracy rate for

constant bounds

(%)

Improvement rate

(%)Constant bounds

(11,312)a
Variable bounds

(6121)a
Overall

(17,433)a

Omega test 7232 3871 11,103 65.1 63.7

Power test 6722 3826 10,548 59.4 60.5
aNumber of array pairs.

Table 4

The speed-up of the multi-dimensional direction vector I test when

compared with the Power test and the Omega test for 3765 pairs of

coupled references with constant bounds

Speed-up Total number of

subroutines involved

KP=KMDVI 4.1–9.7 48

KP=KMDVI 10.5–16.3 72

KO=KMDVI 5.2–10.8 57

KO=KMDVI 12.3–18.7 63

W.-L. Chang et al. / The Journal of Systems and Software 63 (2002) 99–112 109



dependence problem was typically 2–4 times of the
copying cost (the cost of building a system of depen-
dence equations) for the problem, and (2) the depen-
dence analysis cost for more than half of simple arrays
tested was typically 2–4 times of the copying cost, but
the dependence analysis cost to other simple arrays and
all of the regular, convex and complex arrays tested was
more than 4 times of the copying cost. Based on such
results, we can estimate and conclude that the analysis
cost of data dependence for parallelizing/vectorizing
compilation occupies generally about 30–60% of total
compiling time. In other words, improvements on de-
pendence testing performance could result in significant
compiling performance of a parallelizing/vectorizing
compiler.

5. Conclusions

The multi-dimensional direction vector I test can
ascertain whether integer-valued solutions exist when
testing multi-dimensional array references with linear
subscripts and constant bounds. Like the direction vector
I test, the multi-dimensional direction vector I test is
based on moving the pairs of related variables on left-
hand side of an interval equation to right-hand side of the
interval equation. Themulti-dimensional direction vector
I test is exactly equivalent to a version of the Lambda test
with generating integer solution under constant bounds
and any given direction vectors because it can determine
simultaneous constrained integer-valued solutions.
The Power test is a combination of Fourier–Motzkin

variable elimination with an extension of Euclid’s GCD
algorithm (Wolfe and Tseng, 1992, 1996). The Omega
test combines new methods for eliminating equality
constraints with an extension of Fourier–Motzkin vari-
able elimination (Pugh, 1992). The two tests currently
have the highest precision and the widest applicable
range in the field of data dependence analysis for testing
arrays with linear subscripts. However, the cost of the
two tests is very expensive because the worst-case of
Fourier–Motzkin variable elimination is exponential in
the number of free variables (Banerjee, 1997; Pugh, 1992;
Wolfe and Tseng, 1992). It is found in our experiment
that the Omega test and the Power test take 5.2–18.7
times and 4.1–16.3 times longer, respectively in execution
than the multi-dimensional direction vector I test when
testing the dependence of multi-dimensional arrays.
The multi-dimensional direction vector I test inte-

grates the Lambda test and the direction vector I test
and, according to the time complexity analysis, only has
slightly poorer efficiency than that of the Lambda test
and the direction vector I test. Therefore, depending on
the application domains, the multi-dimensional direc-
tion vector I test can be applied independently or

together with the Power test and the Omega test to
analyze data dependence for linear-subscript multi-di-
mensional array references.

Appendix A

Proof of Thoerem 1. ð(Þ The interval equation, b,
contains S and is disjoint from V. So we can immedi-
ately derive that S is disjoint from V.
()) For the convenience of the proof, (3.1) are re-

written as A � Y
*
¼ O, where

A ¼
�a1;0 a1;1 � � � a1;n
..
. ..

. ..
. ..

.

�am;0 am;1 � � � am;n

0
B@

1
CA

ðmÞ�ðnþ1Þ

;

~YY ¼

1
X1
..
.

Xn

0
BBB@

1
CCCA

ðnþ1Þ�1

;

O is a m � 1 zero matrix, and Li6 ai;06Ui for 16 i6m.
We can let S ¼ fðX1; . . . ;XnÞ : A~YY ¼ Og, V ¼ fðX1; . . . ;
XnÞ : Pr;06Xr6Qr;0 for 16 r6 n and X2k�1 and X2k sat-
isfy constraints of direction vectors for for 16 k6 d,
where d is the number of common loops.}, S0 ¼
fð1;X1; . . . ;XnÞ : 8ðX1; . . . ;XnÞ 2 Sg, and V 0 ¼ fð1;X1;
. . . ;XnÞ : 8ðX1; . . . ;XnÞ 2 Vg. Because S \ V ¼ U, we can
infer S0 \ V 0 ¼ U.
We let a ¼ Spanð~bb1; . . . ;~bbmÞ, where ~bbi ¼ ð�ai;0; ai;1;

. . . ; ai;nÞ. 8~CC 2 a and ~DD 2 S0, we can obtain the inner
product of ~CC and ~DD as follows

~CC; ~DD
D E

¼
Xm
i¼1

ki �~bbi; ~DD
* +

¼ k1ð�a1;0 þ a1;1X1 þ � � � þ a1;nXnÞ

þ � � � þ kmð�am;0 þ am;1X1 þ � � � þ am;nXnÞ

¼ k1ð0Þ þ � � � þ kmð0Þ ¼ 0:

Therefore, we can at once derive that a is the orthogonal
complementary space of S0. For any~ZZ in V 0, consider ~PPZ ,
the projection of ~ZZ on S0. Since k~PPZ �~ZZk is a continuous
function on V 0 and V 0 is bounded, there must be exist ~ZZ0
in V 0 such that k~PPZ0 �~ZZ0k ¼ min~ZZ2V 0 k~PPZ �~ZZk. This is
the minimum distance between S0 and V 0. Since ~ZZ0 �~PPZ0
is orthogonal to S0, it must be in a. Hence, the equation
h~ZZ0 �~PPZ0 ; ~DDi ¼ 0 is a linear combination of equations in
(3.1), i.e., ~ZZ0 �~PPZ0 ¼ k1 �~bb1 þ � � � þ km �~bbm. The equa-
tion h~ZZ0 �~PPZ0 ; ~DDi ¼ 0 is actually equal to h

Pm
i¼1 ki �

~aai; ~XX i ¼
Pm

i¼1 ki � ai;0. Therefore, the equation, h
Pm

i¼1 ki �
~aai; ~XX i ¼

Pm
i¼1 ki � ai;0, is transformed to one new interval

equation,

110 W.-L. Chang et al. / The Journal of Systems and Software 63 (2002) 99–112



Xm
i¼1

ki �~aai; ~XX
* +

¼
Xm
i¼1

ki � ai;0;
Xm
i¼1

ki � ai;0

" #
:

Let b be the new interval equation. Hence, we can im-
mediately conclude that the new interval equation, b,
which contains S. According to Claim 1 cited from (Li
et al., 1990) in the following, h~ZZ0 �~PPZ0 ;~ZZi > 0 for any ~ZZ
in V 0. This is to say that each element ~XX in V satisfies
h
Pm

i¼1 ki �~aai; ~XX i >
Pm

i¼1 ki � ai;0. Therefore, we can at
once derive b \ V ¼ U. �

Claim 1. h~ZZ0 �~PPZ0 ;~ZZi > 0 for any ~ZZ in V 0.

Proof. Refer to Li et al. (1990). �

Proof of Lemma 3.1. (1) The direction vector of the kth
common loop, hk, has three different cases, i.e., hk is one
of three elements in the set f<;¼; >g. For convenience
of proof, we first prove that hk is the direction vector ‘<’.
From the direction vector I test in (Kong et al., 1993),
because Fk1;k2 ¼ ½k1 � a1;0 þ k2 � a2;0; k1 � a1;0 þ k2 � a2;0� is
(P2k;06X2k�1 < X2k 6Q2k;0 for 16 k6 d, and Pr;06
Xr6Qr;0 for 2d þ 16 r6 nÞ-integer solvable for every
ðk1; k2Þ in every U line, there must be at least one element
in V such that Fk1;k2 � ðk1 � a1;0 þ k2 � a2;0Þ ¼ 0.
(2) We have that Fk1;k2 � ðk1 � a1;0 þ k2 � a2;0Þ ¼ 0 for

any point ðk1; k2Þ on every U line according to the as-
sumption of the lemma. It is immediately concluded that
Fk1;k2 ¼ ½k1 �a1;0þk2 �a2;0;k1 �a1;0þk2 �a2;0� is (P2k;06
X2k�1<X2k6Q2k;0, for 16k6d, and Pr;06Xr6Qr;0 for
2dþ16r6n)-integer solvable for every point ðk1;k2Þ on
the boundaries of each cone.
(3) Every point in each cone can be expressed as a

linear combination of some points on the boundary of
the same cone, as being a well-known fact in the convex
theory. Any point ðk5; k6Þ in a cone is assumed to be
capable of being represented as ðek1 þ sk3; ek2 þ sk4Þ,
where ðk1; k2Þ and ðk3; k4Þ are points in the boundary of
the cone and e P 0 and sP 0. Because

Fk5;k6ðX1; . . . ;XnÞ � ðk5a1;0 þ k6a2;0Þ
¼ Fek1þsk3;ek2þsk4ðX1; . . . ;XnÞ � ðek1 þ sk3Þa1;0
� ðek2 þ sk4Þa2;0

¼ e � ðFk1;k2ðX1; . . . ;XnÞ � ðk1a1;0 þ k2a2;0ÞÞ
þ s � ðFk3;k4ðX1; . . . ;XnÞ � ðk3a1;0 þ k4a2;0ÞÞ

¼ e � 0þ s � 0 ¼ 0;

we thus secure Fk5;k6 ¼ ½k5 � a1;0 þ k6 � a2;0; k5 � a1;0þ
k6 � a2;0� is (P2k;06X2k�1 < X2k 6Q2k;0 for 16 k6 d, and
Pr;06Xr6Qr;0 for 2d þ 16 r6 n)-integer solvable for
any point ðk5; k6Þ in each cone. Of course it is also true in
the whole R2 space. Therefore, for any point ðk1; k2Þ in
R2 space, Fk1;k2 ¼ ½k1 � a1;0 þ k2 � a2;0; k1 � a1;0 þ k2 � a2;0�
is (P2k;06X2k�1 < X2k 6Q2k;0 for 16 k6 d, and Pr;06
Xr6Qr;0 for 2d þ 16 r6 n)-integer solvable in Rn space.

The proof of other direction vectors is similar to that of
the direction vector ‘<’. �

References

Banerjee, U., 1997. Dependence Analysis. Kluwer Academic Publish-

ers, Norwell, MA.

Banerjee, U., 1988. Dependence Analysis for Supercomputing. Kluwer

Academic Publishers, Norwell, MA.

Blume, W., Eigenmann, R., 1998. Nonlinear and symbolic data

dependence testing. IEEE Transaction on Parallel and Distributed

Systems 9 (12), 1180–1194.

Chu, C.-P., Chang, W.-L., 1998. The extension of direction vector I
test. In: Proceedings of the 10th IASTED International Conference

Parallel and Distributed Computing and Systems, Nevada, USA,

pp. 484–489.

Chang, W.-L., Chu, C.-P., 1999. The I+ test. In: Lecture Notes in
Computer Science, vol. 1656.

Chang, W.-L., Chu, C.-P., Wu, J., 1999. The generalized lambda test: a

multi-dimensional version of Banerjee’s algorithm. International

Journal of Parallel and Distributed Systems and Networks 2 (2),

69–78.

Chang, W.-L., Chu, C.-P., 2000a. The infinity lambda test: a multi-

dimensional version of Banerjee’s infinity test. Parallel Computing

26, 1275–1295.

Chang, W.-L., Chu, C.-P. 2000b. The multi-dimensional I test.
Technical Report NCKUCSIE-R-2000-01. Department of Com-

puter Science and Information Engineering, National Cheng Kung

University, Tainan, Taiwan, ROC.

Dongarra, J., Furtney, M., Reinhardt, S., Russell, J., 1991. Parallel

loops - a test suite for parallelizing compilers: description and

example results. Parallel Computing 17, 1247–1255.

Kong, X., Klappholz, D., Psarris, K., 1991. The I test. IEEE
Transaction on Parallel and Distributed Systems 2 (3), 342–359.

Kong, X., Klappholz, D., Psarris, K., 1993. The direction vector I test.
IEEE Transaction on Parallel and Distributed Systems 4 (11),

1280–1290.

Levine, D., Callahan, D., Dongarra, J., 1991. A comparative study

of automatic vectorizing compilers. Parallel Computing 17, 1223–

1244.

Li, Z., Yew, P.-C., Zhu, C.-Q., 1990. An efficient data dependence

analysis for parallelizing compilers. IEEE Transaction on Parallel

and Distributed Systems 1 (1), 26–34.

Petersen, P.M., 1993. Evaluation of programs and parallelizing

compilers using dynamic Analysis techniques. Ph.D. Thesis.

University of Illinois at Urbana-Champaign, January 1993.

Pugh, W., 1992. A practical algorithm for exact array dependence

analysis. Communication of the ACM 35 (8), 102–114.

Shen, Z., Li, Z., Yew, P.-C., 1992. An empirical study of Fortran

programs for parallelizing compilers. IEEE Transaction on Parallel

and Distributed Systems 1 (3), 356–364.

Smith, B.J., 1976. Matrix Eigensystem Routines-Eispack Guide.

Springer, Heidelberg.

Triolet, R., Irigoin, F., Feautrier, P., 1986. Direct parallelization of

call statements. In: Proceedings of SIGPLAN Symposium on

Compiler Construction, Palo Alto, CA, pp. 176–185.

Vaughan, W.J., 1986. A Residuals Management Model of the Iron and

Steel Industry: A Linear Programming Approach. Universal

Microfilms International, Ann Arbor, MI.

Wolfe, M., Tseng, C.W., 1992. The power test for data dependence.

IEEE Transaction on Parallel and Distributed Systems 3 (5), 591–

601.

Wolfe, M., 1996. High Performance Compilers for Parallel Comput-

ing. Addison-Wesley, Redwood City, CA.

W.-L. Chang et al. / The Journal of Systems and Software 63 (2002) 99–112 111



Weng-Long Chang received his BS degree in computer science and
information engineering from Feng Chia University, Taiwan, in 1988
and MS and Ph.D. degrees in computer science and information en-
gineering from the National Cheng Kung University, Taiwan, in 1994
and 1998, respectively. He is currently an Assistant Professor in the
Department of Information Management of Southern Taiwan Uni-
versity of Technology, Taiwan. His research interests include lan-
guages, tools and compilers for parallel computing.

Chih-Ping Chu received a BS degree in agricultural chemistry from
National Chung Hsing University, Taiwan, and MS degree in com-
puter science from the University of California, Riverside, and a
Ph.D. degree in computer science from Louisiana State University.

He is currently a professor in the Department of Computer Science
and Information Engineering of National Cheng Kung University,
Taiwan. His research interests include parallel computing, parallel
processing, component-based software development, and internet
computing.

Jia-Hwa Wu received his BS degree in mechanical engineering from
Feng Chia University, Taiwan, in 1981 and MBA degree in industrial
management from National Cheng Kung University, Taiwan, in 1986.
He is currently a doctoral candidate in computer science and infor-
mation engineering at the National Cheng Kung University, Taiwan.
His research interests include parallelizing compilers, data mining, and
internet computing.

112 W.-L. Chang et al. / The Journal of Systems and Software 63 (2002) 99–112


	A precise dependence analysis for multi-dimensional arrays under specific dependence direction
	Introduction
	Background
	Data dependence
	The direction vector I test
	The Lambda test
	The multi-dimensional I test

	The multi-dimensional direction vector I test
	The case of two dimensional array references
	The case of multi-dimensional array references
	The algorithm
	Time complexity

	Experimental Results
	Conclusions
	Appendix A
	References


