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Abstract

In this paper, we propose a communication cost reduc-
tion computes rule for irregular loop partitioning, called
least communication computes rule. For an irregular loop
with nonlinear array subscripts, the loop is transformed to a
normalized single loop, then we partition the loop iterations
to processors on which the minimal communication cost is
ensured when executing those iterations. We also give some
interprocedural optimization techniques for communication
preprocessing when the irregular code has the procedure
call. The experimental results show that, in most cases, our
approaches achieved better performance than other loop
partitioning rules.

Keywords Parallelizing compilers, Irregular scientific
application, Communication optimization, Loop transfor-
mation, Loop partitioning, Interprocedural optimization.

1 Introduction

Parallelizing compilers are necessary to allow programs
written in standard sequential languages to run ef�ciently
on parallel machines. In order to achieve good performance,
these compilers must be able to ef�ciently generate commu-
nication sets for nested loops. Parallelizing compilers that
generate code for each processor have to compute the se-
quence of local memory addresses accessed by each proces-
sor and the sequence of sends and receives for a given pro-
cessor to access non-local data. The distribution of compu-
tation in most compilers follows the owner-computes rule.
That is, a processor performs only those computations (or
assignments) for which it owns the left hand side variable.
Access to non-local right hand side variables is achieved by
inserting sends and receives.
�
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Communication overhead in�uences the performance of
parallel programs signi�cantly. According to Hockney's
representation, communication overhead can be measured
by a linear function of the message length � —

�����	����

���� � �� — where

���
is the start-up time and

���
is the

per-byte messaging time. To achieve good performance, we
must optimize communication in following three aspects:

� to exploit local computation as much as possible;

� to vectorize and aggregate communication in order to
reduce the number of communications; and

� to reduce the message length in a communication step.

As the scientists attempt to model and compute more
complicated problems, they have to envisage to develop ef-
�cient parallel code for sparse and unstructured problems
in which array accesses are made through a level of indirec-
tion or nonlinear array subscript expressions. This means
that the data arrays are indexed either through the values
in other arrays, which are called indirection arrays/index
arrays, or through non-af�ne subscripts. The use of indi-
rect/nonlinear indexing causes the data access patterns, i.e.
the indices of the data arrays being accessed, to be highly
irregular. Such a problem is called irregular problem, in
which the dependency structure is determined by variable
causes known only at runtime. Irregular applications are
found in unstructured computational �uid dynamic (CFD)
solvers, molecular dynamics codes, diagonal or polynomial
preconditioned iterative linear solvers, and n-body solvers.

Researchers have demonstrated that the performance of
irregular parallel code can be improved by applying a com-
bination of computation and data layout transformations.
Some researches focus on providing primitives and libraries
for runtime support [2, 10, 3], some provide language sup-
port such as add irregular facilities to HPF or Fortran 90
[13, 15], and some works attempt to utilize caches and lo-
cality ef�ciently [4].
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Hwang et al. [10] presented a library called CHAOS,
which helps user implement irregular programs on dis-
tributed memory machines. The CHAOS library provides
ef�cient runtime primitives for distributing data and compu-
tation over processors; it supports index translation mecha-
nisms and provides users high-level mechanisms for opti-
mizing communication. In particular, it provides support
for parallelization of adaptive irregular programs where in-
direction arrays are modi�ed during the course of computa-
tion. The CHAOS library is divided into six phases. They
are Data Partitioning, Data Remapping, Iteration Partition-
ing, Iteration Remapping, Inspector, and Executor phase.
The �rst four phases concern mapping data and compu-
tations onto processors. The next two steps concern an-
alyzing data access patterns in loops and generating opti-
mized communication calls. The same working group as
the above, Ponnusamy et al. extended the CHAOS run-
time procedures which are used by a prototype Fortran 90D
compiler to make it possible to emulate irregular distri-
bution in HPF by reordering elements of data arrays and
renumbering indirection arrays [13]. Also, in their pa-
per [3], Das. et al. discussed some primitives to support
communication optimization of irregular computations on
distributed memory architectures. These primitives coor-
dinate inter-processor data movement, manage the storage
of, and access to, copies of off-processor data, minimize
inter-processor communication requirements and support a
shared name space.

In this paper, we propose some optimization techniques
to minimize the communication cost in pre-processing for
compiling irregular scienti�c codes. We �rst partition irreg-
ular loops using a communication cost reduction computes
rule, called least communication computes rule. Accord-
ing to these information we partition the loop iteration to a
processor on which the minimal communication is ensured
when executing that iteration. Then, for irregular nested
loops with nonlinear subscript references, we transform the
loops to single loops using loop coalescing and symbolic
analysis. After transformed to single loops, the loops can
be treated as the loops with indirection array. Addition-
ally, using inter-procedural partial redundancy elimination
algorithm, we optimize the preprocessing routine and col-
lective communication if the irregular codes include inter-
procedure calls.

2 Reducing Communication cost for Indirec-
tion Array Loop Partitioning

As mentioned above, there are two kinds of irregular
loop – data array are indexed through indirection arrays or
indexed through nonlinear subscript expressions – we called
indirection array loop or nonlinear loop respectively. In this
section, we propose a communication cost reduction tech-

nique for indirection array loop partitioning. In the follow-
ing discussion, we assume that the indirection array loop
body has only loop-independent dependence, but no loop-
carried dependence (it is very dif�cult to test irregular loop-
carried dependence since dependence testing methods for
linear subscripts are completely disabled), because most of
practical irregular scienti�c applications have this kind of
loops.

����� ���	��
������
����������	��������

Consider the irregular loop below, which is a simpli�ed
version extracted from ZEUS-2D code [11]:

Example 1

DO 10 t = 1, time_step
C Outer loop takes the execution times
C of irregular loop

DO 100 i = 1, N
S1: X(j2(i)) = X(j1(i))+Y(j3(i))
S2: X(j4(i)) = X(j3(i))+Y(j1(i))+Z(j3(i))
S3: Y(j1(i)) = Y(j1(i))+Z(j3(i))-X(j1(i))
S4: Y(j4(i)) = Y(j3(i))-X(j3(i))
100 CONTINUE

......
10 CONTINUE

Generally, in distributed memory compilation, loop iter-
ations are partitioned to processors according to the owner
computes rule [1]. This rule speci�es that, on a single-
statement loop, each iteration will be executed by the pro-
cessor which owns the left hand side array reference of the
assignment for that iteration.

For the loop in Example 1, if owner computes rule
is applied, the �rst step is to distribute the loop into
three individual loops each of which includes the state-
ment S1, S2, and S3, respectively. Without loss of
generality, suppose that the loop would be executed on 

processors in parallel. If the array element Y(i)
is aligned with X(i) in the initial distribution, clearly
Y(j1(i)) is also distributed onto the same processor with
X(j1(i)). So we can assume that !#"�$%!�&'$(!*) , and !�+
own [X(j1(i)), Y(j1(i))], [X(j2(i))],
[X(j3(i)),Y(j3(i)), Z(j3(i))], and
[X(j4(i)),Y(j4(i))], respectively, for iteration,
. Then the iteration

,
of executing S1, S2, S3, and

S4 would be partitioned to processor ! & $(! + $(! " , and ! + ,
respectively. Thus if any references to array elements on
the right-hand side is not owned by the processor executing
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Statement Owner array elements required communication
S1: ! & , X(j1(i)) � ! "���� ! &�� , Y(j3(i)) � ! )���� ! &	�
S2: ! + , X(j3(i)), Z(j3(i)) � ! )��
� ! +�� , Y(j1(i)) � ! "���� ! +	�
S3: ! " , Z(j3(i)) � !�) ��� ! " �
S3: !*+ , X(j3(i)), Y(j3(i)) � !#) �
� ! + �

Table 1. The owner of executing assignments and required communications for the example loop.

the statement (say, an off-processor reference), the array
data on the right-hand side would have to be communicated
to the owner. Table 1 shows the owner of executing
assignments and required communications for the example
loop.

However, owner computes rule is often not best suited
for irregular codes. This is because use of indirection in
accessing left hand side array makes it dif�cult to partition
the loop iterations according to the owner computers rule.
Therefore, in CHAOS library, Ponnusamy et al. [13, 14]
proposed a heuristic method for irregular loop partitioning
called almost owner computes rule, in which an iteration is
executed on the processor that is the owner of the largest
number of distributed array references in the iteration.

According to almost owner computes rule, this loop iter-
ation would be partitioned to ! ) because it has the majority
number of data elements. The communication would be as
the follows, where ���� means the values obtained at the
loop executing owner but need to send back to the array el-
ement owners:

� Import communication before the loop iteration is ex-
ecuted:

1. X(j1(i)), Y(j1(i)): !#" ��� ! )
� Export communication after the loop iteration is exe-

cuted:

1. tmp Yj1: !�) �
� !	"
2. tmp Xj2: !�) �
� !�&
3. tmp Xj4, tmp Yj4: ! )��
� ! +

Obviously the communication cost is reduced as com-
pared to the owner computes rule. Some HPF compil-
ers employ this scheme by using EXECUTE-ON-HOME
clause [15]. However, when we parallelize a �uid dynam-
ics solver ZEUS-2D code by using almost owner computes
rule, we �nd that the almost owner computes rule is not op-
timal manner in minimizing communication cost — either
communication steps or elements to be communicated. An-
other drawback is that it is not straightforward to choose
optimal owner if several processors own the same number
of array references.

��� � ����� 
�� �*��� ��� ��� � ������� 
����� ��� ��
��
���� 
����

If we consider communication overhead when the itera-
tion is partitioned to !�" , we can obtain the communication
pattern as follows:
� Import communication before the loop iteration is ex-

ecuted:

1. X(j3(i)), Y(j3(i)), Z(j3(i)): ! )���� ! "
� Export communication after the loop iteration is exe-

cuted:

1. tmp Xj2: ! "���� ! &
2. tmp Xj4, tmp Yj4: !�" ��� !*+

Although the number of elements to be communicated is�
, same as the almost owner computes rule, the communi-

cation steps are reduced (three times). This improvement is
important when the outer sequential time step-loop is large.

Based on the above observation, we propose a more ef-
�cient computes rule for irregular loop partition [8]. This
approach partitions iterations on a particular processor such
that executing the iteration on that processor ensures
� the communication steps is minimum, and

� the total number of data to be communicated is mini-
mum

In our approach, neither owner computes rule nor al-
most owner computes rule is used in parallel execution of
a loop iteration for irregular computation. A communi-
cation cost reduction computes rule, called least commu-
nication computes rule, is proposed. For a given irreg-
ular loop, we �rst investigate for all processors !�� $! �"# " � ( � is the number of processors) in which two sets$�%'&)(*& �!+� � and

$�%'&�,.- �/�!0� � for each processor !1� are
de�ned.

$�%'&)(*& �!2� � is a set of processors which have to
send data to processor !1� before the iteration is executed,
and

$�%3&�,.- �/� ! �4� is a set of processors which have to send
data from processor ! � after the iteration is executed. Ac-
cording to these knowledge we partition the loop iteration
to a processor on which the minimal communication is en-
sured when executing that iteration. Then, after all itera-
tions are partitioned into various processors. Please refer to
[8] for details.
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����� � ��� � � ��� � � �	�

After least communication loop partitioning analysis, we
can develop a node program which has three parts: pre-
execution import communication (gathering phase), irreg-
ular loop execution (executing phase), and post-execution
export communication (scattering phase). In the node pro-
gram, � � ��� � ( �	�� ��� � ) is the all data which need send to !�

from !2� (current executing processor), before (after) loop
execution.

,������� % �
marks as local loop index. � � is the

number of iterations partitioned onto ! � .
! � ’s node program:

// pre-communicating required elements with other proces-
sors.�
! 
�� $�%3&)(3& � ! � �

receive data from ! 
 ;
for � 
  $ � ��� $��
 #

if ! ��� $�%3&)(3& � ! 
 � then
buffering data from � � ��� � 
 � � � , & $�� ��� �!�"�#�

� �'� ,%$'& $(� � ;
send to !)
 ;

end if
end for
// executing the local iterations
for

,���*��� % � 
 � $+�0�, &4� ,���*��� % � �.- , ) � ,%�/����� % � �0-!1"1!1.- ,32 � ,�/����� % � � ;
end for
// post communicating changed remote elements with other
processors.
for
�
! 
4� $�%3&�,.- �/� ! � �

buffering data from �5�
 � # � 
 �6�
 � , & $ # �0���"�!��� � 
 � , $ & $ # � ;
send changed data to !�
 ;

end for
for � 
  $ � ��� $��
 #

if ! � � $�%3&�,.- �/� !7
 � then
receive changed data from !�
 ;

end if
end for

3 Communication Optimization for Nonlin-
ear Array Loops

Given a perfectly nested irregular loop with nonlinear
array subscripts as shown in the following.

DO i1 = X1,Y1,Z1
......
DO in = Xn,Yn,Zn

S: A[f(i1,i2,...,in)] = F(B[g(i1,i2,...,in)])
CONTINUE
......
CONTINUE

For the sake of simplicity, we will assume that the refer-
enced array A and B have only one dimension. The array ac-
cess functions ( 8 and 9 ), the loop's lower and upper bounds
( :<; $>=#; ), and stride ( ?@; ) may be arbitrary symbolic expres-
sions made up of loop-invariant variables and loop indices
of enclosing loops. We will also assume that all loop strides
are positive. It is not dif�cult to extend our method to han-
dle imperfectly nested loops, negative strides, multidimen-
sional arrays, and loop-variant variables. Furthermore, let
the arrays A and B be initially distributed as BLOCK across
! processors.

In order to parallelize and partition this nested loop, it
has to be transformed to single loop using loop coalescing.
The loop transformation can be performed as the following
steps:

1. Loop normalization:
For � 
 � $ & do
� , , 
 :�
 $+=A
 $0?B
 
7C � , , 
 � $>=D=E


where =F=G
 
 ��=E
 � :F
 � ?H
 �>I ?H
 .
2. Transforming to a single loop (loop coalescing):

DO i1 = 1, YY1
......
DO in = 1, YYn

S: A[f(i'1,i'2,...,i'n)] = &
F(B[g(i'1,i'2,...,i'n)])

CONTINUE
......
CONTINUE

J
DO ii = 1, YY
i'1 = ((ii-1)/(YY2*...*YYn)) &

*(YY2*...*YYn) + 1
i'2 = ((ii-1)/(YY3*...*YYn)) &

*(YY3*...*YYn) + 1
......
i'n = ((ii-1) mod YYn) + 1

S: A[f(i'1,i'2,...,i'n)] = &
F(B[g(i'1,i'2,...,i'n)])

CONTINUE

where YY = YY1*YY2*...*YYn.

3. Using Algorithm 1, 2, 3, and 4 in [8] to compute the
least communication owner for each iteration.

4. Partitioning the loop according to least communication
computes rule.

However, The above steps can only be applied if the
bounds of loops are loop invariant. For the bounds are ex-
pression including loop variables or indices, such as the fol-
lowing loop,
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DO i1 = 1, N
DO i2 = 1, i1
IA = i1*(i1-1)/2 + i2
IB = i2*(i2-1)/2 + i1

S: A[IA] = F(B[IB])
CONTINUE
CONTINUE

the above steps cannot be used, because after loop coalesc-
ing there are loop variables in loop bounds. Here, we pro-
pose a symbolic sum computation algorithm for determin-
ing the constant loop bounds.

Suppose that the nested loop has the loop bounds as
� , , & 
 � $��
� , , ) 
�� ) � , &/� $�� ) � , &��
�!�"�
� , , 2 
�� 2 � , & $ 1!1"1 $ , 2�� & � $�� 2 � , & $ 1!1!1 $ , 2	� &��
We can count the number of integer solutions between

the bounds by using the following formulas.


 ) 

��
;��� & ��� ) �

, &��+� � ) � , &�� � � �

 + 


��
;  � &

����� ; ���
; � ��� ��� ; �� ��� + �

, & $ , )�� � � + � , & $ , )	� � � �
�!�!�

@2 


��
;��� & �!�!�

�����  � ;� �"!"!"! � ; �#�  ��
; �#� ���� ���  � ;$ �"!"!"! � ; ���  � ���

2 � , & $ , ) $ 1"1!1 $ , 2	� & �
� � 2 � , & $ , ) $ 1!1!1 $ , 2	� & � � � �

Thus, the bounds of single loop is from � to � � 
 ) � �!�!� � 
@2 .
Coming back to the above example, because total num-

ber of iterations of the inner loop � , ) � is % �;$�� & , & 


� � �&� � � �+I#' , after transformation, the upper bound of
the single loop is � ) � �&� � � �+I#' .

4 Inter-procedural Communication Opti-
mization for Irregular Loops

In some irregular scienti�c codes, an important opti-
mization required is communication preprocessing among
procedure calls. In this section, we extend a classical data
�ow optimization technique – Partial Redundancy Elimina-
tion – to an Interprocedural Partial Redundancy Elimina-
tion as a basis for performing interprocedural communica-
tion optimization [2]. Partial Redundancy Elimination en-
compasses traditional optimizations like loop invariant code
motion and redundant computation elimination.

Consider the example program presented in the left
side of Figure 1. Initial intraprocedural analysis in Sec-
tion 2 (see [8] also) inserts pre-communicating call (in-
cluding one buffering and one gathering routine) and post-
communicating (buffering and scattering routine) call for

PROGRAM
REAL A(n), B(n), C(n), D(n)
INTEGER IA(n), IB(n), IC(n)
……
DO 10 I = 1, 20
CALL SUB1(A,B,C,IA,IC)
CALL SUB2(A, C, IA, IC)
……

10 CONTINUE
END

SUBROUTINE SUB1(U,V,W,X,Y)
……
DO 100 I = 1, n
W(Y(I)) = W(Y(I)) + U(X(I))

100  CONTINUE 
……
END

SUBROUTINE SUB2(A, C, IX, IY)
……
DO 200 I = 1, n
C(IY(I)) = C(IY(I)) + A(IX(I))

200  CONTINUE 
……
END

(NODE)  PROGRAM
(same as the left)

SUBROUTINE SUB1(U,V,W,X,Y)
recv(&U, &W, Pany)
buffering (X,Y)
send(&U, Pany)
……
DO 100 I$local = 1, n$local
W(Y(I$local)) = W(Y(I$local)) +U(X(I$local))

100  CONTINUE 
……
Buffering(Y)
send(&W, Pany)
recv(&W, Pany)
END

SUBROUTINE SUB2(A, C, IX, IY)
recv(&A, &C, Pany)
buffering (IX,IY)
send(&A, Pany)
……
DO 200 I$local = 1, n$local
C(IY(I$local)) = C(IY(I$local)) +A(IX(I$local))

200  CONTINUE 
……
Buffering(IY)
send(&C, Pany)
recv(&C, Pany)
END

Figure 1. Original code and its intraprocedural com-
piled node program.

PROGRAM
REAL A(n), B(n), C(n), D(n)
INTEGER IA(n), IB(n), IC(n)
……
recv(&A, &C, Pany)
buffering (IA,IC)
DO 10 I = 1, 20
CALL SUB1(A,B,C,IA,IC)
CALL SUB2(A, C, IA, IC)
……

10    CONTINUE
END

SUBROUTINE SUB1(U,V,W,X,Y)
send(&U, Pany)
……
DO 100 I$local = 1, n$local
W(Y(I$local)) = W(Y(I$local)) + U(X(I$local))

100  CONTINUE
……
END

SUBROUTINE SUB2(A, C, IX, IY)
……
DO 200 I$local = 1, n$local
C(IY(I$local)) = C(IY(I$local)) + A(IX(I$local))

200  CONTINUE 
……

send(&C, Pany)
recv(&C, Pany)
END

Figure 2. After interprocedural Optimized node pro-
gram.
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PROGRAM
REAL A(n), B(n), C(n), D(n)
INTEGER IA(n), IB(n), IC(n)
……
DO 10 I = 1, 20
CALL SUB1(A, B, IA)
CALL SUB2(A, C, IB)
……

10 CONTINUE
END 

SUBROUTINE SUB1(U,V, X)
……
DO 100 I = 1, n
V(I) = … U(X(I)) …

100  CONTINUE 
……
END

SUBROUTINE SUB2(A, C, IB)
……
DO 200 I = 1, n
C(I) = C(I) + A(IB(I))

200  CONTINUE 
……
END

PROGRAM
REAL A(n), B(n), C(n), D(n)
INTEGER IA(n), IB(n), IC(n)
……
DO 10 I = 1, 20
CALL SUB1(A, B, IA)
CALL SUB2(A, C, IA)
……

10 CONTINUE
END 

SUBROUTINE SUB1(U,V, X)
……
DO 100 I = 1, m

C     m < n
V(I) = … U(X(I)) …

100  CONTINUE 
……
END

SUBROUTINE SUB2(A, C, IA)
……
DO 200 I = 1, n
C(I) = C(I) + A(IA(I))

200  CONTINUE 
……
END

(a) (b)

Figure 3. Common and incremental buffering original
code.

PROGRAM
REAL A(n), B(n), C(n), D(n)
INTEGER IA(n), IB(n), IC(n)
……
recv(&A, Pany)
common = buffering (IA)
incml = buffering(IA, IB)
DO 10 I = 1, 20
CALL SUB1(A, B, IA)
CALL SUB2(A, C, IB)
……

10 CONTINUE
END 

SUBROUTINE SUB1(U,V, X)
……
send(&U, common, Pany)
DO 100 I local = 1, n$local
V(I$local) = … U(X(I$local)) …

100  CONTINUE 
……
END

SUBROUTINE SUB2(A, C, IB)
……
send(&A, incml, Pany)
DO 200 I$local = 1, n$local
C(I$local) = C(I$local) + A(IB(I$local))

200  CONTINUE 
……
END

PROGRAM
REAL A(n), B(n), C(n), D(n)
INTEGER IA(n), IB(n), IC(n)
……
recv(&A, Pany)
common = buffering (IA(I), I < m)
incml = buffering(IA(I), m<=I<n)
DO 10 I = 1, 20
CALL SUB1(A, B, IA)
CALL SUB2(A, C, IA)
……

10 CONTINUE
END 

SUBROUTINE SUB1(U,V, X)
……
send(&U, common, Pany)
DO 100 I$local = 1, m$local

C     m < n
V(I$local) = … U(X(I$local)) …

100  CONTINUE 
……
END

SUBROUTINE SUB2(A, C, IA)
……
send(&A, incml, Pany)
DO 200 I$local = 1, n$local
C(I$local) = C(I$local) + A(IA(I$local))

200  CONTINUE 
……
END

(a) (b)

Figure 4. Interprocedural Optimized node code using
common and incremental buffering.

each of the two data parallel loops in two subroutines
(the right side of Fig. 1). After interprocedural anal-
ysis, the compiled node program is shown in Figure 2.
Here, since the array

(��
and

( 

are never modi�ed in-

side the time step loop in the main procedure, the sched-
ules � - 838���� , & 9
��: $>= � and � - 838���� , & 9
� ( : $ ( = � are loop
invariants and can be hoisted outside the loop.

Further, it can be deduced that the computation of
� - 838���� , & 9 ��: $+= � and � - 838���� , & 9 � ( : $ ( = � are equiva-
lent. So only � - 838���� , & 9 ��: $+= � needs to be computed and
the gather routine in

, �	� ' can use � - 838���� , & 9 ��: $+= � in-
stead of � - 838���� , & 9 � ( : $ ( = � . The gather for array

(��
in

subroutine
, �	� ' is redundant because of the gather of ar-

ray
�

in
, �	� � . Thus, we hoist the common partial subex-

pression as � - 838���� , & 9 � (�� $ ( 
 � .
Similarly, We also can apply Interprocedral

Partial Redundancy Elimination analysis to post-
communicating call. Further, � - 838���� , & 9
�*= � is included in
� - 838���� , & 9 � (�� $ ( 
 � , and it can be eliminated. The result
is shown in Figure 2.

In the above example, data arrays and index arrays are
the same in loop bodies of two subroutines. While some
communication statement may not be redundant, there may
be some other communication statement, which may be
gathering at least a subset of the values gathered in this
statement.

Consider the program shown in Figure 3(a). The same
data array

�
is accessed using an indirection array

(��
in, �	� � and using another indirection array

( � in
, �	� ' .

Further, none of the indirection arrays or the data array
�

is
modi�ed between �ow control from �rst loop to the second
loop. There will be at least some overlap between required
communication data elements made in these two loops. An-
other case is that the data array and indirection array is the
same but the loop bound is different(See Figure 3(b)). In
this case, the �rst loop can be viewed as a part of the second
loop.

We divide two kinds of communication routines for such
situations. A common communication routine takes more
than one indirection array, or takes common part of two in-
direction arrays. In the example in Figure 3(a), a common
communication routine will take in arrays

(��
and

( � pro-
ducing a single buffering. Incremental preprocessing rou-
tine will take in indirection array

(��
and

( � , and will de-
termine the off-processor references made uniquely through
indirection array

( � and not through indirection array
(
�

.
While executing the second loop, communication using an
incremental schedule can be done, to gather only the data
elements which were not gathered during the �rst loop.

In Figure 4(a) and (b), we show this optimiza-
tion for Figure 3(a) and (b) respectively, where� � &� ��� � $ �.� � � � & $(! %'&�� � represents data elements
sending according to

�.� � � � & buffering part while
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mrsij0 = 0
DO mrs = 0, (N*N+N)/2-1

mrsij = mrsij0
DO mi = 0, N-1

DO mj = 0, mi-1
S1:           mrsij = mrsij + 1
S2:           xrsij(mrsij) = xij(mj)

ENDDO
ENDDO
mrsij0 = mrsij0+(N*N+N)/2

ENDDO

DO mrs = 0, (N*N+N)/2-1
DO mi = 0, N-1

DO mj = 0, mi-1
S1:           mrsij = (mi*mi+mi+      &

mrs*(N*N+N))/2+mj+1
S2:           xrsij(mrsij) = xij(mj)

ENDDO
ENDDO

ENDDO

Figure 5. Simpli�ed version of loop nest OLDA from TRFD

� � &� ��� � $ , & � � � $(! %'&�� � represents sending according to, & � � � � � & � % � buffering.

5 Experiments and Performance Results

We now present experimental results to show the ef�cacy
of the methods presented so far. We measure the difference
made by using owner computes rule, and our least commu-
nication computes rule in an experimental program. An-
other experiment is examined for the difference of with or
without interprocedural optimization. All the experiments
are examined on a 24 node SGI Origin 2000 parallel com-
puter or a 32-node CM-5 parallel computer. The node pro-
grams are written in Fortran, using MPI communication li-
brary and system call gettimeofday() for measuring
execution time.

We select a subroutine OLDA from the code TRFD, ap-
pearing in Perfect benchmark [12]. A simpli�ed version of
this loop nest is shown in the left side of Figure 5. After
using induction variable substitution to replace the induc-
tion variable � � � , � at statement

, & , the optimized version
is shown in the right side of Figure 5. There is a nonlinear
array subscript for � � � , � at

, ) . To parallelize this loop nest,
the communication set generation and loop partitioning op-
timization must be used.

We assume that initial distribution schemes are BLOCK
both for arrays � � � , � and � , � . Figure 6 shows the total loop
execution times on CM-5 when � 
 � � (with global array
size 18632)

��� & ��� �.� �  - � � and
� � % � � �!� � � respectively

represent that we use owner computes rule and our least
communication computes rule to partition the loop. We ob-
serve that as the number of nodes increases, the execution
time is not so much improved because each processor has
to communicate with increasing number of nodes. The �g-
ure shows that our method gets good performance in most
cases.

Our another experiment for irregular loop with in-

0

0.2

0.4

0.6

0.8

1

1.2

1.4

4 8 16 24 32

number of processors
ex

ec
ut

io
n 

ti
m

e 
(s

ec
)

owner comp.

least comm.

Figure 6. Execution time of OLDA program on CM-5
for owner computes rule and transformed single loop
using least communication computes rule for loop
partitioning.

terprocdeural optimization selects an irregular kernel of
�uid dynamics code, ZEUS-2D for our study. ZEUS-
2D is a computational �uid dynamics code developed at
the Laboratory for Computational Astrophysics (NCSA,
University of Illinois at Urbana-Champaign) for astro-
physical radiation magnetohydro dynamics problems[11].
ZEUS-2D solves the equations of ideal (non-resistive),
non-relativistic, hydrodynamics, including radiation trans-
port, (frozen-in) magnetic �elds, rotation, and self-gravity.
Boundary conditions may be speci�ed as re�ecting, peri-
odic, in�ow, or out�ow. The kernel irregular subroutine
emfs includes some loops in which the loop body invokes
four subroutines X1INTFC, X1INTZC, X2INTFC, and
X2INTZC, each of which includes irregular loops similar
with the motivation example in Section 2. We specify the
geometry as Cartesian XY, the grid as uniformly spaced
zones 800 by 2, and extend the irregular loop iterations to
1000.
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Figure 7. Effect of interprocedural communication
optimization in executing ZEUS-2D irregular loops
(Execution time) on SGI Origin 2000.

In Figure 7, we show the performance difference of
emfc obtained by using three kinds of the version:
only intraprocedural optimization, with interprocedural pre-
communicating optimization, and with all interprocedu-
ral communication optimization. Performance of the dif-
ferent versions of the code is measured on SGI Origin
2000 from 2 to 24 processors. The curves marked with
intraproc opt., interproc pre-opt., and interproc all-opt..
are the versions of the code which the communication
statements using intraprocedural optimization, interproce-
dural pre-communicating optimization and all interproce-
dural communication optimization. The �gure shows that
interprocedural communication optimization gets good per-
formance in all cases. When the same data is distributed
over a larger number of processors, the communication time
becomes a signi�cant part of the total execution time and
the communication optimization makes signi�cant differ-
ence in the overall performance of the program.

In Figure 8, we further study the impact of different ver-
sions on communication statements. Only the communi-
cation time is shown for the various versions of the code.
Communication optimizations in our method include gather
and scatter before and after loop execution, and common-
incremental buffering. When the number of processors is
large, our method can lead to substantial improvement in
the performance of the code, because the communication
time in�uences signi�cantly total performance of parallel
program.

6 Conclusions

The ef�ciency of loop partitioning in�uences perfor-
mance of parallel program considerably. For automatically
parallelizing irregular scienti�c codes, the owner computes
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Figure 8. Communication time for intraprocedural
and interprocedural optimization in executing ZEUS-
2D irregular loops on SGI Origin 2000.

rule is not suitable for partitioning irregular loops. In this
paper, we have presented an ef�cient loop partitioning ap-
proach to reduce communication cost for a kind of irregular
loop with nonlinear array subscripts. In our approach, run-
time preprocessing is used to determine the communication
required between the processors. We have developed the
algorithms for performing these communication optimiza-
tion. We have also presented how interprocedural commu-
nication optimization can be achieved. We have done a pre-
liminary implementation of the schemes presented in this
paper. The experimental results demonstrate ef�cacy of our
schemes.
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