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Abstract

Adleman wrote the first paper in which it is shown that deoxyribonucleic acid (DNA) strands could be employed towards cal-
culating solutions to an instance of the NP-complete Hamiltonian path problem (HPP). Lipton also demonstrated that Adleman’s
techniques could be used to solve the NP-complete satisfiability (SAT) problem (the first NP-complete problem). In this paper,
itis proved how the DNA operations presented by Adleman and Lipton can be used for developing DNA algorithms to resolving
theset cover problerand theproblemof exact cover by-sets
© 2003 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction shows that theset cover problenand theproblemof
exact cover b-setscan be solved with biological op-
Producing 188 DNA strands that fit in a test tube erations in the Adleman—Lipton model. Furthermore,
is possible through advances in molecular biology this work represents obvious evidence for the ability
(Sinden, 199% Adleman wrote the first paper in of DNA-based computing to solve the NP-complete
which it is shown that each DNA strand could be ap- problems.
plied for solving the NP-complete Hamiltonian path The rest of this paper is organized as follows. In
problem @Adleman, 1994 Lipton demonstrated that Section 2 the Adleman—Lipton model is introduced
Adleman’s experiment could be used to determine the in detail and the comparison of the model with other
NP-complete satisfiability (SAT) problem (the first models is also givenSection 3introduces a DNA
NP-complete problem).{pton, 1995. algorithm for solving the set cover probler@ection
In this paper, we apply the DNA operations in the 4 describes another DNA algorithms for solving the
Adleman—Lipton model to develop two DNA algo- problem of exact cover by 3-sets. Bection 5 the
rithms. The main result of the two DNA algorithms experimental result of simulated DNA computing is
also given. Conclusions are drawnSmection 6
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In Section 2.2 the comparison of the Adleman—
Lipton model with other models is also introduced in
detail.

2.1. The Adleman-Lipton model

A DNA (deoxyribonucleic acid) is a polymer,

which is strung together from monomers called de-

oxyribonucleotides$inden, 1994; Paun et al., 1998
Distinct nucleotides are detected only with their

3. Merge Given tubesP; and Py, yield U(P1, P2),
whereU(P1, P2) = P1 U Pp. This operation is to
pour two tubes into one, with no change of the
individual strands.

4. Anneal The operation is to represent all of
the operations that combine a test tube of sin-
gle stranded DNA with other prepared strands
and let them anneal together to form double
strands.

5. Detect Given a tubeP, say ‘yes’ if P includes at

bases. Those bases are, respectively, abbreviated as €astone DNA molecule, and say ‘no’ if it contains

A, G, C and T. Two strands of DNA can form (under

none.

appropriate conditions) a double strand, if the respec- 6- AppendGiven a tubé® and a short strand of DNA,

tive bases are the Watson—Crick complements of each

other—A matches T and C matches G; alsce@d
matches 5end. The length of a single stranded DNA

is the number of nucleotides comprising the single
strand. Thus, if a single stranded DNA includes 20 nu-
cleotides, it is called a 20 mer. The length of a double
stranded DNA (where each nucleotide is base paired)
is counted in the number of base pairs. Thus, if we
make a double stranded DNA from a single stranded
20 mer, then the length of the double stranded DNA
is 20 base pairs, also written as 20 bp (for more dis-
cussion of the relevant biological background, refer
to Sinden, 1994; Boneh et al., 1996; Paun et al.,

1998.

The DNA operations proposed by Adleman and

Lipton (Adleman, 1994, 1996; Lipton, 1995; Boneh

et al., 1996, are described below. These operations

will be used for figuring out solutions of the set cover

problem and the problem of exact cover by 3-sets in

this paper.

The Adleman-Lipton model: A (test) tube is a set

of molecules of DNA (i.e. a multi-set of finite strings
over the alphabefA, C, G, T}). Given a tube, one
can perform the following operations:

1. Extract Given a tubeP and a short single strand
of DNA, S produce two tubes-(P, S and —(P,
S, where+(P, S is all of the molecules of DNA
in P which contain the stran8 as a substrand and
—(P, S is all of the molecules of DNA irP which
do not contain the short strar®l

2. SeparateGiven a tube® and lengthL for a double
strand of DNA, generate one tub€P, L), where
x(P, L) is all of the molecules of DNA irP which
length is equal td..

Z, the operation will append the short strarz],
onto the end of every strand in the tuBe

7. Discard Given a tubeP, the operation will discard
the tubeP.

8. Read Given a tubeP, the operation is used to de-
scribe a single molecule, which is contained in the
tubeP. Even ifP contains many different molecules
each encoding a different set of bases, the opera-
tion can give an explicit description of exactly one
of them.

2.2. Other related work and comparison with the
Adleman-Lipton model

Based on solution space splintin the Adleman—
Lipton model, their methods\arayanan and Zorbala,
1998 Chang and Guo, 2002a,b,€hang et al.,
2002 could be applied towards solving the trav-
eling salesman problem, the dominating-set prob-
lem, the vertex cover problem, the clique problem,
the independent-set problem, the three-dimensional
matching problem and the set-packing problem. Those
methods for the problems resolved have exponentially
increasing volumes of DNA and linearly increasing
time.

Bach et al. (1996)proposed annl.89" vol-
ume, O(n? + m?) time molecular algorithm for the
3-coloring problem and a 1.31volume, O(n’m?)
time molecular algorithm for the independent set
problem, where andmare, subsequently, the number
of vertices and the number of edges in the problems
resolved.Fu (1997)presented a polynomial-time al-
gorithm with a 1.497 volume for the 3-SAT problem,

a polynomial-time algorithm with a 1.345volume
for the 3-Coloring problem and a polynomial-time
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algorithm with a 1.229 volume for the independent 3. Using the Adleman-Lipton model to solve the
set. Though the size of those volume&si(1997; Bach set cover problem

et al., 1999 is lower, constructing those volumes is

more difficult and the time complexity to the methods  In Section 3.1the summary of the set-cover prob-
is very higher. lem is described. Applyingplintsto constructing so-

Quyang et al. (1997showed that restriction en-  lution space of DNA sequences for the set-cover prob-
zymes could be used to solve the NP-complete clique lem is introduced irSection 3.2In Section 3.3 one
problem. The maximum number of vertices that DNA algorithm is proposed to resolving the set-cover
they can process is limited to 27 because the size problem. In Section 3.4, the complexity of the pro-
of the pool with the size of the problem exponen- Posed algorithm is described.
tially increases Quyang et al., 1997 Shin et al.
(1999) presented an encoding scheme for decreas-
ing error rate in hybridization. The metho®Hin
et al.,, 1999 could be employed towards ascertain-
ing the traveling salesman problem for represent-
ing integer and real values with fixed-length codes.
Arita et al. (1997)and Morimoto et al. (1999)
proposed new molecular experimental techniques
and a solid-phase method to finding a Hamiltonian
path, respectivelyAmos (1997) proposed parallel
filtering model for resolving the Hamiltonian path
problem, the sub-graph isomorphism problem, the
3-vertex-colourability problem, the cliqgue problem
and the independent-set problem. Those methods
(Arita et al., 1997; Morimoto et al., 1999; Amos,
1997 have lower error rate in real molecular exper-
iments.

In the literatures Reif et al., 2000; LaBean et al.,
2000, 2003, the methods for DNA-based computing
by self-assembly require to use DNA nanostructures,
called tiles, that have efficient chemistries, expressive
computational power, and convenientinput and output 3 2 - Using splint for constructing solution space of
(I/0) mechanisms. DNA tiles have very lower error pNA sequence for the set-cover problem
rate in self-assemblyGarzon and Deaton (1999)-
troduced a review of the most important advances in  In the Adleman—Lipton model, their main idea is
molecular computing. to first generate solution space of DNA sequences for

Adleman and his co-authorR¢éweis et al., 1999 those problems resolved. Then, basic biological op-
proposed sticker-based model to enhance error rateerations are used to remove illegal solution and find
in hybridization in the Adleman—Lipton model. legal solution from solution space. Assume thd-a
Their model could be used for determining solu- digit binary number represents all possibfé ¢hoices

3.1. Definition of the set-cover problem

Assume that a finite s&is {s1, ..., s4 }, wheres;
is one element ilsfor 1 < k < A. We denote tha,
which is equal taA, is the cardinality ofS. Suppose
that a collectionC is {Cy, ..., Cp}, whereC; is a
subset inSfor 1 < i < B. We denote thatd| is the
cardinality ofC and | is equal tdB. Assume thamis
a positive integer. Aet coverfor Sis a sub-collection
¢! c ¢ with |CY] < m such that every element &
belongs to at least one member@¥ (Cormen et al.,
2003; Garey and Johnson, 197%here €| is the
cardinality of Cl. The set cover problem is to find a
minimumsize set cover forS For example, a finite
setSis {1, 2, 3} and a collectionC is {{1}, {2},
{3}, {2, 3}} for S Theminimumsizeset cover forS
is {{1}, {2, 3}}. It is pointed out from Garey and
Johnson, 197%hat finding a minimum-size set cover
is a NP-complete problem, so it can be formulated as
a “search” problem.

tions to an instance of the set cover probldPerez- of subsets irS. Also suppose thaA onedigit binary
Jimenez and Sancho-Caparrini (200&mployed numbers represert elements irS.
sticker-based modeRpweis et al., 1999to resolve If one of B bits is set to 1, then it represents that the

knapsack problems. In our previous workhang corresponding subset appearsdh If one of B bits
and Guo (2003employed the sticker-based model is set to O, then it represents that the corresponding
and the Adleman—Lipton model to dealing with the subset is out of. If theith bit in B bits is set to 1 and
dominating-set problem for decreasing error rate of the correspondingth subset contains the elemest
hybridization. in S, then thekth one-digit binary number is appended



266

onto the tail of those binary numbers, containing the
value 1 of thdth bit. If theith bit in B bits is set to 1
but the correspondingh subset does not contain the
elements; in S then thekth one-digit binary number

is not appended onto the tail of those binary numbers,
consisting of the value 1 of thi¢h bit.

Suppose thaC; and C; are, respectively, théh
subset and thith subset inCl. Assume thaC; con-
tains the elemend; in Sbut C; does not includes;.
From the statements above, title bit and thejth bit
in B bits are both set 1. Becau§k contains the ele-
mentsy, the kth one-digit binary number is appended
onto the tail ofB bits.

To implement this way, assume thaBebit binary
numberX is represented as a binary numbey .. .,

Xg, where the value ok; is 1 or O for 1< i < B.
Similarly suppose thah one-digit binary number are,
respectivelyyi, yo, ..., Ya, Where the value of; is 1
or0forl<k < A. A B-bit binary numbeX includes

all possible Z choices of subsets. Each choice of sub-
sets corresponds to a possible set cover. A;hi the

ith bit in X and it represents thiéh subset irC. A one-
digit binary numbery; represents the elemegtin S.

If the value ofx; is set to 1 and the corresponding sub-
set also consists of the elemegpt then the one-digit
binary numbely; is appended onto the tail of those
binary numbers, including the value 1 of thh bit.

Consider that a finite seb is {1, 2, 3} and a
collection C is {{1}, {2}, {3}, {2, 3}} for S The
minimumsizeset cover forSis {{1}, {2, 3}}. From
the implemented way above, the collectiGincludes
four subsets, so an unsigned integfewith length of
four bits is used to represent all possibfechoices of
subsets. Since the finite setontains three elements,
three one-digit binary numberg;, y> andys, respec-
tively, represent the first element, the second element
and the third element. The minimum-size set cover for
Sconsists of 1} and{2, 3}. The subsef1} is the first
subset inC and the subsef2, 3} is the fourth subset
in C. Therefore, a four-digit binary number, 1001, is
applied to represent the first subgé} and the fourth
subset{2, 3}. Because the first bit in 1001 is 1 and the
corresponding subset also includes the first element 1
in S the one-digit binary numben is appended onto
the tail of 1001. Hence, the solution currently be-
comes 10011. Similarly, since the fourth bit in 10011
is 1 and the corresponding subset also includes the
second element 2 and the third element Sithe cor-
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responding one-digit binary numbersandys are, in
order, appended onto the tail of 10011. Therefore, the
complete solution is constructed and it is 1001111.
To represent all of the possible set covsplint
(Adleman, 1994, 1996; Lipton, 1995; Boneh et al.,
1996 is used to construct solution space for that prob-
lem resolved. For the sake of convenience of presenta-
tion, assume that' denotes the value of to be 1 and
x? defines the value of to be zero. Similarly, suppose
thaty,} denotes the value gf; to be 1 andy,? defines
the value ofy; to be zero. Twalistinct 30 base value
sequences were designed fgrandy;. Similarly, two
distinct 20 base value sequences also were designed
for x? and y,?. The first advantage for the design of
DNA code allows to separate DNA strands by length.
Theshortesstrand corresponds to a minimum-size set
cover. The second advantage for the design of DNA
code decreases number of tubes used. Splint’s tech-
nology in Adleman, 1994, 1996; Lipton, 1995; Boneh
et al., 1999 is applied to construct solution space for
all of the possible set cover for adyelement set.

3.3. The DNA algorithm for solving the set-cover
problem

The following DNA algorithm is proposed to solve
the set-cover problem.

Algorithm 1. Solving the set-cover problem.

(1) Input P), where the tub® is to encode all
possible Z choices of subsets for a finite
setS = {s1,s2,...,s4} and a collection
C ={C1q,...,Cpg} of subsets o5

(2) Fori = 1 to B, whereB is the number of
elements irC.

(2a) Pon = +(P, x}) and
Porr = —(P, x}).
(2b) Form = 1 to [C;|, where ¢;| is the
number of elements ig;.
Assume that thenth element inC; is
thejth elements;, in S
(2¢) @' = +(Pon. y}) and
02 = —(Pon, yjl)-
(2d) Append @2, y1).
(2€) Pon = U(QY, 0?).
End For
(2f) P = U(Pon, PoFp)-
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End For

() Forj=1t0A

(32) P = +(P, y}) and Pgap = —(P, 7).

(3b) Discard the tub&gap.

End For

(4) P = Anneal f).

(5) P = x(P, 1), wherel is equal to the shortest
length for double strands of DNA in the
tubeP.

(6) If (detect P) ="yes) then.

(6a) Read ), where the operation
describes ‘sequence’ of a molecular
in the tubeP.

End If

Theorem 1. From those steps iAlgorithm 1, the set-
cover problem for any A-element set S and any B-
subset collection C can be resolved

Proof. In Step 1, a test tube of DNA strands, that en-
code all Z possible input bit sequences.. .. xg, is
yielded. It is very obvious that the test tube includes
all possible Z choices of subsets. Based on the def-
inition of set cover Cormen et al., 2003; Garey and
Johnson, 1979 Step 2 will executeB times for rep-
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the elements in th&h subset are represented in the
tube Popr. Step 2f uses “merge” to pour two tubes
Pon andPopr into the tubeP. Therefore, the tub®
contains every element of thth subset. It is very ob-
vious that after all of the steps in Step 2 are executed,
every element in each subset appears in the Ribe
Also from the definition of set cover, Step 3 is applied
to check which subsets at least contain every element.
Because the number of elementisStep 3 will ex-
ecuteA times for finding correct choices of subsets.
Step 3a applies “extraction” operation to check which
subsets include thigh element and which subsets do
not include theth element. Therefore, two tubes are
generated. Clearly, the second tuRgnp includes il-
legal choices of subsets and therefore the Rif)g) is
discarded in Step 3b. After repeat to exec@itemes

for Step 3a and Step 3b, all illegal choices of subsets
are discarded. Therefore, the remaining strands in the
tubeP represent legal choices of subsets and they exist
in the tube in the form of single stranded DNA. Step
4 is to combine the single strands in the tubavith
other prepared strands and let them anneal together to
form double strands. Step 5 separates the strands in
the tubeP by length. Theshorteststrand corresponds

to a minimum-size set cover. O

resenting every element in each subset. Step 2a uses

“extraction” operation to form two test tubeRyy and
Porr. The first tubePon consists of all of the strands
that havex; = 1. That is to say that thé&h subset
appears in the tubBon. The second tub®ofr in-
cludes all of the strands that hawe = 0. That is

to say that theth subset does not appear in the tube
Porr. Step 2b will executel;| times for representing
all of the elements in thé&h subset. Step 2c applies
“extraction” operation from the tubBpoy to generate
two tubes:Q! and Q2. The first tubeQ! includes all

of the strands that haveg; = 1. That is to say that
the jth element in thath subset appears in the tube
Q. The second tub&? contains all of the strands
that havey; = 0. That is to say that thigh element

in theith subset does not appear in the t@e It is
pointed out from the definition of set cover that Step
2d appends the short strarp},, representing theth
element in theth subset, onto the end of every strand
in the tubeQ?. Hence, the tub&? now includes the
jth element in theth subset. Step 2e applies “merge”
to pour two tube®! andQ? into the tubePon. After
repeat to executeC|| times for Steps 2c to 2e, all of

Algorithm 1 can be used for determining a
minimum-size set cover to that a finite sets {1, 2,
3} and a collectiorC is {{1}, {2}, {3}, {2, 3}} for S
From Step 1 ofAlgorithm 1, the tubeP is filled with
16 double strands of DNA, representing 16 possible
choices of subsets. The number of the subsets in the
collection C is four, so the number of execution to
Step 2 ofAlgorithm 1is four times. According to the
first execution of Step 2a dAlgorithm 1, two tubes
are generated. The first tub@gy, includes the num-
bers kxx (x can be either 1 or 0). The second tube,
Porr, contains the numbers«@«. That is to say that
the first subset{1}, appears irPon and out ofPogr.
Because the number of the element in the first subset is
one, the number of execution to Step 2bAddorithm
1is one time. Due to the first execution of Step 2c of
Algorithm 1, two tubes are produced. The first tube,
Q!, contains the element, 1. The second tu@é,
does not include the element, 1. From the definition
of set cover, the tub&)?, must consist of the element,
1. Therefore, Step 2d dklgorithm 1 appends the el-
ement, 1, onto the tub®2. According to definition of
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set cover, Step 2e dflgorithm 1 pours the two tubes,
Q! and @?, into the tubePoy. After finish each op-
eration of Steps 2c to 2e, the only element in the first
subset,{1}, appears in the tubBoy. From the defi-
nition of set cover, Step 2f pours the two tubBgy
and Porr, into the tubeP. This is to say that every
element in the first subset is represented in the Ribe
The same processing can be applied to deal with
other three subset$2}, {3}, {2, 3}. After the three
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Proof. Refer toTheorem 1 O
Theorem 4. Assume that a finite set S{is, so, ...,
sa}and a collection CigCy, ..., Cg}. The set-cover
problem for the finite set S and the collection C can
be resolved witl28 strands in the Adleman—Lipton
model

Proof. Refer toTheorem 1 O

subsets are processed, every element in the three sub-

sets is represented in the tuBeAccording to defini-
tion of set cover, finding a set cover f8s to check
whether every element i appears at least in chosen
subsets. Because the number of the elemen&iin
three, Step 3 ofAlgorithm 1 will be executed three
times. According to the first execution of Step 3a of
Algorithm 1, two tubes are produced. The first ele-
ment inSis 1 and it is included in the first tu@ The
second tubd’gpap does not contain the first element.
This is to imply that subsets in the second tityap

are not legal choices. Therefore, Step 3b is applied to
discard the second tuld@zap. The similar process-
ing can be applied to deal with other two elements: 2
and 3. After every element is processed, the remain-
ing strands in the tub® represent legal choices. So,
finding a minimum-size set cover f@ is to search
the shortestiength for the strands in the tulfe Steps

4 and 5 ofAlgorithm 1 are applied to find the answer
from the tubeP. Steps 6 and 6a d&lgorithm 1 read
the answer from the tulf® Thus, a minimum-size set
cover forSis {{1}, {2, 3}}. The following theorems
describe complexity oAlgorithm 1.

Theorem 2. Assume that a finite set S{ig, so, ... ,

sa} and a collection CigCy, ..., Cg}. The set-cover
problem for the finite set S and the collection C can
be resolved withO(B x A + A) biological operations

in the Adleman—Lipton modekhere B is the number
of subsets in C and A is the number of elements in S

Proof. Refer toTheorem 1 O

Theorem 3. Assume that a finite set S{is, s», ... ,

sa} and a collection CigCy, ..., Cg}. The set-cover
problem for the finite set S and the collection C can be
resolved with constant tubes in the Adleman—Lipton
model

Theorem 5. Assume that a finite set S{ig, so, ... ,
sa}and a collection CigCy, ..., Cg}. The set-cover
problem for the finite set S and the collection C can
be resolved with the longest strar@D= (B + A) base
pairs, in the Adleman—Lipton modelvhere B is the
number of subsets in C and A is the number of elements
inS

Proof. Refer toTheorem 1

4. Using the Adleman—Lipton model to solve the
problem of exact cover by 3-sets

Another famous NP-complete problem is 3-set ex-
act cover problem. In this section, we try to use DNA-
based computing technique to solve it. The notations,
DNA solution space and processing step are similar
with Section 3in which we solved the set cover prob-
lem by DNA-based computing. So we directly give
Algorithm 2 in this section.

Assume that a finite s&is {s1, s2, ... , s34}, where
s is one element irsfor 1 < k < 3q. We denote that
|9, which is equal to §, is the cardinality o Assume
that C is a collection of 3-element subsets $pand
[C| is the cardinality ofC. Suppose thaf is equal to
{Cq,...,Cpg}, where each subsef;, contains three
elements inSfor 1 < i < B. An exact covefor Sis
a sub-collectiorC! € C such that every element &
occurs in exactly one member 6 (Cormen et al.,
2003; Garey and Johnson, 1978he problem of exact
cover by 3-sets is to find minimumsizeexact cover
for Sand has been proved to be NP-complete problem
(Garey and Johnson, 197%or example, a finite s&
is{1, 2,3,4,5,6andacollectiorCis {{1, 2, 3}, {3,
4,5}, {4, 5, 6}} for S The setSand the collectiorC
denote such a problem. Thanimumsizeexact cover
for Sis {{1, 2, 3}, {4, 5, 6} }. We design the following
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DNA algorithm towards resolving the problem. The
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possible Z choices of 3-element subsets. It is pointed

similar notations and the similar processing steps as out from the definition of exact cover by 3-se@arey

Algorithm 1 will be used inAlgorithm 2.

Algorithm 2. Solving the problem of exact cover by
3-sets.
(1) Input ), where the tubé is generated by
the same method iSection 3.2 The tube
P is to encode all possible®2choices of
subsets for a finite set = {s1, 52, ... , 534}
and a collectiorC = {C4, ..., Cp} of
3-element subsets &
(2) Fori = 1 to B, whereB is the number of
elements irC.
(2a) Pon = +(P, x}) and Popr = — (P, x1).
(2b) Form = 1 to [C;|, where ¢;| is the
number of elements ;.
Assume that thenth element inC; is
thejth elements;, in S
(2¢) Peap = +(Pon, y7) and
Pon = —(Pon, ¥}).
(2d) Discard the tub®gap .
(2e) Append Ron, y7)-

End For
(2f) P = U(PoN, PoFF).
End For

() Forj=1to 3y

(32) P = +(P, y}) and Peap = —(P, y}).

(3b) Discard the tub®gap.

End For

(4) P = Anneal ).

(5) P = *(P, 1), wherel is equal to the shortest
length for double strands of DNA in the
tubeP.

(6) If (detect P) ="yes) then.

(6a) Read ), where the operation
describes ‘sequence’ of a molecular
in the tubeP.

End If

Theorem 6. From those steps ilgorithm 2, the
problem of exact cover B3+sets for any3x g-element
set and any B-subset collection C can be resalved

Proof. In Step 1, a test tube of DNA strands, that en-
code all possible 2 input bit sequences; ... xg, is

and Johnson, 1979hat Step 2 will execut® times

for representing every element in each subset. Step
2a uses “extraction” operation to form two test tubes:
Pon and Pogg. The first tubePon consists of all of
the strands that have = 1. That is to say that the
ith subset appears in the tuPgy. The second tube
Porr includes all of the strands that have= 0. That

is to say that théth subset does not occur in the tube
Porr. From the definition of exact cover by 3-sets, the
number of elements in each subsetQris all three.
Therefore, Step 2b will execute three times for repre-
senting all of the elements in thth subset. Step 2c
applies “extraction” operation to generate two tubes:
Peap and Popn. The first tubePgap includes all of
the strands that havg; = 1. That is to say that the
jth element in théth subset repeatedly occurs in the
tube Pgap. From the definition of exact cover by 3-
sets Garey and Johnson, 1979he first tubePgap
contains illegal choices of subsets. Hence, the first
tube Pgap is discarded in Step 2d. The second tube
Pon includes all of the strands that haye= 0. That

is to say that thgth element in theth subset does
not appear in the tubBoy. Obviously, from the def-
inition of exact cover by 3-set$3arey and Johnson,
1979 that Step 2e appends the short strandyepre-
senting thgth element in théth subset, onto the end
of every strand in the tubBon. Hence, the tub®gp

now includes thgth element in thath subset. After
repeat to execute three times for Steps 2c to 2e, all of
the elements in th&h subset are represented in the
tubePon. Step 2f uses “merge” operation to pour two
tubesPon and Popr into the tubeP. Therefore, the
tube P contains every element of thth subset. It is
very clear that after all of the steps in Step 2 are ex-
ecuted, every element in each subset appears once in
the tubeP. Step 3 is applied to check which subsets
exactly contain every element. Because the number
of elements inSis 3g, Step 3 will execute @times

for finding correct choices of subsets. Step 3a applies
“extraction” operation to check which subsets include
thejth element and which subsets do not includgthe
element. Therefore, two tubes are generated. From the
definition of exact cover by 3-set§érey and Johnson,
1979, the second tubPgap includes illegal choices

of subsets and therefore the tuBgap is discarded

generated. Itis very clear that the test tube includes all in Step 3b. After repeat to executg 8mes for Step
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3a and Step 3b, all illegal choices of subsets are dis- 1979, finding an exact cover fdis to check whether
carded. Therefore, the remaining strands in the tube every element irs appears exactly in chosen subsets.
P represent legal choices of subsets and they exist in Because the number of the elementSis six, Step 3
the tube in the form of single stranded DNA. Step 4 of Algorithm 2 will be executed six times. According
is to combine the single strands in the tuBewith to the first execution of Step 3a @éfigorithm 2, two
other prepared strands and let them anneal together tatubes are produced. The first elemenSiis 1 and it
form double strands. Step 5 separates the strands inis included in the first tub®. The second tubBgap
the tubeP by length. Theshorteststrand corresponds  does not contain the first element. This is to imply that
to a minimume-size exact cover. O subsets in the second tuBgap are not legal choices.
Therefore, Step 3b are applied to discard the second
Algorithm 2 can be used for determining a tubePgap. The similar processing can be applied to
minimum-size set cover to that a finite s&ts {1, deal with other five elements: 2, 3, 4, 5 and 6. Af-
2,3,4,5, 6 and a collectiorC is {{1, 2, 3, {3, 4, ter every element is processed, the remaining strands
5}, {4, 5, 6} for S From Step 1 ofAlgorithm 2, the in the tubeP represent legal choices. So, finding a
tube P is filled with eight double strands of DNA, minimum-size exact cover f@is to search thehort-
representing eight possible choices of subsets. Theestlength for the strands in the tulie Steps 4 and
number of the subsets in the collecti@nis three, so 5 of Algorithm 2 are applied to find the answer from
the number of execution to Step 2 Afgorithm 2 is the tubeP. Steps 6 and 6a oAlgorithm 2 read the
three times. According to the first execution of Step answer from the tub®. Thus, a minimum-size exact
2a of Algorithm 2, two tubes are generated. The first cover forSis {{1, 2, 3}, {4, 5, 6}}. The following
tube,Pon, includes the numberst% (x can be either  theorems describe the complexity Aligorithm 2.
1 or 0). The second tub®pff, contains the numbers

Oxx. That is to say that the first subsdtl, 2, 3}, Theorem 7. Assume that a finite set Sfis, 5o, . .. |
appears irPon and out ofPorr. Because the number s34} and a collection C i§Cy, ... , Cg}, where each

of the element in the first subset is three, the number gypset in C includes only three elements in S. The
of execution to Step 2b dfigorithm 2is three times.  problem of exact cover B¢sets for the finite set S can
Due to the first execution of Step 2c Afgorithm 2, be resolved wittO(3x B+ 3x¢) biological operations
two tubes are produced. The first tuBgap, contains iy the Adleman-Lipton model, where B is the number

the element, 1. According to definition of exact cover of subsets in C an8xq is the number of elements in S
by 3-sets Garey and Johnson, 197%ubsets in the

tube Pgap are illegal choices of subsets. Therefore,
the tubePgap is discarded in Step 2d. The second
tube,Pon, does not include the element, 1. From the
definition of exact set by 3-set§&arey and Johnson,
1979, the tube,Pon, must consist of the element,
1. Therefore, Step 2e oAlgorithm 2 appends the
element, 1, onto the tubdepyn. After finish each oper-
ation of Steps 2c to 2e, the three elements in the first
subset{1, 2, 3}, appears once in the tulipy. Also
From the definition of exact cover by 3-setSgrey
and Johnson, 1979Step 2f pours the two tubeBon Proof. Refer toTheorem 6 0
and Pofr, into the tubeP. This is to say that every

element in the first subset is represented in the RiIbe  Theorem 9. Assume that a finite set S{ig, s», ... ,

The similar processing can be applied to deal with s3,} and a collection C iCy, ..., Cg}, where each
other two subsets{3, 4, 5, {4, 5, 6. After the two subset in C includes only three elements in S. The
subsets are processed, every element in the two sub-problem of exact cover B+sets for the finite set S can
sets is represented in the tuBe According to defi- be resolved witt2? strands in the Adleman—Lipton
nition of exact cover by 3-setss@arey and Johnson, model, where B is the number of subsets in C

Proof. Refer toTheorem 6 O

Theorem 8. Assume that a finite set S{is, s2, ... ,

s34} and a collection C i§Cy, ... , Cp}, where each
subset in C includes only three elements in S. The
problem of exact cover [8+sets for the finite set S can
be resolved with constant tubes in the Adleman—Lipton
model
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Proof. Refer toTheorem 6 O
Theorem 10. Assume that a finite set S{ig, so, ... ,

s34} and a collection C igCy, ... , Cp}, where each
subset in C includes only three elements in S. The
problem of exact cover t8rsets for the finite set S can
be resolved with the longest stran@« (B + 3 * g)
base pairsin the Adleman-Lipton modekhere B is
the number of subsets in C aBé g is the number of
elements in S

Proof. Refer toTheorem 6

5. Experimental results of simulated DNA
computing

We developed a tool for simulating biological op-
erations in the Adleman—Lipton model Bection 2
In simulations, the rule of DNA code design is that of
vertex color. In simulations, it is suggested that four
bases{A, C, G, T} represent four distinct colors. The
same base (color) do not construct two adjacency nu-
cleotides in single-stranded DNA. To avoid common
nucleotides in different strands, if a color sequence is
applied to produce a new single-stranded DNA, then
it could not be used to generate other new strands. In
simulations, due to the rule of DNA code design, sin-
gle strand of DNA is generated for every element in
a finite set and every subset in a collection of the fi-
nite set. Similarly, from the definition of splint, single
stranded DNA to each splint is also yielded. Accord-
ing to the rule of DNA code design, single strand of
DNA is yielded for a 3 — 5 sequence complemen-
tary to the first half of the initial bit (its value was
zero) and a 3— 5 sequence complementary to the
first half of the initial bit (its value is 1). Similarly,
due to the rule of DNA code design, single strand of
DNA is produced to a’3— 5 sequence complemen-
tary to the last half of the last bit (its value is 0) and
a 3 — 5 sequence complementary to the last half of
the last bit (its value is 1).

Consider that a finite s is {1, 2} and a col-
lection C is {{1}, {2}} for the finite setS The first

. 1
element and the second element are, respectively, 1 1

and 2 forS The first subset and the second subset
are, subsequently,1} and {2} for C. From the rule
above, single stranded DNA for the every subset and
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Table 1
DNA sequences chosen to represent the subsets in the coll€ction

Subset 5— 3 DNA sequence

X0 GATCAGCACTGCTAGTCACA

x} ATCGACGCATCGCTCACGTGTGCGTGCTGC
xJ TAGTGTAGCGAGATATGTCT

x3 GCGATGTCGCTCGTGCAGCGAGACGAGACA

Table 2
DNA sequences chosen to represent the elements in the finige set

Element 5 — 3 DNA sequence
yi‘ GTATCGATCAGTGATGTGACATAGAGTAGA
y% ACTGTACGAGTGTCTATAGACTCAGTGCAC

every element is shown ifables 1 and 2respec-
tively. Similarly, single stranded DNA to each splint
is also shown iriTable 3 A 3 — 5 sequence com-
plementary to the first half of the initial bitvi) and a

3 — 5 sequence complementary to the first half of
the initial bit (x}) are, respectively, CTAGTCGTGA
and TAGCTGCGTAGCGAG. Similarly, a'3» 5 se-
quence complementary to the last half of the last bit
(xg) and a 3 — 5 sequence complementary to the
last half of the last bitx}) are TCTATACAGA and
GTCGCTCTGCTCTGT, respectively.

In simulations, many copies of DNA sequences,
representing every element and every subset, are gen-
erated. Similarly, many copies of 4 3> 5 sequence
complementary to the first half of the initial bit (its
value is 0) and many copies of & 3> 5 sequence
complementary to the first half of the initial bit (its
value is 1) are also yielded. Next, in simulations, many
copies of a 83— 5 sequence complementary to the
last half of the last bit (its value is 0) and many copies
of a 3 — 5 sequence complementary to the last half
of the last bit (its value is 1) are also produced. From

Table 3
DNA sequences chosen were regarded as the splint for adjacency
bits in Table 1

Splint 3 — 5 DNA sequence

9,19 CGATCAGTGTATCACATCGC

(1, x9) TGCACACGCACGACGATCACATCGC

(9, x) CGATCAGTGTCGCTACAGCGAGCAC

11, x3) TGCACACGCACGACGCGCTACAGCGAGCAC
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Table 4
DNA sequences chosen to represent all possible choices of subsets

5-GATCAGCACTGCTAGTCACATAGTGTAGCGAGATATGTCT-3
3-CTAGTCGTGACGATCAGTGTATCACATCGCTCTATACAGA-5

5-ATCGACGCATCGCTCACGTGTGCGTGCTGCTAGTGTAGCGAGATATGTCT-3
3-TAGCTGCGTAGCGAGTGCACACGCACGACGATCACATCGCTCTATACAGA’S

5-GATCAGCACTGCTAGTCACAGCGATGTCGCTCGTGCAGCGAGACGAGACA-3
3-CTAGTCGTGACGATCAGTGTCGCTACAGCGAGCACGTCGCTCTGCTCTGT-5

5-ATCGACGCATCGCTCACGTGTGCGTGCTGCGCGATGTCGCTCGTGCAGCGAGACGAGACA-3
3-TAGCTGCGTAGCGAGTGCACACGCACGACGCGCTACAGCGAGCACGTCGCTCTGCTCTGT-5

the rule of DNA code design, the DNA sequences sat- simulations is to read the sequences from the file and
isfy the constraint that there is no runs of more than 4 the sequences are stored in arrays. It is very clear from
A’s,4T's,4C'sor4 G’'s Roweis et al., 1999; Braich  the definition of set cover that the number of simula-
et al., 2003. This indicates that long homopolymer tion for Step 2 is the number of subsets in a collection.
tracts may have unusual secondary structure and theln Step 2a of the first simulation, two distinct arrays
melting temperatures of probe-library hybrids will be are employed to store the result generated by Step 2a.
more uniform if none of the probe-library hybrids in- According to definition of set cover, the number of
volves long homopolymer tracts. The DNA sequences simulation for Step 2b is the number of elements in a
from the rule of DNA code design also satisfy the subset in a collection. In Steps 2c, 2d and 2e of sim-
constraint that every probe sequence has at least fourulation, thejth element in thath subset is appended
mismatches with all continuous 15 base alignment of onto every strand and merged in arrays. Repeat simu-
any library sequence (except for with its matching lation of Steps 2c, 2d and 2e of until all of the elements
value sequence)Rpweis et al., 1999; Braich et al., in theith subset are processed. Therefore, the strands
2003. This implies that the constraint ensures that generated by Steps 2c to 2e contain all of the elements
probes bind only weakly where they are not intended in theith subset and are stored in arrays. Because all
to bind. Due to the rule of DNA code design, the of the elements in thigh subset are processed, hence,
DNA sequences satisfy the constraint that every 15 the choices of subsets containing the elements and the
base subsequence of a library sequence has at leasthoices of subset not including the elements are both
four mismatches with all continuous 15 base align- merged in arrays in Step 2f of simulation. The same
ment of itself or any other library sequendeoiveis processing is applied to deal with other subsets. Thus,
et al., 1999; Braich et al., 20Q3This indicates that  after every simulation for each subset is finished, all
the constraint ensures that library strands have a low possible choices of subsets consisting of the elements
affinity for themselves. FromRoweis et al., 1999; are generated and stored in arrays. So, the resuB for
Braich et al., 2008 errors in the separation of the li- andC is shown inTable 5
brary strands are errors in the computation. The de- It is very obvious from the definition of set cover
sign is to ensure that the DNA sequences have little that the number of simulation for Step 3Algorithm
secondary structure that might inhibit intended probe- 1 is the number of elements. Therefore, two distinct
library hybridization. Similarly, the design is also to arrays are yielded in Step 3a of simulation. One array
exclude the DNA sequences that may encourage un-including legal choices of subsets and another contain-
intended probe-library hybridization. ing illegal choices of subsets are yielded. The illegal

Therefore, the hybridization process and the ligation array is deleted in Step 3b of simulation. After every
process could be emulated with lower rate of errors. element is checked, the array consisting of every el-
The tube forAlgorithm 1 is yielded in simulations.  ement is produced in Steps 3a and 3b of simulation.
Thus, forSandC a test tube is shown ifiable 4 Hence, the result is shown fable 6

In simulations ofAlgorithm 1, a file is applied to The legal choices of subsets in the array appear in
store sequences of DNA. Step 1 Afgorithm 1 in the form of single stranded DNA. Therefore, the aim
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Table 5
DNA sequences chosen to represent all possible choices of subsets consisting of the elements

5-GATCAGCACTGCTAGTCACATAGTGTAGCGAGATATGTCT-3
3-CTAGTCGTGACGATCAGTGTATCACATCGCTCTATACAGA-5

5'-ATCGACGCATCGCTCACGTGTGCGTGCTGCTAGTGTAGCGAGATATGTCTGTATCGATCAGTGATGTGACATAGAGTAGA-3
3-TAGCTGCGTAGCGAGTGCACACGCACGACGATCACATCGCTCTATACAGACATAGCTAGTCACTACACTGTATCTCATCT-5

5-GATCAGCACTGCTAGTCACAGCGATGTCGCTCGTGCAGCGAGACGAGACAACTGTACGAGTGTCTATAGACTCAGTGCAC-3
3-CTAGTCGTGACGATCAGTGTCGCTACAGCGAGCACGTCGCTCTGCTCTGTTGACATGCTCACAGAGATCTGAGTCACGTG-5

5-ATCGACGCATCGCTCACGTGTGCGTGCTGCGCGATGTCGCTCGTGCAGCGAGACGAGACAGTATCGATCAGTGATGT-
GACATAGAGTAGAACTGTACGAGTGTCTATAGACTCAGTGCAC-3

3-TAGCTGCGTAGCGAGTGCACACGCACGACGCGCTACAGCGAGCACGTCGCTCTGCTCTGTCATAGCTAGTCAC-
TACACTGTATCTCATCTTGACATGCTCACAGAGATCTGAGTCACGTG-5

Table 6
Single stranded DNA sequence chosen to represent the only legal choice

5'-ATCGACGCATCGCTCACGTGTGCGTGCTGCGCGATGTCGCTCGTGCAGCGAGACGAGACAGTATCGATCAGT-
GATGTGACATAGAGTAGAACTGTACGAGTGTCTATAGACTCAGTGCAC-3

Table 7
Double stranded DNA sequence chosen to represent the only legal choice

5-ATCGACGCATCGCTCACGTGTGCGTGCTGCGCGATGTCGCTCGTGCAGCGAGACGAGACAGTATCGATCAGT-
GATGTGACATAGAGTAGAACTGTACGAGTGTCTATAGACTCAGTGCAC-3

3-TAGCTGCGTAGCGAGTGCACACGCACGACGCGCTACAGCGAGCACGTCGCTCTGC-
TCTGTCATAGCTAGTCACTACACTGTATCTCATCTTGACATGCTCACAGAGATCTGAGTCACGTG?S

Table 8
DNA sequence chosen to represent the only minimum-size set cover

5-ATCGACGCATCGCTCACGTGTGCGTGCTGCGCGATGTCGCTCGTGCAGCGAGACGAGACAGTATCGATCAGTGATGT-
GACATAGAGTAGAACTGTACGAGTGTCTATAGACTCAGTGCAC-3

3-TAGCTGCGTAGCGAGTGCACACGCACGACGCGCTACAGCGAGCACGTCGCTCTGCTCTGTCATAGCTAGTCACTACACTGTA-
TCTCATCTTGACATGCTCACAGAGATCTGAGTCACGTG-5

of Step 4 is to form double stranded DNA to legal so- explicitly examining whether the array is empty. This
lutions. So, this process is simulated by explicitly pro- process generates a resulted vales, if the array is
ducing the corresponding complementary sequencesnon-empty. A resulted valuen®, is generated by this
for the single strands of DNA. Hence, the result is process if the array is empty. If this process generates
shown inTable 7 a resulted valueyes, then in Step 6a of simulation,

In Step 5, theshortestsequence from the array a legal choice of subsets from the array is selected.
consisting of legal choices of subsets is chosen as aTherefore, the minimum-size set cover ®andC is
minimum-size set cover. The shortest sequence is a{{1}, {2}}. Simulations ofAlgorithm 2 are similar to
minimum-size set cover because in the proposed en-those ofAlgorithm 1.
coding scheme the code length of every subset or ev-
ery element is set to 30 if the corresponding value is
equal to one. Therefore, this process is simulated by 6. Conclusions
explicitly finding the shortest sequence from the array
consisting of legal choices of subsets. Therefore, the Because the size of solution space in the Adleman—
result is shown ifrable 8 Lipton model is exponential, hence, this limits that we

The goal of Step 6 is to check whether there are the can resolve the size of the NP-complete problem. The
shortest sequences. Thus, this process is simulated bymain result of this paper shows that the Adleman—
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Lipton model can be applied towards developing DNA Arita, M., Suyama, A., Hagiya, M., 1997. A heuristic approach
algorithms to resolving the set cover problem and the for Hamiltonian path problem with molecules. In: Proceedings
. of Second Genetic Programming (GP-97). pp. 457-462.
problem of exact cover by 3-sets. Furthermore, this
. . Bach, E., Condon, A., Glaser, E., Tanguay, C., 1996. DNA models
work represents clear evidence for the ability of DNA- and algorithms for NP-complete problems. In: Proceedings of
based computing to solve NP-complete problems. the Eleventh Annual Conference on Structure in Complexity
Famous Cook’s TheoremCéfrmen et al., 2003; Theory. pp. 290-299.

Garey and Johnson, 1978 that if one algorithm for ~ Boneh, D., Dunworth, C., Lipton, R.J., Sgall, J., 1996. On
one NP-compIete problem will be developed, then the computatlonal power of DNA. In: Dls_crete Applied

. . Mathematics. Special Issue on Computational Molecular
other problems W|Il_be solved by means of reduction Biology, vol. 71. pp. 79-94.
to that problem. This theorem has been proved to be graich, R.S., Johnson, C., Rothemund, PW.K., Hwang, D.,
correct for electronic digit computers. On the other Chelyapov, N., Adleman, L.M., Solution of a satisfiability
hand, Lipton proposed the DNA algorithm for solving problem on a gel-based DNA computer. In: Proceedings of the
the 3-SAT problem (the first NP-Complete prob- Sixt.h International Conference_on DNA Computation ir_1 the
| . 1998, The three-di . | tchi Springer-Verlag Lecture Notes in Computer Science series.
em) (Llpton, 5 e three-dimensional maiching Chang, W.-L., Guo, M., 2002. Solving the Dominating-set
problem can be reduced to the 3-SAT probleéaaley Problem in Adleman—Lipton’s Model. In: Proceedings of the
and Johnson, 1979But Lipton’s algorithm cannot Third International Conference on Parallel and Distributed
be used to resolving the three-dimensional matching  Computing, Applications and Technologies, Japan.
problem. We proposed the DNA algorithm for dealing Chang. W-L., Guo, M., 2002. Solving the Clique Problem

. . . . and the Vertex Cover Problem in Adleman—Lipton’s
with the three-dimensional matching proble@hang Model. In: Proceedings of the IASTED International

and Guo, 2002¢ which is different from Lipton’s 3- Conference, Networks, Parallel and Distributed Processing, and

SAT DNA algorithm. Another famous NP-complete Applications, Japan.

problem is the set-partition problem. The set-partition Chang, W.-L., Guo, M., 2002. Resolving the 3-dimensional

problem can be reduced to the three-dimensional mmhing L_PftOblemM chli ItheP set dpackin% tr:)ro?/lxes?E I;n
. eman-Lipton’s oael. In: roceedings o e

matChmg_ problem Garey and_‘]Ohnson’ _19)793Ut Internationalp Conference, Networks, Pargllel and Distributed

our algorithm cannot be applied to solving the set-  pygcessing, and Applications, Japan.

partition problem. The set-partition problem is still chang, W.-L., Chu, C.-P.,, Huang, S.-C., 2002. DNA solution

not solved. So, we are not sure whether Cook’s The- of the independent-set problem. In: Proceedings of the

orem is also correct famolecularcomputers and we Eighth Workshop on High Performance Computing, Taiwan,
: . 120-126.
re also not sure whether molecular computing can PP o .
are IanO Od Sul.e 'eh e OETDU a COI pu gbCI:a be Chang, W.-L., Guo, M., 2003. Using Sticker for Solving the
applied to dealing with every -complete problem. Dominating-set Problem in the Adleman—Lipton Model. IEICE

It is indicated from Garey and Johnson, 1979 Transaction on Information and System. In press.

that there are lots of NP-complete problems contain- Cormen, T.H., Leiserson, C.E., Rivest, R.L. Introduction to
ing mathematical operations. It is very difficult from Algorithms. _
(Adleman, 199% that using molecular computing Fu, B., _1997. Volume Bounded Molec_ular Computat'lon, _Ph.D.
finishes mathematical operations. This is to say that Thesis, Department of Computer Science, Yale University.

X p 8 Yy .~ Garzon, M.H., Deaton, R.J., 1999. Biomolecular computing and
solving those NP-complete problems with mathemati-  rogramming. IEEE Trans. Evolution. Comput. 3, 236-250.
cal operations is open questions and is also our future Garey, M.R., Johnson, D.S., 1979. Computer and Intractability.

researching directions. Freeman, San Fransico, CA.
LaBean, T.H., Winfree, E., Reif, J.H., 2000. Experimental progress
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