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Abstract

Adleman wrote the first paper in which it is shown that deoxyribonucleic acid (DNA) strands could be employed towards cal-
culating solutions to an instance of the NP-complete Hamiltonian path problem (HPP). Lipton also demonstrated that Adleman’s
techniques could be used to solve the NP-complete satisfiability (SAT) problem (the first NP-complete problem). In this paper,
it is proved how the DNA operations presented by Adleman and Lipton can be used for developing DNA algorithms to resolving
theset cover problemand theproblemof exact cover by3-sets.
© 2003 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Producing 1018 DNA strands that fit in a test tube
is possible through advances in molecular biology
(Sinden, 1994). Adleman wrote the first paper in
which it is shown that each DNA strand could be ap-
plied for solving the NP-complete Hamiltonian path
problem (Adleman, 1994). Lipton demonstrated that
Adleman’s experiment could be used to determine the
NP-complete satisfiability (SAT) problem (the first
NP-complete problem) (Lipton, 1995).

In this paper, we apply the DNA operations in the
Adleman–Lipton model to develop two DNA algo-
rithms. The main result of the two DNA algorithms
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shows that theset cover problemand theproblemof
exact cover by3-setscan be solved with biological op-
erations in the Adleman–Lipton model. Furthermore,
this work represents obvious evidence for the ability
of DNA-based computing to solve the NP-complete
problems.

The rest of this paper is organized as follows. In
Section 2, the Adleman–Lipton model is introduced
in detail and the comparison of the model with other
models is also given.Section 3introduces a DNA
algorithm for solving the set cover problem.Section
4 describes another DNA algorithms for solving the
problem of exact cover by 3-sets. InSection 5, the
experimental result of simulated DNA computing is
also given. Conclusions are drawn inSection 6.

2. DNA model of computation

In Section 2.1, the summary of DNA structure and
the Adleman–Lipton model is described in detail.
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In Section 2.2, the comparison of the Adleman–
Lipton model with other models is also introduced in
detail.

2.1. The Adleman–Lipton model

A DNA (deoxyribonucleic acid) is a polymer,
which is strung together from monomers called de-
oxyribonucleotides (Sinden, 1994; Paun et al., 1998).
Distinct nucleotides are detected only with their
bases. Those bases are, respectively, abbreviated as
A, G, C and T. Two strands of DNA can form (under
appropriate conditions) a double strand, if the respec-
tive bases are the Watson–Crick complements of each
other—A matches T and C matches G; also 3′ end
matches 5′ end. The length of a single stranded DNA
is the number of nucleotides comprising the single
strand. Thus, if a single stranded DNA includes 20 nu-
cleotides, it is called a 20 mer. The length of a double
stranded DNA (where each nucleotide is base paired)
is counted in the number of base pairs. Thus, if we
make a double stranded DNA from a single stranded
20 mer, then the length of the double stranded DNA
is 20 base pairs, also written as 20 bp (for more dis-
cussion of the relevant biological background, refer
to Sinden, 1994; Boneh et al., 1996; Paun et al.,
1998).

The DNA operations proposed by Adleman and
Lipton (Adleman, 1994, 1996; Lipton, 1995; Boneh
et al., 1996), are described below. These operations
will be used for figuring out solutions of the set cover
problem and the problem of exact cover by 3-sets in
this paper.

The Adleman–Lipton model: A (test) tube is a set
of molecules of DNA (i.e. a multi-set of finite strings
over the alphabet{A, C, G, T}). Given a tube, one
can perform the following operations:

1. Extract. Given a tubeP and a short single strand
of DNA, S, produce two tubes+(P, S) and−(P,
S), where+(P, S) is all of the molecules of DNA
in P which contain the strandSas a substrand and
−(P, S) is all of the molecules of DNA inP which
do not contain the short strandS.

2. Separate. Given a tubeP and lengthL for a double
strand of DNA, generate one tube∗(P, L), where
∗(P, L) is all of the molecules of DNA inP which
length is equal toL.

3. Merge. Given tubesP1 and P2, yield ∪(P1, P2),
where∪(P1, P2) = P1 ∪ P2. This operation is to
pour two tubes into one, with no change of the
individual strands.

4. Anneal. The operation is to represent all of
the operations that combine a test tube of sin-
gle stranded DNA with other prepared strands
and let them anneal together to form double
strands.

5. Detect. Given a tubeP, say ‘yes’ if P includes at
least one DNA molecule, and say ‘no’ if it contains
none.

6. Append. Given a tubeP and a short strand of DNA,
Z, the operation will append the short strand,Z,
onto the end of every strand in the tubeP.

7. Discard. Given a tubeP, the operation will discard
the tubeP.

8. Read. Given a tubeP, the operation is used to de-
scribe a single molecule, which is contained in the
tubeP. Even ifPcontains many different molecules
each encoding a different set of bases, the opera-
tion can give an explicit description of exactly one
of them.

2.2. Other related work and comparison with the
Adleman–Lipton model

Based on solution space ofsplint in the Adleman–
Lipton model, their methods (Narayanan and Zorbala,
1998; Chang and Guo, 2002a,b,c; Chang et al.,
2002) could be applied towards solving the trav-
eling salesman problem, the dominating-set prob-
lem, the vertex cover problem, the clique problem,
the independent-set problem, the three-dimensional
matching problem and the set-packing problem. Those
methods for the problems resolved have exponentially
increasing volumes of DNA and linearly increasing
time.

Bach et al. (1996)proposed ann1.89n vol-
ume, O(n2 + m2) time molecular algorithm for the
3-coloring problem and a 1.51n volume, O(n2m2)

time molecular algorithm for the independent set
problem, wheren andmare, subsequently, the number
of vertices and the number of edges in the problems
resolved.Fu (1997)presented a polynomial-time al-
gorithm with a 1.497n volume for the 3-SAT problem,
a polynomial-time algorithm with a 1.345n volume
for the 3-Coloring problem and a polynomial-time
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algorithm with a 1.229n volume for the independent
set. Though the size of those volumes (Fu, 1997; Bach
et al., 1996) is lower, constructing those volumes is
more difficult and the time complexity to the methods
is very higher.

Quyang et al. (1997)showed that restriction en-
zymes could be used to solve the NP-complete clique
problem. The maximum number of vertices that
they can process is limited to 27 because the size
of the pool with the size of the problem exponen-
tially increases (Quyang et al., 1997). Shin et al.
(1999) presented an encoding scheme for decreas-
ing error rate in hybridization. The method (Shin
et al., 1999) could be employed towards ascertain-
ing the traveling salesman problem for represent-
ing integer and real values with fixed-length codes.
Arita et al. (1997) and Morimoto et al. (1999),
proposed new molecular experimental techniques
and a solid-phase method to finding a Hamiltonian
path, respectively.Amos (1997) proposed parallel
filtering model for resolving the Hamiltonian path
problem, the sub-graph isomorphism problem, the
3-vertex-colourability problem, the clique problem
and the independent-set problem. Those methods
(Arita et al., 1997; Morimoto et al., 1999; Amos,
1997) have lower error rate in real molecular exper-
iments.

In the literatures (Reif et al., 2000; LaBean et al.,
2000, 2003), the methods for DNA-based computing
by self-assembly require to use DNA nanostructures,
called tiles, that have efficient chemistries, expressive
computational power, and convenient input and output
(I/O) mechanisms. DNA tiles have very lower error
rate in self-assembly.Garzon and Deaton (1999)in-
troduced a review of the most important advances in
molecular computing.

Adleman and his co-authors (Roweis et al., 1999)
proposed sticker-based model to enhance error rate
in hybridization in the Adleman–Lipton model.
Their model could be used for determining solu-
tions to an instance of the set cover problem.Perez-
Jimenez and Sancho-Caparrini (2001)employed
sticker-based model (Roweis et al., 1999) to resolve
knapsack problems. In our previous work,Chang
and Guo (2003)employed the sticker-based model
and the Adleman–Lipton model to dealing with the
dominating-set problem for decreasing error rate of
hybridization.

3. Using the Adleman–Lipton model to solve the
set cover problem

In Section 3.1, the summary of the set-cover prob-
lem is described. Applyingsplintsto constructing so-
lution space of DNA sequences for the set-cover prob-
lem is introduced inSection 3.2. In Section 3.3, one
DNA algorithm is proposed to resolving the set-cover
problem. In Section 3.4, the complexity of the pro-
posed algorithm is described.

3.1. Definition of the set-cover problem

Assume that a finite setS is {s1, . . . , sA}, wheresk

is one element inS for 1 ≤ k ≤ A. We denote that |S|,
which is equal toA, is the cardinality ofS. Suppose
that a collectionC is {C1, . . . , CB}, whereCi is a
subset inS for 1 ≤ i ≤ B. We denote that |C| is the
cardinality ofC and |C| is equal toB. Assume thatm is
a positive integer. Aset coverfor S is a sub-collection
C1 ⊆ C with |C1| ≤ m such that every element ofS
belongs to at least one member ofC1 (Cormen et al.,
2003; Garey and Johnson, 1979), where |C1| is the
cardinality ofC1. The set cover problem is to find a
minimum-sizeset cover forS. For example, a finite
set S is {1, 2, 3} and a collectionC is {{1}, {2},
{3}, {2, 3}} for S. Theminimum-sizeset cover forS
is {{1}, {2, 3}}. It is pointed out from (Garey and
Johnson, 1979) that finding a minimum-size set cover
is a NP-complete problem, so it can be formulated as
a “search” problem.

3.2. Using splint for constructing solution space of
DNA sequence for the set-cover problem

In the Adleman–Lipton model, their main idea is
to first generate solution space of DNA sequences for
those problems resolved. Then, basic biological op-
erations are used to remove illegal solution and find
legal solution from solution space. Assume that aB-
digit binary number represents all possible 2B choices
of subsets inS. Also suppose thatA one-digit binary
numbers representA elements inS.

If one ofB bits is set to 1, then it represents that the
corresponding subset appears inC1. If one of B bits
is set to 0, then it represents that the corresponding
subset is out ofC1. If the ith bit in B bits is set to 1 and
the correspondingith subset contains the elementsk

in S, then thekth one-digit binary number is appended
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onto the tail of those binary numbers, containing the
value 1 of theith bit. If the ith bit in B bits is set to 1
but the correspondingith subset does not contain the
elementsk in S, then thekth one-digit binary number
is not appended onto the tail of those binary numbers,
consisting of the value 1 of theith bit.

Suppose thatCi and Cj are, respectively, theith
subset and thejth subset inC1. Assume thatCi con-
tains the elementsk in S but Cj does not includesk.
From the statements above, theith bit and thejth bit
in B bits are both set 1. BecauseCi contains the ele-
mentsk, thekth one-digit binary number is appended
onto the tail ofB bits.

To implement this way, assume that aB-bit binary
numberX is represented as a binary numberx1, . . . ,
xB, where the value ofxi is 1 or 0 for 1≤ i ≤ B.
Similarly suppose thatA one-digit binary number are,
respectively,y1, y2, . . . , yA, where the value ofyk is 1
or 0 for 1≤ k ≤ A. A B-bit binary numberX includes
all possible 2B choices of subsets. Each choice of sub-
sets corresponds to a possible set cover. A bitxi is the
ith bit in X and it represents theith subset inC. A one-
digit binary numberyk represents the elementsk in S.
If the value ofxi is set to 1 and the corresponding sub-
set also consists of the elementsk, then the one-digit
binary numberyk is appended onto the tail of those
binary numbers, including the value 1 of theith bit.

Consider that a finite setS is {1, 2, 3} and a
collection C is {{1}, {2}, {3}, {2, 3}} for S. The
minimum-sizeset cover forS is {{1}, {2, 3}}. From
the implemented way above, the collectionC includes
four subsets, so an unsigned integerX with length of
four bits is used to represent all possible 24 choices of
subsets. Since the finite setScontains three elements,
three one-digit binary numbers,y1, y2 andy3, respec-
tively, represent the first element, the second element
and the third element. The minimum-size set cover for
Sconsists of{1} and{2, 3}. The subset{1} is the first
subset inC and the subset{2, 3} is the fourth subset
in C. Therefore, a four-digit binary number, 1001, is
applied to represent the first subset{1} and the fourth
subset{2, 3}. Because the first bit in 1001 is 1 and the
corresponding subset also includes the first element 1
in S, the one-digit binary numbery1 is appended onto
the tail of 1001. Hence, the solution currently be-
comes 10011. Similarly, since the fourth bit in 10011
is 1 and the corresponding subset also includes the
second element 2 and the third element 3 inS, the cor-

responding one-digit binary numbersy2 andy3 are, in
order, appended onto the tail of 10011. Therefore, the
complete solution is constructed and it is 1001111.

To represent all of the possible set cover,splint
(Adleman, 1994, 1996; Lipton, 1995; Boneh et al.,
1996) is used to construct solution space for that prob-
lem resolved. For the sake of convenience of presenta-
tion, assume thatx1

i denotes the value ofxi to be 1 and
x0
i defines the value ofxi to be zero. Similarly, suppose

thaty1
k denotes the value ofyk to be 1 andy0

k defines
the value ofyk to be zero. Twodistinct30 base value
sequences were designed forx1

i andy1
k . Similarly, two

distinct 20 base value sequences also were designed
for x0

i and y0
k . The first advantage for the design of

DNA code allows to separate DNA strands by length.
Theshorteststrand corresponds to a minimum-size set
cover. The second advantage for the design of DNA
code decreases number of tubes used. Splint’s tech-
nology in (Adleman, 1994, 1996; Lipton, 1995; Boneh
et al., 1996) is applied to construct solution space for
all of the possible set cover for anyA-element set.

3.3. The DNA algorithm for solving the set-cover
problem

The following DNA algorithm is proposed to solve
the set-cover problem.

Algorithm 1. Solving the set-cover problem.

(1) Input (P), where the tubeP is to encode all
possible 2B choices of subsets for a finite
setS = {s1, s2, . . . , sA} and a collection
C = {C1, . . . , CB} of subsets ofS.

(2) For i = 1 to B, whereB is the number of
elements inC.

(2a)PON = +(P, x1
i ) and

POFF = −(P, x1
i ).

(2b) Form = 1 to |Ci|, where |Ci| is the
number of elements inCi.

Assume that themth element inCi is
the jth element,sj, in S.

(2c) Q1 = +(PON, y1
j ) and

Q2 = −(PON, y1
j ).

(2d) Append (Q2, y1
j ).

(2e)PON = ∪(Q1, Q2).
End For

(2f) P = ∪(PON, POFF).



W.-L. Chang, M. Guo / BioSystems 72 (2003) 263–275 267

End For
(3) For j = 1 to A

(3a)P = +(P, y1
j ) andPBAD = −(P, y1

j ).
(3b) Discard the tubePBAD.

End For
(4) P = Anneal (P).
(5) P = ∗(P, l), wherel is equal to the shortest

length for double strands of DNA in the
tubeP.

(6) If (detect (P) = ‘yes’) then.
(6a) Read (P), where the operation

describes ‘sequence’ of a molecular
in the tubeP.

End If

Theorem 1. From those steps inAlgorithm 1, the set-
cover problem for any A-element set S and any B-
subset collection C can be resolved.

Proof. In Step 1, a test tube of DNA strands, that en-
code all 2B possible input bit sequencesx1 . . . xB, is
yielded. It is very obvious that the test tube includes
all possible 2B choices of subsets. Based on the def-
inition of set cover (Cormen et al., 2003; Garey and
Johnson, 1979), Step 2 will executeB times for rep-
resenting every element in each subset. Step 2a uses
“extraction” operation to form two test tubes:PON and
POFF. The first tubePON consists of all of the strands
that havexi = 1. That is to say that theith subset
appears in the tubePON. The second tubePOFF in-
cludes all of the strands that havexi = 0. That is
to say that theith subset does not appear in the tube
POFF. Step 2b will execute |Ci| times for representing
all of the elements in theith subset. Step 2c applies
“extraction” operation from the tubePON to generate
two tubes:Q1 andQ2. The first tubeQ1 includes all
of the strands that haveyj = 1. That is to say that
the jth element in theith subset appears in the tube
Q1. The second tubeQ2 contains all of the strands
that haveyj = 0. That is to say that thejth element
in the ith subset does not appear in the tubeQ2. It is
pointed out from the definition of set cover that Step
2d appends the short strand,y1

j , representing thejth
element in theith subset, onto the end of every strand
in the tubeQ2. Hence, the tubeQ2 now includes the
jth element in theith subset. Step 2e applies “merge”
to pour two tubesQ1 andQ2 into the tubePON. After
repeat to execute |Ci| times for Steps 2c to 2e, all of

the elements in theith subset are represented in the
tube POFF. Step 2f uses “merge” to pour two tubes
PON andPOFF into the tubeP. Therefore, the tubeP
contains every element of theith subset. It is very ob-
vious that after all of the steps in Step 2 are executed,
every element in each subset appears in the tubeP.
Also from the definition of set cover, Step 3 is applied
to check which subsets at least contain every element.
Because the number of elements isA, Step 3 will ex-
ecuteA times for finding correct choices of subsets.
Step 3a applies “extraction” operation to check which
subsets include thejth element and which subsets do
not include thejth element. Therefore, two tubes are
generated. Clearly, the second tubePBAD includes il-
legal choices of subsets and therefore the tubePBAD is
discarded in Step 3b. After repeat to executeA times
for Step 3a and Step 3b, all illegal choices of subsets
are discarded. Therefore, the remaining strands in the
tubeP represent legal choices of subsets and they exist
in the tube in the form of single stranded DNA. Step
4 is to combine the single strands in the tubeP with
other prepared strands and let them anneal together to
form double strands. Step 5 separates the strands in
the tubeP by length. Theshorteststrand corresponds
to a minimum-size set cover. �

Algorithm 1 can be used for determining a
minimum-size set cover to that a finite setS is {1, 2,
3} and a collectionC is {{1}, {2}, {3}, {2, 3}} for S.
From Step 1 ofAlgorithm 1, the tubeP is filled with
16 double strands of DNA, representing 16 possible
choices of subsets. The number of the subsets in the
collection C is four, so the number of execution to
Step 2 ofAlgorithm 1 is four times. According to the
first execution of Step 2a ofAlgorithm 1, two tubes
are generated. The first tube,PON, includes the num-
bers 1∗∗∗ (∗ can be either 1 or 0). The second tube,
POFF, contains the numbers 0∗∗∗. That is to say that
the first subset,{1}, appears inPON and out ofPOFF.
Because the number of the element in the first subset is
one, the number of execution to Step 2b ofAlgorithm
1 is one time. Due to the first execution of Step 2c of
Algorithm 1, two tubes are produced. The first tube,
Q1, contains the element, 1. The second tube,Q2,
does not include the element, 1. From the definition
of set cover, the tube,Q2, must consist of the element,
1. Therefore, Step 2d ofAlgorithm 1 appends the el-
ement, 1, onto the tubeQ2. According to definition of
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set cover, Step 2e ofAlgorithm 1 pours the two tubes,
Q1 andQ2, into the tubePON. After finish each op-
eration of Steps 2c to 2e, the only element in the first
subset,{1}, appears in the tubePON. From the defi-
nition of set cover, Step 2f pours the two tubes,PON
and POFF, into the tubeP. This is to say that every
element in the first subset is represented in the tubeP.

The same processing can be applied to deal with
other three subsets:{2}, {3}, {2, 3}. After the three
subsets are processed, every element in the three sub-
sets is represented in the tubeP. According to defini-
tion of set cover, finding a set cover forS is to check
whether every element inSappears at least in chosen
subsets. Because the number of the elements inS is
three, Step 3 ofAlgorithm 1 will be executed three
times. According to the first execution of Step 3a of
Algorithm 1, two tubes are produced. The first ele-
ment inS is 1 and it is included in the first tubeP. The
second tubePBAD does not contain the first element.
This is to imply that subsets in the second tubePBAD
are not legal choices. Therefore, Step 3b is applied to
discard the second tubePBAD. The similar process-
ing can be applied to deal with other two elements: 2
and 3. After every element is processed, the remain-
ing strands in the tubeP represent legal choices. So,
finding a minimum-size set cover forS is to search
theshortestlength for the strands in the tubeP. Steps
4 and 5 ofAlgorithm 1 are applied to find the answer
from the tubeP. Steps 6 and 6a ofAlgorithm 1 read
the answer from the tubeP. Thus, a minimum-size set
cover forS is {{1}, {2, 3}}. The following theorems
describe complexity ofAlgorithm 1.

Theorem 2. Assume that a finite set S is{s1, s2, . . . ,

sA} and a collection C is{C1, . . . , CB}. The set-cover
problem for the finite set S and the collection C can
be resolved withO(B ∗ A + A) biological operations
in the Adleman–Lipton model, where B is the number
of subsets in C and A is the number of elements in S.

Proof. Refer toTheorem 1. �

Theorem 3. Assume that a finite set S is{s1, s2, . . . ,

sA} and a collection C is{C1, . . . , CB}. The set-cover
problem for the finite set S and the collection C can be
resolved with constant tubes in the Adleman–Lipton
model.

Proof. Refer toTheorem 1. �

Theorem 4. Assume that a finite set S is{s1, s2, . . . ,

sA} and a collection C is{C1, . . . , CB}. The set-cover
problem for the finite set S and the collection C can
be resolved with2B strands in the Adleman–Lipton
model.

Proof. Refer toTheorem 1. �

Theorem 5. Assume that a finite set S is{s1, s2, . . . ,

sA} and a collection C is{C1, . . . , CB}. The set-cover
problem for the finite set S and the collection C can
be resolved with the longest strand, 30∗ (B+A) base
pairs, in the Adleman–Lipton model, where B is the
number of subsets in C and A is the number of elements
in S.

Proof. Refer toTheorem 1. �

4. Using the Adleman–Lipton model to solve the
problem of exact cover by 3-sets

Another famous NP-complete problem is 3-set ex-
act cover problem. In this section, we try to use DNA-
based computing technique to solve it. The notations,
DNA solution space and processing step are similar
with Section 3, in which we solved the set cover prob-
lem by DNA-based computing. So we directly give
Algorithm 2 in this section.

Assume that a finite setSis {s1, s2, . . . , s3q}, where
sk is one element inS for 1 ≤ k ≤ 3q. We denote that
|S|, which is equal to 3q, is the cardinality ofS. Assume
that C is a collection of 3-element subsets toS, and
|C| is the cardinality ofC. Suppose thatC is equal to
{C1, . . . , CB}, where each subset,Ci, contains three
elements inS for 1 ≤ i ≤ B. An exact coverfor S is
a sub-collectionC1 ⊆ C such that every element ofS
occurs in exactly one member ofC1 (Cormen et al.,
2003; Garey and Johnson, 1979). The problem of exact
cover by 3-sets is to find aminimum-sizeexact cover
for Sand has been proved to be NP-complete problem
(Garey and Johnson, 1979). For example, a finite setS
is {1, 2, 3, 4, 5, 6} and a collectionC is {{1, 2, 3}, {3,
4, 5}, {4, 5, 6}} for S. The setSand the collectionC
denote such a problem. Theminimum-sizeexact cover
for Sis {{1, 2, 3}, {4, 5, 6}}. We design the following
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DNA algorithm towards resolving the problem. The
similar notations and the similar processing steps as
Algorithm 1 will be used inAlgorithm 2.

Algorithm 2. Solving the problem of exact cover by
3-sets.
(1) Input (P), where the tubeP is generated by

the same method inSection 3.2. The tube
P is to encode all possible 2B choices of
subsets for a finite setS = {s1, s2, . . . , s3q}
and a collectionC = {C1, . . . , CB} of
3-element subsets ofS.

(2) For i = 1 to B, whereB is the number of
elements inC.

(2a)PON = +(P, x1
i ) andPOFF = −(P, x1

i ).
(2b) Form = 1 to |Ci|, where |Ci| is the

number of elements inCi.
Assume that themth element inCi is

the jth element,sj, in S.
(2c) PBAD = +(PON, y1

j ) and

PON = −(PON, y1
j ).

(2d) Discard the tubePBAD.
(2e) Append (PON, y1

j ).
End For

(2f) P = ∪(PON, POFF).
End For
(3) For j = 1 to 3q

(3a)P = +(P, y1
j ) andPBAD = −(P, y1

j ).
(3b) Discard the tubePBAD.

End For
(4) P = Anneal (P).
(5) P = ∗(P, l), wherel is equal to the shortest

length for double strands of DNA in the
tubeP.

(6) If (detect (P) = ‘yes’) then.
(6a) Read (P), where the operation

describes ‘sequence’ of a molecular
in the tubeP.

End If

Theorem 6. From those steps inAlgorithm 2, the
problem of exact cover by3-sets for any3∗q-element
set and any B-subset collection C can be resolved.

Proof. In Step 1, a test tube of DNA strands, that en-
code all possible 2B input bit sequencesx1 . . . xB, is
generated. It is very clear that the test tube includes all

possible 2B choices of 3-element subsets. It is pointed
out from the definition of exact cover by 3-sets (Garey
and Johnson, 1979) that Step 2 will executeB times
for representing every element in each subset. Step
2a uses “extraction” operation to form two test tubes:
PON andPOFF. The first tubePON consists of all of
the strands that havexi = 1. That is to say that the
ith subset appears in the tubePON. The second tube
POFF includes all of the strands that havexi = 0. That
is to say that theith subset does not occur in the tube
POFF. From the definition of exact cover by 3-sets, the
number of elements in each subset inC is all three.
Therefore, Step 2b will execute three times for repre-
senting all of the elements in theith subset. Step 2c
applies “extraction” operation to generate two tubes:
PBAD and PON. The first tubePBAD includes all of
the strands that haveyj = 1. That is to say that the
jth element in theith subset repeatedly occurs in the
tubePBAD. From the definition of exact cover by 3-
sets (Garey and Johnson, 1979), the first tubePBAD
contains illegal choices of subsets. Hence, the first
tube PBAD is discarded in Step 2d. The second tube
PON includes all of the strands that haveyj = 0. That
is to say that thejth element in theith subset does
not appear in the tubePON. Obviously, from the def-
inition of exact cover by 3-sets (Garey and Johnson,
1979) that Step 2e appends the short strand,y1

j , repre-
senting thejth element in theith subset, onto the end
of every strand in the tubePON. Hence, the tubePON
now includes thejth element in theith subset. After
repeat to execute three times for Steps 2c to 2e, all of
the elements in theith subset are represented in the
tubePON. Step 2f uses “merge” operation to pour two
tubesPON and POFF into the tubeP. Therefore, the
tubeP contains every element of theith subset. It is
very clear that after all of the steps in Step 2 are ex-
ecuted, every element in each subset appears once in
the tubeP. Step 3 is applied to check which subsets
exactly contain every element. Because the number
of elements inS is 3q, Step 3 will execute 3q times
for finding correct choices of subsets. Step 3a applies
“extraction” operation to check which subsets include
thejth element and which subsets do not include thejth
element. Therefore, two tubes are generated. From the
definition of exact cover by 3-sets (Garey and Johnson,
1979), the second tubePBAD includes illegal choices
of subsets and therefore the tubePBAD is discarded
in Step 3b. After repeat to execute 3q times for Step
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3a and Step 3b, all illegal choices of subsets are dis-
carded. Therefore, the remaining strands in the tube
P represent legal choices of subsets and they exist in
the tube in the form of single stranded DNA. Step 4
is to combine the single strands in the tubeP with
other prepared strands and let them anneal together to
form double strands. Step 5 separates the strands in
the tubeP by length. Theshorteststrand corresponds
to a minimum-size exact cover. �

Algorithm 2 can be used for determining a
minimum-size set cover to that a finite setS is {1,
2, 3, 4, 5, 6} and a collectionC is {{1, 2, 3}, {3, 4,
5}, {4, 5, 6}} for S. From Step 1 ofAlgorithm 2, the
tube P is filled with eight double strands of DNA,
representing eight possible choices of subsets. The
number of the subsets in the collectionC is three, so
the number of execution to Step 2 ofAlgorithm 2 is
three times. According to the first execution of Step
2a of Algorithm 2, two tubes are generated. The first
tube,PON, includes the numbers 1∗∗ (∗ can be either
1 or 0). The second tube,POFF, contains the numbers
0∗∗. That is to say that the first subset,{1, 2, 3},
appears inPON and out ofPOFF. Because the number
of the element in the first subset is three, the number
of execution to Step 2b ofAlgorithm 2 is three times.
Due to the first execution of Step 2c ofAlgorithm 2,
two tubes are produced. The first tube,PBAD, contains
the element, 1. According to definition of exact cover
by 3-sets (Garey and Johnson, 1979), subsets in the
tube PBAD are illegal choices of subsets. Therefore,
the tubePBAD is discarded in Step 2d. The second
tube,PON, does not include the element, 1. From the
definition of exact set by 3-sets (Garey and Johnson,
1979), the tube,PON, must consist of the element,
1. Therefore, Step 2e ofAlgorithm 2 appends the
element, 1, onto the tubePON. After finish each oper-
ation of Steps 2c to 2e, the three elements in the first
subset,{1, 2, 3}, appears once in the tubePON. Also
From the definition of exact cover by 3-sets (Garey
and Johnson, 1979), Step 2f pours the two tubes,PON
and POFF, into the tubeP. This is to say that every
element in the first subset is represented in the tubeP.

The similar processing can be applied to deal with
other two subsets:{3, 4, 5}, {4, 5, 6}. After the two
subsets are processed, every element in the two sub-
sets is represented in the tubeP. According to defi-
nition of exact cover by 3-sets (Garey and Johnson,

1979), finding an exact cover forSis to check whether
every element inSappears exactly in chosen subsets.
Because the number of the elements inS is six, Step 3
of Algorithm 2 will be executed six times. According
to the first execution of Step 3a ofAlgorithm 2, two
tubes are produced. The first element inS is 1 and it
is included in the first tubeP. The second tubePBAD
does not contain the first element. This is to imply that
subsets in the second tubePBAD are not legal choices.
Therefore, Step 3b are applied to discard the second
tubePBAD. The similar processing can be applied to
deal with other five elements: 2, 3, 4, 5 and 6. Af-
ter every element is processed, the remaining strands
in the tubeP represent legal choices. So, finding a
minimum-size exact cover forS is to search theshort-
est length for the strands in the tubeP. Steps 4 and
5 of Algorithm 2 are applied to find the answer from
the tubeP. Steps 6 and 6a ofAlgorithm 2 read the
answer from the tubeP. Thus, a minimum-size exact
cover for S is {{1, 2, 3}, {4, 5, 6}}. The following
theorems describe the complexity ofAlgorithm 2.

Theorem 7. Assume that a finite set S is{s1, s2, . . . ,

s3q} and a collection C is{C1, . . . , CB}, where each
subset in C includes only three elements in S. The
problem of exact cover by3-sets for the finite set S can
be resolved withO(3∗B+3∗q) biological operations
in the Adleman–Lipton model, where B is the number
of subsets in C and3∗q is the number of elements in S.

Proof. Refer toTheorem 6. �

Theorem 8. Assume that a finite set S is{s1, s2, . . . ,

s3q} and a collection C is{C1, . . . , CB}, where each
subset in C includes only three elements in S. The
problem of exact cover by3-sets for the finite set S can
be resolved with constant tubes in the Adleman–Lipton
model.

Proof. Refer toTheorem 6. �

Theorem 9. Assume that a finite set S is{s1, s2, . . . ,

s3q} and a collection C is{C1, . . . , CB}, where each
subset in C includes only three elements in S. The
problem of exact cover by3-sets for the finite set S can
be resolved with2B strands in the Adleman–Lipton
model, where B is the number of subsets in C.
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Proof. Refer toTheorem 6. �

Theorem 10. Assume that a finite set S is{s1, s2, . . . ,

s3q} and a collection C is{C1, . . . , CB}, where each
subset in C includes only three elements in S. The
problem of exact cover by3-sets for the finite set S can
be resolved with the longest strand, 30∗ (B + 3 ∗ q)

base pairs, in the Adleman–Lipton model, where B is
the number of subsets in C and3∗ q is the number of
elements in S.

Proof. Refer toTheorem 6. �

5. Experimental results of simulated DNA
computing

We developed a tool for simulating biological op-
erations in the Adleman–Lipton model inSection 2.
In simulations, the rule of DNA code design is that of
vertex color. In simulations, it is suggested that four
bases{A, C, G, T} represent four distinct colors. The
same base (color) do not construct two adjacency nu-
cleotides in single-stranded DNA. To avoid common
nucleotides in different strands, if a color sequence is
applied to produce a new single-stranded DNA, then
it could not be used to generate other new strands. In
simulations, due to the rule of DNA code design, sin-
gle strand of DNA is generated for every element in
a finite set and every subset in a collection of the fi-
nite set. Similarly, from the definition of splint, single
stranded DNA to each splint is also yielded. Accord-
ing to the rule of DNA code design, single strand of
DNA is yielded for a 3′ → 5′ sequence complemen-
tary to the first half of the initial bit (its value was
zero) and a 3′ → 5′ sequence complementary to the
first half of the initial bit (its value is 1). Similarly,
due to the rule of DNA code design, single strand of
DNA is produced to a 3′ → 5′ sequence complemen-
tary to the last half of the last bit (its value is 0) and
a 3′ → 5′ sequence complementary to the last half of
the last bit (its value is 1).

Consider that a finite setS is {1, 2} and a col-
lection C is {{1}, {2}} for the finite setS. The first
element and the second element are, respectively, 1
and 2 forS. The first subset and the second subset
are, subsequently,{1} and{2} for C. From the rule
above, single stranded DNA for the every subset and

Table 1
DNA sequences chosen to represent the subsets in the collectionC

Subset 5′ → 3′ DNA sequence

x0
1 GATCAGCACTGCTAGTCACA

x1
1 ATCGACGCATCGCTCACGTGTGCGTGCTGC

x0
2 TAGTGTAGCGAGATATGTCT

x1
2 GCGATGTCGCTCGTGCAGCGAGACGAGACA

Table 2
DNA sequences chosen to represent the elements in the finite setS

Element 5′ → 3′ DNA sequence

y1
1 GTATCGATCAGTGATGTGACATAGAGTAGA

y1
2 ACTGTACGAGTGTCTATAGACTCAGTGCAC

every element is shown inTables 1 and 2, respec-
tively. Similarly, single stranded DNA to each splint
is also shown inTable 3. A 3′ → 5′ sequence com-
plementary to the first half of the initial bit (x0

1) and a
3′ → 5′ sequence complementary to the first half of
the initial bit (x1

1) are, respectively, CTAGTCGTGA
and TAGCTGCGTAGCGAG. Similarly, a 3′ → 5′ se-
quence complementary to the last half of the last bit
(x0

2) and a 3′ → 5′ sequence complementary to the
last half of the last bit (x1

2) are TCTATACAGA and
GTCGCTCTGCTCTGT, respectively.

In simulations, many copies of DNA sequences,
representing every element and every subset, are gen-
erated. Similarly, many copies of a 3′ → 5′ sequence
complementary to the first half of the initial bit (its
value is 0) and many copies of a 3′ → 5′ sequence
complementary to the first half of the initial bit (its
value is 1) are also yielded. Next, in simulations, many
copies of a 3′ → 5′ sequence complementary to the
last half of the last bit (its value is 0) and many copies
of a 3′ → 5′ sequence complementary to the last half
of the last bit (its value is 1) are also produced. From

Table 3
DNA sequences chosen were regarded as the splint for adjacency
bits in Table 1

Splint 3′ → 5′ DNA sequence

(x0
1, x

0
2) CGATCAGTGTATCACATCGC

(x1
1, x

0
2) TGCACACGCACGACGATCACATCGC

(x0
1, x

1
2) CGATCAGTGTCGCTACAGCGAGCAC

(x1
1, x

1
2) TGCACACGCACGACGCGCTACAGCGAGCAC
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Table 4
DNA sequences chosen to represent all possible choices of subsets

5′-GATCAGCACTGCTAGTCACATAGTGTAGCGAGATATGTCT-3′
3′-CTAGTCGTGACGATCAGTGTATCACATCGCTCTATACAGA-5′

5′-ATCGACGCATCGCTCACGTGTGCGTGCTGCTAGTGTAGCGAGATATGTCT-3′
3′-TAGCTGCGTAGCGAGTGCACACGCACGACGATCACATCGCTCTATACAGA-5′

5′-GATCAGCACTGCTAGTCACAGCGATGTCGCTCGTGCAGCGAGACGAGACA-3′
3′-CTAGTCGTGACGATCAGTGTCGCTACAGCGAGCACGTCGCTCTGCTCTGT-5′

5′-ATCGACGCATCGCTCACGTGTGCGTGCTGCGCGATGTCGCTCGTGCAGCGAGACGAGACA-3′
3′-TAGCTGCGTAGCGAGTGCACACGCACGACGCGCTACAGCGAGCACGTCGCTCTGCTCTGT-5′

the rule of DNA code design, the DNA sequences sat-
isfy the constraint that there is no runs of more than 4
A’s, 4 T’s, 4 C’s or 4 G’s (Roweis et al., 1999; Braich
et al., 2003). This indicates that long homopolymer
tracts may have unusual secondary structure and the
melting temperatures of probe-library hybrids will be
more uniform if none of the probe-library hybrids in-
volves long homopolymer tracts. The DNA sequences
from the rule of DNA code design also satisfy the
constraint that every probe sequence has at least four
mismatches with all continuous 15 base alignment of
any library sequence (except for with its matching
value sequence) (Roweis et al., 1999; Braich et al.,
2003). This implies that the constraint ensures that
probes bind only weakly where they are not intended
to bind. Due to the rule of DNA code design, the
DNA sequences satisfy the constraint that every 15
base subsequence of a library sequence has at least
four mismatches with all continuous 15 base align-
ment of itself or any other library sequence (Roweis
et al., 1999; Braich et al., 2003). This indicates that
the constraint ensures that library strands have a low
affinity for themselves. From (Roweis et al., 1999;
Braich et al., 2003), errors in the separation of the li-
brary strands are errors in the computation. The de-
sign is to ensure that the DNA sequences have little
secondary structure that might inhibit intended probe-
library hybridization. Similarly, the design is also to
exclude the DNA sequences that may encourage un-
intended probe-library hybridization.

Therefore, the hybridization process and the ligation
process could be emulated with lower rate of errors.
The tube forAlgorithm 1 is yielded in simulations.
Thus, forSandC a test tube is shown inTable 4.

In simulations ofAlgorithm 1, a file is applied to
store sequences of DNA. Step 1 ofAlgorithm 1 in

simulations is to read the sequences from the file and
the sequences are stored in arrays. It is very clear from
the definition of set cover that the number of simula-
tion for Step 2 is the number of subsets in a collection.
In Step 2a of the first simulation, two distinct arrays
are employed to store the result generated by Step 2a.
According to definition of set cover, the number of
simulation for Step 2b is the number of elements in a
subset in a collection. In Steps 2c, 2d and 2e of sim-
ulation, thejth element in theith subset is appended
onto every strand and merged in arrays. Repeat simu-
lation of Steps 2c, 2d and 2e of until all of the elements
in the ith subset are processed. Therefore, the strands
generated by Steps 2c to 2e contain all of the elements
in the ith subset and are stored in arrays. Because all
of the elements in theith subset are processed, hence,
the choices of subsets containing the elements and the
choices of subset not including the elements are both
merged in arrays in Step 2f of simulation. The same
processing is applied to deal with other subsets. Thus,
after every simulation for each subset is finished, all
possible choices of subsets consisting of the elements
are generated and stored in arrays. So, the result forS
andC is shown inTable 5.

It is very obvious from the definition of set cover
that the number of simulation for Step 3 ofAlgorithm
1 is the number of elements. Therefore, two distinct
arrays are yielded in Step 3a of simulation. One array
including legal choices of subsets and another contain-
ing illegal choices of subsets are yielded. The illegal
array is deleted in Step 3b of simulation. After every
element is checked, the array consisting of every el-
ement is produced in Steps 3a and 3b of simulation.
Hence, the result is shown inTable 6.

The legal choices of subsets in the array appear in
the form of single stranded DNA. Therefore, the aim
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Table 5
DNA sequences chosen to represent all possible choices of subsets consisting of the elements

5′-GATCAGCACTGCTAGTCACATAGTGTAGCGAGATATGTCT-3′
3′-CTAGTCGTGACGATCAGTGTATCACATCGCTCTATACAGA-5′

5′-ATCGACGCATCGCTCACGTGTGCGTGCTGCTAGTGTAGCGAGATATGTCTGTATCGATCAGTGATGTGACATAGAGTAGA-3′
3′-TAGCTGCGTAGCGAGTGCACACGCACGACGATCACATCGCTCTATACAGACATAGCTAGTCACTACACTGTATCTCATCT-5′

5′-GATCAGCACTGCTAGTCACAGCGATGTCGCTCGTGCAGCGAGACGAGACAACTGTACGAGTGTCTATAGACTCAGTGCAC-3′
3′-CTAGTCGTGACGATCAGTGTCGCTACAGCGAGCACGTCGCTCTGCTCTGTTGACATGCTCACAGAGATCTGAGTCACGTG-5′

5′-ATCGACGCATCGCTCACGTGTGCGTGCTGCGCGATGTCGCTCGTGCAGCGAGACGAGACAGTATCGATCAGTGATGT-
GACATAGAGTAGAACTGTACGAGTGTCTATAGACTCAGTGCAC-3′

3′-TAGCTGCGTAGCGAGTGCACACGCACGACGCGCTACAGCGAGCACGTCGCTCTGCTCTGTCATAGCTAGTCAC-
TACACTGTATCTCATCTTGACATGCTCACAGAGATCTGAGTCACGTG−5′

Table 6
Single stranded DNA sequence chosen to represent the only legal choice

5′-ATCGACGCATCGCTCACGTGTGCGTGCTGCGCGATGTCGCTCGTGCAGCGAGACGAGACAGTATCGATCAGT-
GATGTGACATAGAGTAGAACTGTACGAGTGTCTATAGACTCAGTGCAC-3′

Table 7
Double stranded DNA sequence chosen to represent the only legal choice

5′-ATCGACGCATCGCTCACGTGTGCGTGCTGCGCGATGTCGCTCGTGCAGCGAGACGAGACAGTATCGATCAGT-
GATGTGACATAGAGTAGAACTGTACGAGTGTCTATAGACTCAGTGCAC-3′

3′-TAGCTGCGTAGCGAGTGCACACGCACGACGCGCTACAGCGAGCACGTCGCTCTGC-
TCTGTCATAGCTAGTCACTACACTGTATCTCATCTTGACATGCTCACAGAGATCTGAGTCACGTG-5′

Table 8
DNA sequence chosen to represent the only minimum-size set cover

5′-ATCGACGCATCGCTCACGTGTGCGTGCTGCGCGATGTCGCTCGTGCAGCGAGACGAGACAGTATCGATCAGTGATGT-
GACATAGAGTAGAACTGTACGAGTGTCTATAGACTCAGTGCAC-3′

3′-TAGCTGCGTAGCGAGTGCACACGCACGACGCGCTACAGCGAGCACGTCGCTCTGCTCTGTCATAGCTAGTCACTACACTGTA-
TCTCATCTTGACATGCTCACAGAGATCTGAGTCACGTG-5′

of Step 4 is to form double stranded DNA to legal so-
lutions. So, this process is simulated by explicitly pro-
ducing the corresponding complementary sequences
for the single strands of DNA. Hence, the result is
shown inTable 7.

In Step 5, theshortestsequence from the array
consisting of legal choices of subsets is chosen as a
minimum-size set cover. The shortest sequence is a
minimum-size set cover because in the proposed en-
coding scheme the code length of every subset or ev-
ery element is set to 30 if the corresponding value is
equal to one. Therefore, this process is simulated by
explicitly finding the shortest sequence from the array
consisting of legal choices of subsets. Therefore, the
result is shown inTable 8.

The goal of Step 6 is to check whether there are the
shortest sequences. Thus, this process is simulated by

explicitly examining whether the array is empty. This
process generates a resulted value ‘yes’, if the array is
non-empty. A resulted value, ‘no’, is generated by this
process if the array is empty. If this process generates
a resulted value ‘yes’, then in Step 6a of simulation,
a legal choice of subsets from the array is selected.
Therefore, the minimum-size set cover forSandC is
{{1}, {2}}. Simulations ofAlgorithm 2 are similar to
those ofAlgorithm 1.

6. Conclusions

Because the size of solution space in the Adleman–
Lipton model is exponential, hence, this limits that we
can resolve the size of the NP-complete problem. The
main result of this paper shows that the Adleman–
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Lipton model can be applied towards developing DNA
algorithms to resolving the set cover problem and the
problem of exact cover by 3-sets. Furthermore, this
work represents clear evidence for the ability of DNA-
based computing to solve NP-complete problems.

Famous Cook’s Theorem (Cormen et al., 2003;
Garey and Johnson, 1979) is that if one algorithm for
one NP-complete problem will be developed, then
other problems will be solved by means of reduction
to that problem. This theorem has been proved to be
correct for electronic digit computers. On the other
hand, Lipton proposed the DNA algorithm for solving
the 3-SAT problem (the first NP-Complete prob-
lem) (Lipton, 1995). The three-dimensional matching
problem can be reduced to the 3-SAT problem (Garey
and Johnson, 1979). But Lipton’s algorithm cannot
be used to resolving the three-dimensional matching
problem. We proposed the DNA algorithm for dealing
with the three-dimensional matching problem (Chang
and Guo, 2002c), which is different from Lipton’s 3-
SAT DNA algorithm. Another famous NP-complete
problem is the set-partition problem. The set-partition
problem can be reduced to the three-dimensional
matching problem (Garey and Johnson, 1979). But
our algorithm cannot be applied to solving the set-
partition problem. The set-partition problem is still
not solved. So, we are not sure whether Cook’s The-
orem is also correct formolecularcomputers and we
are also not sure whether molecular computing can be
applied to dealing with every NP-complete problem.

It is indicated from (Garey and Johnson, 1979)
that there are lots of NP-complete problems contain-
ing mathematical operations. It is very difficult from
(Adleman, 1994) that using molecular computing
finishes mathematical operations. This is to say that
solving those NP-complete problems with mathemati-
cal operations is open questions and is also our future
researching directions.
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