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Answers to Exercises 
 

Chapter 1 

 

1.1 : 

The internal mechanism of a digital computer can simply be denoted as a black 

box which is shown in Figure 1.1. From Figure 1.1, a digital computer can be thought 

of as a data processor. A digital program also can be thought of as a set of instructions 

written in a digital computer language that indicates the data processor what to do 

with the input data. The output data depend on the combination of two factors: the 

input data and the digital program. With the same digital program, you can produce 

different outputs if you change the input. Similarly, with the same input data, you can 

generate different outputs if you change the digital program. 

 

 

                 A digital program 

                                

                                   

                                                                

                         

Input Data                                              Output Data 

Figure 1.1: Computational model of a digital computer. 

 

1.2 : 

The internal mechanism of bio-molecular computer can simply be defined as 

another black box which is shown in Figure 1.2, where some robotics or electronic 

computing is used to carry out automatically the majority of the operations with the 

test tubes without the intervention of the user. From Figure 1.2, input data can be 

encoded in test tubes. Each encoded data in test tubes can be thought of a data 

processor. A bio-molecular program also can be thought of as a set of biological 

operations written in a high-level natural language that tells each data processor what 

to do. The output data also are based on the combination of two factors: the input data 

and the bio-molecular program. With the same bio-molecular program, you can 

produce different outputs if you change the input. Similarly, with the same input data, 

you can generate different outputs if you change the bio-molecular program. Finally, 

if the input data and the bio-molecular program remain the same, the output should be 
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the same. 

 

 

                 A bio-molecular program                        

Input data in a tube  

                                                                

                                         Output data in a tube        

                                                                   

          …                 

Figure 1.2: Some robotics or electronic computing in an advanced computational 

model of bio-molecular computer carries out automatically the majority of the 

operations with the test tubes without the intervention of the user. 

 

1.3 : 

A digital program in a digital computer can be thought of as a set of instructions 

written in a digital computer language that indicates the data processor what to do 

with the input data. A bio-molecular program in bio-molecular computer can be 

thought of as a set of biological operations written in a high-level natural language 

that tells each data processor what to do. 

 

1.4 : 

Memory is the main storage area in the inside of a digital computer. It is used to 

store data and digital programs during processing. This implies that both the data and 

programs should have the same format because they are stored in memory. They are, 

in fact, stored as binary patterns (a sequence of 0s and 1s) in memory. 

 

Tubes in bio-molecular computer are devices in which input data and output data 

are stored and each biological operation is completed. The function of tubes in 

bio-molecular computer are actually the same that of memory and input/output 

devices in a digital computer. 

 

1.5 : 
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An input/output subsystem in a digital computer is an auxiliary storage area and is 

also the communication between the digital computer and the outside world. Inputs 

are data received by a digital computer, and outputs are data sent from it. For instance, 

a keyboard, or a mouse is an input device for a computer, while a monitor or a printer 

is an output device for the computer. A hard disk or a tape is simultaneously input and 

output devices. 

 

Input data that are encoded are stored in tubes in bio-molecular computer. Output 

data that are produced by a bio-molecular program are also stored in tubes. Tubes are 

the only storage device in bio-molecular computer. 

 

1.6 : 

A bit is the smallest unit of data that can be stored in a digital computer and 

bio-molecular computer; it is either 0 or 1. To a digital computer, bit 0 is encoded by 

the off state of a switch and bit 1 is encoded by the on state of the switch. For 

bio-molecular computer, different sequences of bio-molecules encode, respectively, 

bit 0 and bit 1.  

 

1.7 : 

The so-called von Neumann architecture is a model for a computing machine that 

uses a single storage structure to hold both the set of instructions on how to perform 

the computation and the data required or generated by the computation. A digital 

computer system of the von Neumann architecture is shown in Figure 1.3. 

 

From Figure 1.3, the input subsystem accepts input data and the digital program 

from outside the digital computer and the output subsystem sends the result of 

processing to the outside. Memory is the main storage area in the inside of the digital 

computer system. The arithmetic logic unit is the core of the digital computer system 

and is applied to perform calculation and logical operations. The control unit is 

employed to control the operations of the memory, ALU, and the input/output 

subsystem. 

 

A digital program in the von Neumann architecture is made of a finite number of 

instructions. In the architecture, the control unit fetches one instruction from memory, 

interprets it, and then excites it. In other words, the instructions in the digital program 

are executed one after another. Of course, one instruction may request the control unit 

to jump to some previous or following one instruction, but this does not mean that the 

instructions are not executed sequentially. 
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A Digital Program 
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Figure 1.3: A digital computer system of the von Neumann architecture has four 

subsystems. 

 

1.8: 

In bio-molecular computer, data also are represented as binary patterns (a 

sequence of 0s and 1s). Those binary patterns are encoded by sequences of 

bio-molecules and are stored in a tube. This is to say that a tube is the only storage 

area in bio-molecular computer and is also the memory and the input/output 

subsystem of the von Neumann architecture. Bio-molecular programs are made of a 

set of bio-molecular operations and are used to perform calculation and logical 

operations. So, bio-molecular programs can be regarded as the arithmetic logic unit of 

the von Neumann architecture. A robot is used to automatically control the operations 

of a tube (the memory and the input/output subsystem) and bio-molecular programs 

(the ALU). This implies that the robot can be regarded as the control unit of the von 

Neumann architecture. 

 

In Figure 1.4, bio-molecular computer of the von Neumann architecture is shown. 

From Figure 1.4, a robot fetches one bio-molecular operation from a bio-molecular 

program (the ALU), and then carries out the bio-molecular operation for those data 

stored in the tube (the memory). In other words, the bio-molecular operations are 

Input/Output 

Arithmetic Logic 

Unit 

Control 

Unit 

 

 

Memory 

 

 

 



 5 

executed one after another. Certainly, one bio-molecular operation perhaps requests 

the robot to perform some previous or following bio-molecular operations. 
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Figure 1.4: The bio-molecular computer of the von Neumann architecture. 
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Chapter 2 

 

2.1:  

(a) In a digital computer, the on state and the off state of a switch subsequently 

encode the values 1 and 0 of a bit. 

 

(b) In bio-molecular computer, different sequences of bio-molecules encode the 

values 1 and 0 of a bit. This indicates that two different sequences of 

bio-molecules can be regarded as the on state and the off state of a switch in a 

digital computer, where the on state is regarded as 1 and the off state is regarded 

as 0. 

 

2.2:  

(a) In a digital computer, a bit pattern that is a string of bits is also a combination of 

0s and 1s. The values 1 and 0 of each bit in a bit pattern are encoded by the on 

state and the off state of a switch.  

 

(b) In bio-molecular computer, a bit pattern is a combination of 0s and 1s. If a bit 

pattern that is made of n bits can be stored in a tube in bio-molecular computer, 

then (2  n) different sequences of bio-molecules are needed. 

 

2.3: We would like to give many thanks to Louie Lu who wrote the following C 

programs. 

 

#include <stdio.h> 

#define MAX_LEN 100 

char * hexadecimal-number-to-its-corresponding-binary-number(char *s)  

{   int i, c, dec = 0, dec_tmp; 

    static char b[MAX_LEN]; 

    while ((c = *s++) != NULL)  

{     dec = dec * 16 + (isdigit(c) ? c - '0' : c - 'A' + 10);    } 

    i = 0; 

    dec_tmp = dec; 

    while (dec_tmp)  

{  i++; 

       dec_tmp /= 2; 

    } 



 7 

    while (dec)  

{   b[--i] = dec % 2 + '0'; 

        dec /= 2; 

     } 

     return b; 

} 

 

int main()  

{ char s[MAX_LEN]; 

  printf(“Please input a hexadecimal number: “); 

  scanf("%s", s); 

  printf("The corresponding binary number is: %s", 

hexadecimal-number-to-its-corresponding-binary-number (s)); 

} 

 

2.4: We would like to give many thanks to Louie Lu who wrote the following C 

programs. 

 

#include <stdio.h> 

#define MAX_LEN 100 

char * binary-number-to-its-corresponding-hexadecimal-number(char *s)  

{   int c, j, i=0, dec=0; 

    static char h[MAX_LEN]; 

    static char hex[] = {"0123456789ABCDEF"}; 

    while ((c = *s++) != NULL)  

{   dec <<= 1; 

        if (c == '1') dec += 1; 

     } 

    while (dec)  

{    h[i++] = hex[dec % 16]; 

        dec /= 16; 

    } 

    for (j=0; j < i / 2; ++j)  

{   c = h[j]; 

        h[j] = h[i - j - 1]; 

        h[i - j - 1] = c; 

    } 

    return h; 
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} 

 

int main()  

{   char s[MAX_LEN]; 

    printf(“Please input a binary number: “); 

    scanf("%s", s); 

    printf("The corresponding hexadecimal number is : %s", 

binary-number-to-its-corresponding-hexadecimal-number(s)); 

} 

 

2.5: We would like to give many thanks to Shang-De Jlang who wrote the following 

C programs. 

 

#include <stdio.h> 

#include <stdlib.h> 

int main() 

{   char oct[1000]; 

long int i = 0; 

    printf("Please input an octal number: "); 

    scanf("%s",&oct); 

    while(oct[i]) 

{ 

        switch(oct[i]) 

{     case '0': printf("000"); break; 

             case '1': printf("001"); break; 

             case '2': printf("010"); break; 

             case '3': printf("011"); break; 

             case '4': printf("100"); break; 

             case '5': printf("101"); break; 

             case '6': printf("110"); break; 

             case '7': printf("111"); break; 

             default: printf("\n An invalid octal number %c",oct[i]); return 0; 

        } 

        i++; 

     } 

    system("pause"); 

    return 0; 

} 
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2.6: We would like to give many thanks to Shang-De Jlang who wrote the following 

C programs. 

 

#include <stdio.h> 

#include <stdlib.h> 

long int binarynumber, octalnumber = 0, j = 1, remainder; 

int main() 

{   printf("Please input a binary number: "); 

    scanf("%ld",&binarynumber); 

    while(binarynumber != 0) 

{  remainder = binarynumber % 10; 

       octalnumber = octalnumber + remainder * j; 

       j = j * 2; 

       binarynumber = binarynumber / 10; 

} 

    printf("The corresponding octal value is: %lo \n", octalnumber); 

    system("pause"); 

    return 0; 

} 
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Chapter 3 

 

3.1: 

It is assumed that a binary number of a bit, r, is used to encode the first input to 

the NOT operation of two bits as shown in Table 3.12.1. Also it is supposed that a 

binary number of a bit r  is employed to encode the first output to the NOT 

operation. For the sake of convenience, it is assumed that r
1
 denotes the fact that the 

value of r is 1 and r
0

 denotes the fact that the value of r is 0. Similarly, it is supposed 

that 
1

r  denotes the fact that the value of r  is 1 and 
0

r  denotes the fact that the 

value of r  is 0. The following algorithm is proposed to implement the NOT 

operation of two bits as shown in Table 3.12.1. Tubes T0, T1, and T2 are subsequently 

the first, second and third parameters, and are set to empty tubes. 

 

Procedure NOT(T0, T1, T2) 

(1) Append-head(T1, r
1
). 

(2) Append-head(T2, r
0
). 

(3) Append-head(T1, 
0

r ). 

(4) Append-head(T2, 
1

r ). 

(5) T0 = (T1, T2). 

EndProcedure 

 

Proof of Correction: 

 

The algorithm, NOT(T0, T1, T2), is implemented by means of the append-head and 

merge operations. Step (1) and Step (2) use the append-head operations to append r
1
 

and r
0
 onto tubes T1 and T2. This is to say that T1 includes the first input that have r = 

1 and T2 consists of the first input that have r = 0, and two different inputs for the 

NOT operation of two bits as shown in Table 3.12.1 were poured into tubes T1 

through T2, respectively. Next, Step (3) and Step (4) also use the append-head 

operations to append 
0

r  and 
1

r onto tubes T1 and T2. This indicates that two 

different outputs to the NOT operation of two bits as shown in Table 3.12.1 are 

appended into tubes T1 through T2. Finally, on the first execution of Step (5), it applies 

the merge operation to pour tubes T1 through T2 into tube T0. Tube T0 contains the 
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result implementing the NOT operation of two bits as shown in Table 3.12.1.    

 

3.2: 

It is assumed that two binary numbers of a bit, R1 and R2, are used to, respectively, 

encode the first input and the second input for the AND operation of two bits as 

shown in Table 3.12.2. Also it is supposed that a binary number of a bit, C1, is used to 

encode the output for the AND operation. For the sake of convenience, it is assumed 

that for 1  k  2 Rk
1
 denotes the fact that the value of Rk is 1 and Rk

0
 denotes the fact 

that the value of Rk is 0. Similarly, it is supposed that C1
1
 denotes the fact that the 

value of C1 is 1 and C1
0

 denotes the fact that the value of C1 is 0. The following 

algorithm is offered to implement the AND operation of two bits as shown in Table 

3.12.2. Tubes T0, T1, T2, T3, T4, T5 and T6 are subsequently the first, second, third, 

fourth, fifth, sixth and seventh parameters, and are set to empty tubes. The eighth 

parameter, R1, is used to encode the first input to the AND operation of two bits and 

the ninth parameter, R2, is applied to encode the second input to the AND operation of 

two bits. 

 

Procedure AND(T0, T1, T2, T3, T4, T5, T6, R1, R2) 

(1) Append-head(T1, R1
1
). 

(2) Append-head(T2, R1
0
). 

(3) T0 = (T1, T2). 

(4) For k = 2 to 2 

(4a) Amplify(T0, T1, T2). 

(4b) Append-head(T1, Rk
1
). 

(4c) Append-head(T2, Rk
0
). 

(4d) T0 = (T1, T2). 

EndFor 

(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
). 

(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
). 

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
). 

(8) Append-head(T3, C1
1
). 

(9) Append-head(T4, C1
0
). 

(10) Append-head(T5, C1
0
). 

(11) Append-head(T6, C1
0
). 

(12) T0 = (T3, T4, T5, T6). 

EndProcedure 

 

Proof of Correction: 
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The algorithm, AND(T0, T1, T2, T3, T4, T5, T6, R1, R2), is implemented by means of 

the extract, amplify, append-head and merge operations. Steps (1) through (4d) use 

the amplify, append-head and merge operations to construct four different inputs to 

the AND operation of two bits as shown in Table 3.12.2. Next, Steps (5) through (7) 

use the extract operations to form some different test tubes including different inputs 

(T1 to T6). T1 includes all of the inputs that have R1 = 1, T2 includes all of the inputs 

that have R1 = 0, T3 includes that input that has R1 = 1 and R2 = 1, T4 includes that 

input that has R1 = 1 and R2 = 0, T5 includes that input that has R1 = 0 and R2 = 1, and 

finally, T6 includes that input that has R1 = 0 and R2 = 0. This indicates that four 

different inputs for the AND operation of two bits as shown in Table 3.12.2 were 

poured into tubes T3 through T6, respectively. Next, Steps (8) through (11) use the 

append-head operations to append C1
1
 and C1

0
 onto the head of every input in the 

corresponding tubes. This is to say that four different outputs to the AND operation of 

two bits as shown in Table 3.12.2 are appended into tubes T3 through T6. Finally, the 

execution of Step (12) applies the merge operation to pour tubes T3 through T6 into 

tube T0. Tube T0 contains the result implementing the AND operation of two bits as 

shown in Table 3.12.2.    

 

3.3: 

It is assumed that two binary numbers of a bit, R1 and R2, are used to, respectively, 

encode the first input and the second input for the OR operation of two bits as shown 

in Table 3.12.3. Also it is supposed that a binary number of a bit, C1, is used to encode 

the output for the OR operation. For the sake of convenience, it is supposed that for 1 

 k  2 Rk
1
 denotes the fact that the value of Rk is 1 and Rk

0
 denotes the fact that the 

value of Rk is 0. Similarly, it is supposed that C1
1
 denotes the fact that the value of C1 

is 1 and C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is 

proposed to implement the OR operation of two bits as shown in Table 3.12.3. Tubes 

T0, T1, T2, T3, T4, T5 and T6 are subsequently the first, second, third, fourth, fifth, sixth 

and seventh parameters, and are set to empty tubes. The eighth parameter, R1, is 

employed to encode the first input to the OR operation of two bits and the ninth 

parameter, R2, is used to encode the second input to the OR operation of two bits. 

 

Procedure OR(T0, T1, T2, T3, T4, T5, T6, R1, R2) 

(1) Append-head(T1, R1
1
). 

(2) Append-head(T2, R1
0
). 

(3) T0 = (T1, T2). 

(4) For k = 2 to 2 
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(4a) Amplify(T0, T1, T2). 

(4b) Append-head(T1, Rk
1
). 

(4c) Append-head(T2, Rk
0
). 

(4d) T0 = (T1, T2). 

EndFor 

(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
). 

(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
). 

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
). 

(8) Append-head(T3, C1
1
). 

(9) Append-head(T4, C1
1
). 

(10) Append-head(T5, C1
1
). 

(11) Append-head(T6, C1
0
). 

(12) T0 = (T3, T4, T5, T6). 

EndProcedure 

 

Proof of Correction:  

 

The algorithm, OR(T0, T1, T2, T3, T4, T5, T6, R1, R2), is implemented by means of 

the extract, append-head, amplify and merge operations. Steps (1) through (4d) use 

the amplify, append-head and merge operations to construct four different inputs to 

the OR operation of two bits as shown in Table 3.12.3. Next, Steps (5) through (7) use 

the extract operations to form some different test tubes including different inputs (T1 

to T6). T1 includes all of the inputs that have R1 = 1, T2 includes all of the inputs that 

have R1 = 0, T3 includes that input that has R1 = 1 and R2 = 1, T4 includes that input 

that has R1 = 1 and R2 = 0, T5 includes that input that has R1 = 0 and R2 = 1, and finally, 

T6 includes that input that has R1 = 0 and R2 = 0. This implies that four different inputs 

for the OR operation of two bits as shown in Table 3.12.3 were poured into tubes T3 

through T6, respectively. Next, Steps (8) through (11) use the append-head operations 

to append C1
1
 and C1

0
 onto the head of every input in the corresponding tubes. This is 

to say that four different outputs to the OR operation of two bits as shown in Table 

3.12.3 are appended into tubes T3 through T6. Finally, the execution of Step (12) 

applies the merge operation to pour tubes T3 through T6 into tube T0. Tube T0 contains 

the result implementing the OR operation of two bits as shown in Table 3.12.3.    

 

3.4: 

It is supposed that a binary number of a bit, r, is applied to encode the first input 

to the BUFFER operation of two bits as shown in Table 3.12.4. Also it is assumed 

that a binary number of a bit b is used to encode the first output to the BUFFER 
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operation. For the sake of convenience, it is supposed that r
1
 denotes the fact that the 

value of r is 1 and r
0

 denotes the fact that the value of r is 0. Similarly, it is also 

assumed that b
1
 denotes the fact that the value of b is 1 and b

0
 denotes the fact that the 

value of b is 0. The following algorithm is offered to implement the BUFFER 

operation of two bits as shown in Table 3.12.4. Tubes T0, T1, and T2 are subsequently 

the first, second and third parameters, and are set to empty tubes. 

 

Procedure BUFFER(T0, T1, T2) 

(1) Append-head(T1, r
1
). 

(2) Append-head(T2, r
0
). 

(3) Append-head(T1, b
1
). 

(4) Append-head(T2, b
0
). 

(5) T0 = (T1, T2). 

EndProcedure 

 

Proof of Correction: 

 

The algorithm, BUFFER(T0, T1, T2), is implemented by means of the 

append-head and merge operations. Step (1) and Step (2) apply the append-head 

operations to append r
1
 and r

0
 onto tubes T1 and T2. This indicates that T1 contains the 

first input that have r = 1 and T2 includes the first input that have r = 0, and two 

different inputs for the BUFFER operation of two bits as shown in Table 3.12.4 were 

poured into tubes T1 through T2, respectively. Next, Step (3) and Step (4) also employ 

the append-head operations to append b
1
 and b

0
 onto tubes T1 and T2. This implies 

that two different outputs to the BUFFER operation of two bits as shown in Table 

3.12.4 are appended into tubes T1 through T2. Finally, on the first execution of Step (5), 

it uses the merge operation to pour tubes T1 through T2 into tube T0. Tube T0 consists 

of the result implementing the BUFFER operation of two bits as shown in Table 

3.12.4.    

 

3.5: 

It is supposed that two binary numbers of a bit, R1 and R2, are applied to encode 

the first input and the second input for the NAND operation of two bits as shown in 

Table 3.12.5. Also it is assumed that a binary number of a bit, C1, is employed to 

encode the output for the NAND operation. For the sake of convenience, it is 

supposed that for 1  k  2 Rk
1
 denotes the fact that the value of Rk is 1 and Rk

0
 

denotes the fact that the value of Rk is 0. Similarly, it is also assumed that C1
1
 denotes 

the fact that the value of C1 is 1 and C1
0

 denotes the fact that the value of C1 is 0. The 
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following algorithm is presented to implement the NAND operation of two bits as 

shown in Table 3.12.5. Tubes T0, T1, T2, T3, T4, T5 and T6 are subsequently the first, 

second, third, fourth, fifth, sixth and seventh parameters, and are set to empty tubes. 

 

Procedure NAND(T0, T1, T2, T3, T4, T5, T6) 

(1) Append-head(T1, R1
1
). 

(2) Append-head(T2, R1
0
). 

(3) T0 = (T1, T2). 

(4) For k = 2 to 2 

(4a) Amplify(T0, T1, T2). 

(4b) Append-head(T1, Rk
1
). 

(4c) Append-head(T2, Rk
0
). 

(4d) T0 = (T1, T2). 

EndFor 

(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
). 

(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
). 

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
). 

(8) Append-head(T3, C1
0
). 

(9) Append-head(T4, C1
1
). 

(10) Append-head(T5, C1
1
). 

(11) Append-head(T6, C1
1
). 

(12) T0 = (T3, T4, T5, T6). 

EndProcedure 

 

Proof of Correction: 

 

The algorithm, NAND(T0, T1, T2, T3, T4, T5, T6), is implemented by means of the 

extract, amplify, append-head and merge operations. Steps (1) through (4d) apply the 

amplify, append-head and merge operations to construct four different inputs to the 

NAND operation of two bits as shown in Table 3.12.5. Next, Steps (5) through (7) 

apply the extract operations to form some different test tubes including different 

inputs (T1 to T6). T1 consists of all of the inputs that have R1 = 1, T2 contains all of the 

inputs that have R1 = 0, T3 contains that input that has R1 = 1 and R2 = 1, T4 contains 

that input that has R1 = 1 and R2 = 0, T5 contains that input that has R1 = 0 and R2 = 1, 

and finally, T6 contains that input that has R1 = 0 and R2 = 0. This is to say that four 

different inputs for the NAND operation of two bits as shown in Table 3.12.5 were 

poured into tubes T3 through T6, respectively. Next, Steps (8) through (11) use the 

append-head operations to append C1
0
 and C1

1
 onto the head of every input in the 
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corresponding tubes. This implies that four different outputs to the NAND operation 

of two bits as shown in Table 3.12.5 are appended into tubes T3 through T6. Finally, 

the execution of Step (12) uses the merge operation to pour tubes T3 through T6 into 

tube T0. Tube T0 includes the result implementing the NAND operation of two bits as 

shown in Table 3.12.5.    

 

3.6: 

It is supposed that two binary numbers of a bit, R1 and R2, are employed to encode 

the first input and the second input for the NOR operation of two bits as shown in 

Table 3.12.6. Also it is assumed that a binary number of a bit, C1, is used to encode 

the output for the OR operation. For the sake of convenience, it is assumed that for 1 

 k  2 Rk
1
 denotes the fact that the value of Rk is 1 and Rk

0
 denotes the fact that the 

value of Rk is 0. Similarly, it is also assumed that C1
1
 denotes the fact that the value of 

C1 is 1 and C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is 

offered to implement the NOR operation of two bits as shown in Table 3.12.6. Tubes 

T0, T1, T2, T3, T4, T5 and T6 are subsequently the first, second, third, fourth, fifth, sixth 

and seventh parameters, and are set to empty tubes. 

 

Procedure NOR(T0, T1, T2, T3, T4, T5, T6) 

(1) Append-head(T1, R1
1
). 

(2) Append-head(T2, R1
0
). 

(3) T0 = (T1, T2). 

(4) For k = 2 to 2 

(4a) Amplify(T0, T1, T2). 

(4b) Append-head(T1, Rk
1
). 

(4c) Append-head(T2, Rk
0
). 

(4d) T0 = (T1, T2). 

EndFor 

(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
). 

(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
). 

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
). 

(8) Append-head(T3, C1
0
). 

(9) Append-head(T4, C1
0
). 

(10) Append-head(T5, C1
0
). 

(11) Append-head(T6, C1
1
). 

(12) T0 = (T3, T4, T5, T6). 

EndProcedure 
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Proof of Correction:  

 

The algorithm, NOR(T0, T1, T2, T3, T4, T5, T6), is implemented by means of the 

extract, append-head, amplify and merge operations. Steps (1) through (4d) employ 

the amplify, append-head and merge operations to construct four different inputs to 

the NOR operation of two bits as shown in Table 3.12.6. Next, Steps (5) through (7) 

apply the extract operations to form some different test tubes containing different 

inputs (T1 to T6). T1 consists of all of the inputs that have R1 = 1, T2 consists of all of 

the inputs that have R1 = 0, T3 consists of that input that has R1 = 1 and R2 = 1, T4 

consists of that input that has R1 = 1 and R2 = 0, T5 consists of that input that has R1 = 

0 and R2 = 1, and finally, T6 consists of that input that has R1 = 0 and R2 = 0. This is to 

say that four different inputs for the NOR operation of two bits as shown in Table 

3.12.6 were poured into tubes T3 through T6, respectively. Next, Steps (8) through (11) 

apply the append-head operations to append C1
0
 and C1

1
 onto the head of every input 

in the corresponding tubes. This indicates that four different outputs to the NOR 

operation of two bits as shown in Table 3.12.6 are appended into tubes T3 through T6. 

Finally, the execution of Step (12) uses the merge operation to pour tubes T3 through 

T6 into tube T0. Tube T0 includes the result implementing the NOR operation of two 

bits as shown in Table 3.12.6.    

 

3.7: 

It is assumed that two binary numbers of a bit, R1 and R2, are used to encode the 

first input and the second input for the Exclusive-OR operation of two bits as shown 

in Table 3.12.7. Also it is supposed that a binary number of a bit, C1, is applied to 

encode the output for the Exclusive-OR operation. For the sake of convenience, it is 

assumed that for 1  k  2 Rk
1
 denotes the fact that the value of Rk is 1 and Rk

0
 denotes 

the fact that the value of Rk is 0. Similarly, it is also supposed that C1
1
 denotes the fact 

that the value of C1 is 1 and C1
0

 denotes the fact that the value of C1 is 0. The 

following algorithm is proposed to implement the Exclusive-OR operation of two bits 

as shown in Table 3.12.7. Tubes T0, T1, T2, T3, T4, T5 and T6 are subsequently the first, 

second, third, fourth, fifth, sixth and seventh parameters, and are set to empty tubes. 

 

Procedure EXCLUSIVE-OR(T0, T1, T2, T3, T4, T5, T6) 

(1) Append-head(T1, R1
1
). 

(2) Append-head(T2, R1
0
). 

(3) T0 = (T1, T2). 

(4) For k = 2 to 2 

(4a) Amplify(T0, T1, T2). 
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(4b) Append-head(T1, Rk
1
). 

(4c) Append-head(T2, Rk
0
). 

(4d) T0 = (T1, T2). 

EndFor 

(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
). 

(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
). 

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
). 

(8) Append-head(T3, C1
0
). 

(9) Append-head(T4, C1
1
). 

(10) Append-head(T5, C1
1
). 

(11) Append-head(T6, C1
0
). 

(12) T0 = (T3, T4, T5, T6). 

EndProcedure 

 

Proof of Correction:  

 

The algorithm, EXCLUSIVE-OR(T0, T1, T2, T3, T4, T5, T6), is implemented by 

means of the extract, append-head, amplify and merge operations. Steps (1) through 

(4d) use the amplify, append-head and merge operations to generate four different 

inputs to the Exclusive-OR operation of two bits as shown in Table 3.12.7. Next, 

Steps (5) through (7) employ the extract operations to form some different test tubes 

including different inputs (T1 to T6). T1 includes all of the inputs that have R1 = 1, T2 

includes all of the inputs that have R1 = 0, T3 includes that input that has R1 = 1 and R2 

= 1, T4 includes that input that has R1 = 1 and R2 = 0, T5 includes that input that has R1 

= 0 and R2 = 1, and finally, T6 includes that input that has R1 = 0 and R2 = 0. This 

indicates that four different inputs for the Exclusive-OR operation of two bits as 

shown in Table 3.12.7 were poured into tubes T3 through T6, respectively. Next, Steps 

(8) through (11) apply the append-head operations to append C1
0
 and C1

1
 onto the 

head of every input in the corresponding tubes. This is to say that four different 

outputs to the Exclusive-OR operation of two bits as shown in Table 3.12.7 are 

appended into tubes T3 through T6. Finally, the execution of Step (12) applies the 

merge operation to pour tubes T3 through T6 into tube T0. Tube T0 contains the result 

implementing the Exclusive-OR operation of two bits as shown in Table 3.12.7.   

 

 

3.8: 

It is supposed that two binary numbers of a bit, R1 and R2, are applied to encode 

the first input and the second input for the Exclusive-NOR operation of two bits as 
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shown in Table 3.12.8. Also it is assumed that a binary number of a bit, C1, is 

employed to encode the output for the Exclusive-NOR operation. For the sake of 

convenience, it is supposed that for 1  k  2 Rk
1
 denotes the fact that the value of Rk 

is 1 and Rk
0
 denotes the fact that the value of Rk is 0. Similarly, it is also assumed that 

C1
1
 denotes the fact that the value of C1 is 1 and C1

0
 denotes the fact that the value of 

C1 is 0. The following algorithm is proposed to implement the Exclusive-NOR 

operation of two bits as shown in Table 3.12.8. Tubes T0, T1, T2, T3, T4, T5 and T6 are 

subsequently the first, second, third, fourth, fifth, sixth and seventh parameters, and 

are set to empty tubes. 

 

Procedure EXCLUSIVE-NOR(T0, T1, T2, T3, T4, T5, T6) 

(1) Append-head(T1, R1
1
). 

(2) Append-head(T2, R1
0
). 

(3) T0 = (T1, T2). 

(4) For k = 2 to 2 

(4a) Amplify(T0, T1, T2). 

(4b) Append-head(T1, Rk
1
). 

(4c) Append-head(T2, Rk
0
). 

(4d) T0 = (T1, T2). 

EndFor 

(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
). 

(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
). 

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
). 

(8) Append-head(T3, C1
1
). 

(9) Append-head(T4, C1
0
). 

(10) Append-head(T5, C1
0
). 

(11) Append-head(T6, C1
1
). 

(12) T0 = (T3, T4, T5, T6). 

EndProcedure 

 

Proof of Correction:  

 

The algorithm, EXCLUSIVE-NOR(T0, T1, T2, T3, T4, T5, T6), is implemented by 

means of the extract, append-head, amplify and merge operations. Steps (1) through 

(4d) use the amplify, append-head and merge operations to produce four different 

inputs to the Exclusive-NOR operation of two bits as shown in Table 3.12.8. Next, 

Steps (5) through (7) employ the extract operations to form some different test tubes 

containing different inputs (T1 to T6). T1 consists of all of the inputs that have R1 = 1, 
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T2 consists of all of the inputs that have R1 = 0, T3 consists of that input that has R1 = 1 

and R2 = 1, T4 consists of that input that has R1 = 1 and R2 = 0, T5 consists of that 

input that has R1 = 0 and R2 = 1, and finally, T6 consists of that input that has R1 = 0 

and R2 = 0. This is to say that four different inputs for the Exclusive-NOR operation 

of two bits as shown in Table 3.12.8 were poured into tubes T3 through T6, 

respectively. Next, Steps (8) through (11) apply the append-head operations to append 

C1
1
 and C1

0
 onto the head of every input in the corresponding tubes. This implies that 

four different outputs to the Exclusive-NOR operation of two bits as shown in Table 

3.12.8 are appended into tubes T3 through T6. Finally, the execution of Step (12) 

applies the merge operation to pour tubes T3 through T6 into tube T0. Tube T0 consists 

of the result implementing the Exclusive-NOR operation of two bits as shown in 

Table 3.12.8.    

 

3.9: 

It is assumed that two binary numbers of a bit, R1 and R2, are used to encode the 

first input and the second input for the NULL operation of two bits as shown in Table 

3.12.9. Also it is supposed that a binary number of a bit, C1, is applied to encode the 

output for the NULL operation. For the sake of convenience, it is supposed that for 1 

 k  2 Rk
1
 denotes the fact that the value of Rk is 1 and Rk

0
 denotes the fact that the 

value of Rk is 0. Similarly, it is also supposed that C1
1
 denotes the fact that the value 

of C1 is 1 and C1
0
 denotes the fact that the value of C1 is 0. The following algorithm is 

proposed to implement the NULL operation of two bits as shown in Table 3.12.9. 

Tubes T0, T1, T2, T3, T4, T5 and T6 are subsequently the first, second, third, fourth, fifth, 

sixth and seventh parameters, and are set to empty tubes. 

 

Procedure NULL(T0, T1, T2, T3, T4, T5, T6) 

(1) Append-head(T1, R1
1
). 

(2) Append-head(T2, R1
0
). 

(3) T0 = (T1, T2). 

(4) For k = 2 to 2 

(4a) Amplify(T0, T1, T2). 

(4b) Append-head(T1, Rk
1
). 

(4c) Append-head(T2, Rk
0
). 

(4d) T0 = (T1, T2). 

EndFor 

(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
). 

(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
). 

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
). 
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(8) Append-head(T3, C1
0
). 

(9) Append-head(T4, C1
0
). 

(10) Append-head(T5, C1
0
). 

(11) Append-head(T6, C1
0
). 

(12) T0 = (T3, T4, T5, T6). 

EndProcedure 

 

Proof of Correction:  

 

The algorithm, NULL(T0, T1, T2, T3, T4, T5, T6), is implemented by means of the 

extract, append-head, amplify and merge operations. Steps (1) through (4d) use the 

amplify, append-head and merge operations to yield four different inputs to the NULL 

operation of two bits as shown in Table 3.12.9. Next, Steps (5) through (7) use the 

extract operations to generate some different test tubes including different inputs (T1 

to T6). T1 contains all of the inputs that have R1 = 1, T2 contains all of the inputs that 

have R1 = 0, T3 contains that input that has R1 = 1 and R2 = 1, T4 contains that input 

that has R1 = 1 and R2 = 0, T5 contains that input that has R1 = 0 and R2 = 1, and finally, 

T6 contains that input that has R1 = 0 and R2 = 0. This implies that four different inputs 

for the NULL operation of two bits as shown in Table 3.12.9 were poured into tubes 

T3 through T6, respectively. Next, Steps (8) through (11) use the append-head 

operations to append C1
0
 onto the head of every input in the corresponding tubes. This 

indicates that four different outputs to the NULL operation of two bits as shown in 

Table 3.12.9 are appended into tubes T3 through T6. Finally, the execution of Step (12) 

applies the merge operation to pour tubes T3 through T6 into tube T0. Tube T0 contains 

the result implementing the NULL operation of two bits as shown in Table 3.12.9.   

 

 

3.10: 

It is supposed that two binary numbers of a bit, R1 and R2, are employed to encode 

the first input and the second input for the IDENTITY operation of two bits as shown 

in Table 3.12.10. Also it is assumed that a binary number of a bit, C1, is used to 

encode the output for the IDENTITY operation. For the sake of convenience, it is 

assumed that for 1  k  2 Rk
1
 denotes the fact that the value of Rk is 1 and Rk

0
 denotes 

the fact that the value of Rk is 0. Similarly, it is also assumed that C1
1
 denotes the fact 

that the value of C1 is 1 and C1
0

 denotes the fact that the value of C1 is 0. The 

following algorithm is proposed to implement the IDENTITY operation of two bits 

as shown in Table 3.12.10. Tubes T0, T1, T2, T3, T4, T5 and T6 are subsequently the first, 

second, third, fourth, fifth, sixth and seventh parameters, and are set to empty tubes. 
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Procedure IDENTITY(T0, T1, T2, T3, T4, T5, T6) 

(1) Append-head(T1, R1
1
). 

(2) Append-head(T2, R1
0
). 

(3) T0 = (T1, T2). 

(4) For k = 2 to 2 

(4a) Amplify(T0, T1, T2). 

(4b) Append-head(T1, Rk
1
). 

(4c) Append-head(T2, Rk
0
). 

(4d) T0 = (T1, T2). 

EndFor 

(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
). 

(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
). 

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
). 

(8) Append-head(T3, C1
1
). 

(9) Append-head(T4, C1
1
). 

(10) Append-head(T5, C1
1
). 

(11) Append-head(T6, C1
1
). 

(12) T0 = (T3, T4, T5, T6). 

EndProcedure 

 

Proof of Correction:  

 

The algorithm, IDENTITY(T0, T1, T2, T3, T4, T5, T6), is implemented by means of 

the extract, append-head, amplify and merge operations. Steps (1) through (4d) use 

the amplify, append-head and merge operations to produce four different inputs to the 

IDENTITY operation of two bits as shown in Table 3.12.10. Next, Steps (5) through 

(7) apply the extract operations to yield some different test tubes containing different 

inputs (T1 to T6). T1 includes all of the inputs that have R1 = 1, T2 includes all of the 

inputs that have R1 = 0, T3 includes that input that has R1 = 1 and R2 = 1, T4 includes 

that input that has R1 = 1 and R2 = 0, T5 includes that input that has R1 = 0 and R2 = 1, 

and finally, T6 includes that input that has R1 = 0 and R2 = 0. This is to say that four 

different inputs for the IDENTITY operation of two bits as shown in Table 3.12.10 

were poured into tubes T3 through T6, respectively. Next, Steps (8) through (11) apply 

the append-head operations to append C1
1
 onto the head of every input in the 

corresponding tubes. This implies that four different outputs to the IDENTITY 

operation of two bits as shown in Table 3.12.10 are appended into tubes T3 through T6. 

Finally, the execution of Step (12) uses the merge operation to pour tubes T3 through 
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T6 into tube T0. Tube T0 consists of the result implementing the IDENTITY operation 

of two bits as shown in Table 3.12.10.    
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Chapter 4 

 

4.1: 

For a decimal system, its base is 10. In the decimal system, there are ten digits, 0, 

1, 2, 3, 4, 5, 6, 7, 8, and 9. For a decimal system, the first position is 10 raised to the 

power 0, the second position is 10 raised to the power 1 and the n
th

 position is 10 

raised to the power (n  1). For example, the relationship between the powers and the 

decimal number 128 is shown in Figure 4.1. 

 

10
2
    10

1
   10

0 

100    10    1 

(a) Decimal Positions 

1 2 8 

 

                          1 * 100 + 2 * 10 + 8 * 1 

                          (b) Decimal Representation 

Figure 4.1: The relationship between the powers and the decimal number 128 is 

shown in a decimal system 

 

For a binary system, its base is 2. There are only two digits in the binary system, 

0 and 1. For a binary system, the first position is 2 raised to the power 0, the second 

position is 2 raised to the power 1 and the n
th

 position is 2 raised to the power (n  1). 

The positional weights for a binary system and the value 128 in binary are shown in 

Figure 4.2. In the position table, each position is double the previous position. Again, 

this is because the base of the system is 2. 

 

2
7
   2

6
   2

5
  2

4
  2

3
  2

2
  2

1
  2

0 

128  64  32  16  8   4  2   1 

(a) Binary Positions 

10000000 

 

                                 1 * 128               

                          (b) Binary Representation 

Figure 4.2: The positional weights for a binary system and the value 128 in binary are 

shown 

 

4.2: 
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The corresponding binary number of the decimal number 128 is 10000000, and 

the corresponding binary number of the decimal number 33 is 00100001. 

 

4.3: 

The corresponding decimal number of the binary number 10000000 is 128, and 

the corresponding decimal number of the binary number 00100001 is 33. 

 

4.4: We would like to give many thanks to Cai-Cheng Zhe who wrote the following C 

programs. 

 

#include <stdio.h> 

#include <stdlib.h> 

int main() 

{ 

    int i, j, k, decimal, Ans[50]={0}; 

    i = 0; 

    printf("Please enter a decimal number："); 

    scanf("%d",&decimal); 

    k = decimal; 

    while(decimal) 

{   Ans[i] = decimal % 2; 

        decimal = decimal / 2; 

        i = i + 1; 

    } 

    printf("The decimal number is %d\n ", k); 

    printf(“The corresponding binary number is”); 

    for(j=i-1; j>=0; j--) { printf("%d", Ans[j]); } 

    printf("\n"); 

    system("pause"); 

    return 0; 

} 

 

4.5: We would like to give many thanks to Cai-Cheng Zhe who wrote the following C 

programs. 

 
#include <stdio.h> 

#include <stdlib.h> 

int main() 
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{   int i, j, k, binary, decimal; 

    j = 1; 

    decimal = 0; 

    printf("Please enter a binary number："); 

    scanf("%d",&binary); 

    k = binary; 

    while(binary) 

{   i = binary % 10 ; 

        decimal += (i * j); 

        j *= 2; 

        binary /= 10; 

    } 

    printf("The binary number is %d \n", k); 

    printf("The corresponding binary number is %d \n", decimal); 

    system("pause"); 

    return 0; 

} 

 

4.6: 

It is assumed that a three-bit binary number, x3 x2 x1, is employed to encode an 

unsigned integer with three bits, where the value of each bit xk is either 1 or 0 for 1  k 

 3. The bits x3 and x1 are used to encode, respectively, the most significant bit and the 

least significant bit for the unsigned integer with three bits. The following DNA-based 

algorithm is applied to yield the range of the value for an unsigned integer with three 

bits. Tubes T0, T1, T2 are, subsequently, the first, second and third parameters, and are 

set to empty tubes. 

 

Procedure Yield-Unsigned-Integers-With-Three-Bits(T0, T1, T2) 

(1) Append-head(T1, x1
1
). 

(2) Append-head(T2, x1
0
). 

(3) T0 = (T1, T2). 

(4) For k = 2 to 3 

(4a) Amplify(T0, T1, T2). 

(4b) Append-head(T1, xk
 1
). 

(4c) Append-head(T2, xk
 0
). 

(4d) T0 = (T1, T2). 

EndFor 

EndProcedure 
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Proof of Correction: 

 

After the first execution for Step (1) and the first execution for Step (2) are 

implemented, tube T1 = {x1
1
} and tube T2 = {x1

0
}. Then, after the first execution of 

Step (3) is implemented, tube T0 = {x1
1
, x1

0
}, tube T1 =  and tube T2 = . Step (4) is 

the main loop and the lower bound and the upper bound are, respectively, two and 

three, so Steps (4a) through (4d) will be executed two times. After the first execution 

of Step (4a) is implemented, tube T0 = , tube T1 = {x1
1
, x1

0
} and tube T2 = {x1

1
, x1

0
}. 

Next, after the first execution for Step (4b) and Step (4c) is implemented, tube T1 = 

{x2
1
 x1

1
, x2

1
 x1

0
} and tube T2 = {x2

0
 x1

1
, x2

0
 x1

0
}. After the first execution of Step (4d) 

is implemented, tube T0 = {x2
1
 x1

1
, x2

1
 x1

0
, x2

0
 x1

1
, x2

0
 x1

0
}, tube T1 =  and tube T2 = 

. 

 

Then, after the second execution of Step (4a) is implemented, tube T0 = , tube T1 

= {x2
1
 x1

1
, x2

1
 x1

0
, x2

0
 x1

1
, x2

0
 x1

0
} and tube T2 = {x2

1
 x1

1
, x2

1
 x1

0
, x2

0
 x1

1
, x2

0
 x1

0
}. After 

the second execution for Step (4b) and Step (4c) is implemented, tube T1 = {x3
1
 x2

1
 x1

1
, 

x3
1
 x2

1
 x1

0
, x3

1
 x2

0
 x1

1
, x3

1
 x2

0
 x1

0
} and tube T2 = {x3

0
 x2

1
 x1

1
, x3

0
 x2

1
 x1

0
, x3

0
 x2

0
 x1

1
, x3

0
 

x2
0
 x1

0
}. Next, after the second execution of Step (4d) is implemented, tube T0 = {x3

1
 

x2
1
 x1

1
, x3

1
 x2

1
 x1

0
, x3

1
 x2

0
 x1

1
, x3

1
 x2

0
 x1

0
, x3

0
 x2

1
 x1

1
, x3

0
 x2

1
 x1

0
, x3

0
 x2

0
 x1

1
, x3

0
 x2

0
 x1

0
}, 

tube T1 =  and tube T2 = . The result for tube T0 is shown in Table 4.1. It is 

inferred from Table 4.1 that Yield-Unsigned-Integers-With-Three-Bits(T0, T1, T2) 

can be used to yield the range of the value for an unsigned integer with three bits.   

 

 

Tube The result is yielded by Yield-Unsigned-Integers-With-Three-Bits(T0, T1, T2) 

T0 
{x3

1
 x2

1
 x1

1
,   x3

1
 x2

1
 x1

0
,   x3

1
 x2

0
 x1

1
,   x3

1
 x2

0
 x1

0
, 

 

x3
0
 x2

1
 x1

1
,   x3

0
 x2

1
 x1

0
,   x3

0
 x2

0
 x1

1
,   x3

0
 x2

0
 x1

0
} 

Table 4.1: The result for tube T0 is generated by 

Yield-Unsigned-Integers-With-Three-Bits(T0, T1, T2). 

 

4.7: 

It is supposed that a three-bit binary number, x3 x2 x1, is employed to encode a 

sign-and-magnitude integer with three bits, where the value of each bit xk is either 1 or 

0 for 1  k  3. The bit x3 is applied to encode the sign, and the bits x2 and x1 is used to 

encode, respectively, the most significant bit and the least significant bit for a 

sign-and-magnitude integer with n bits. From Definition 4-2, it is very clear that there 
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are two 0s in sign-and-magnitude representation: positive and negative. For example, 

in a three-bit allocation: “000” is used to encode “+0” and “100” is employed to 

encode “0”. The following DNA-based algorithm is used to produce the range of the 

value for a sign-and-magnitude integer with three bits. Tubes T0, T1, T2 are, 

subsequently, the first, second and third parameters, and are set to empty tubes. 

 

Procedure Yield-Sign-and-Magtitude-Integers-With-Three-Bits(T0, T1, T2) 

(1) Append-head(T1, x1
1
). 

(2) Append-head(T2, x1
0
). 

(3) T0 = (T1, T2). 

(4) For k = 2 to 3 

(4a) Amplify(T0, T1, T2). 

(4b) Append-head(T1, xk
 1
). 

(4c) Append-head(T2, xk
 0
). 

(4d) T0 = (T1, T2). 

EndFor 

EndProcedure 

 

Proof of Correction: 

 

After the first execution of Step (1) and the first execution of Step (2) are 

implemented, tube T1 = {x1
1
} and tube T2 = {x1

0
}. Then, after the first execution of 

Step (3) is implemented, tube T0 = {x1
1
, x1

0
}, tube T1 =  and tube T2 = . Step (4) is 

the main loop and the lower bound and the upper bound are, subsequently, are two 

and three, so Steps (4a) through (4d) will be implemented two times. After the first 

execution of Step (4a) is implemented, tube T0 = , tube T1 = {x1
1
, x1

0
} and tube T2 = 

{x1
1
, x1

0
}. Next, after the first execution for Step (4b) and Step (4c) is implemented, 

tube T1 = {x2
1
 x1

1
, x2

1
 x1

0
} and tube T2 = {x2

0
 x1

1
, x2

0
 x1

0
}. After the first execution of 

Step (4d) is implemented, tube T0 = {x2
1
 x1

1
, x2

1
 x1

0
, x2

0
 x1

1
, x2

0
 x1

0
}, tube T1 =  and 

tube T2 = . 

 

Then, after the second execution of Step (4a) is implemented, tube T0 = , tube T1 

= {x2
1
 x1

1
, x2

1
 x1

0
, x2

0
 x1

1
, x2

0
 x1

0
} and tube T2 = {x2

1
 x1

1
, x2

1
 x1

0
, x2

0
 x1

1
, x2

0
 x1

0
}. After 

the second execution for Step (4b) and Step (4c) is implemented, tube T1 = {x3
1
 x2

1
 x1

1
, 

x3
1
 x2

1
 x1

0
, x3

1
 x2

0
 x1

1
, x3

1
 x2

0
 x1

0
} and tube T2 = {x3

0
 x2

1
 x1

1
, x3

0
 x2

1
 x1

0
, x3

0
 x2

0
 x1

1
, x3

0
 

x2
0
 x1

0
}. Next, after the second execution of Step (4d) is implemented, tube T0 = {x3

1
 

x2
1
 x1

1
, x3

1
 x2

1
 x1

0
, x3

1
 x2

0
 x1

1
, x3

1
 x2

0
 x1

0
, x3

0
 x2

1
 x1

1
, x3

0
 x2

1
 x1

0
, x3

0
 x2

0
 x1

1
, x3

0
 x2

0
 x1

0
}, 

tube T1 =  and tube T2 = . The result for tube T0 is shown in Table 4.2. It is derived 
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from Table 4.2 that Yield-Sign-and-Magtitude-Integers-With-Three-Bits(T0, T1, T2) 

can be used to produce the range of the value for a sign-and-magnitude integer with 

three bits.    

 

Tube The result is generated by 

Yield-Sign-and-Magtitude-Integers-With-Three-Bits(T0, T1, T2) 

T0 
{x3

1
 x2

1
 x1

1
,   x3

1
 x2

1
 x1

0
,   x3

1
 x2

0
 x1

1
,   x3

1
 x2

0
 x1

0
, 

 

x3
0
 x2

1
 x1

1
,   x3

0
 x2

1
 x1

0
,   x3

0
 x2

0
 x1

1
,   x3

0
 x2

0
 x1

0
} 

Table 4.2: The result for tube T0 is generated by 

Yield-Sign-and-Magtitude-Integers-With-Three-Bits(T0, T1, T2). 

 

4.8:  

It is assumed that a three-bit binary number, x3 x2 x1, is employed to encode a 

one’s complement integer with three bits, where the value of each bit xk is either 1 or 

0 for 1  k  3. From Definition 4-3, it is indicated that there are two 0s in one’s 

complement representation: positive and negative. For example, in a three-bit 

allocation: “000” is used to encode “+0” and “111” is applied to encode “0”. The 

following DNA-based algorithm is used to produce the range of the value for a one’s 

complement integer with three bits. Tubes T0, T1, T2 are, subsequently, the first, 

second and third parameters, and are set to empty tubes. 

 

Procedure Yield-One’s-Complement-Integers-With-Three-Bits(T0, T1, T2) 

(1) Append-head(T1, x1
1
). 

(2) Append-head(T2, x1
0
). 

(3) T0 = (T1, T2). 

(4) For k = 2 to 3 

(4a) Amplify(T0, T1, T2). 

(4b) Append-head(T1, xk
 1
). 

(4c) Append-head(T2, xk
 0
). 

(4d) T0 = (T1, T2). 

EndFor 

EndProcedure 

 

Proof of Correction: 

 

After the first execution of Step (1) and the first execution of Step (2) are 

implemented, tube T1 = {x1
1
} and tube T2 = {x1

0
}. Then, after the first execution of 
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Step (3) is implemented, tube T0 = {x1
1
, x1

0
}, tube T1 =  and tube T2 = . Step (4) is 

the main loop and the lower bound and the upper bound are, respectively, two and 

three, so Steps (4a) through (4d) will be implemented two times. After the first 

execution of Step (4a) is implemented, tube T0 = , tube T1 = {x1
1
, x1

0
} and tube T2 = 

{x1
1
, x1

0
}. Next, after the first execution for Step (4b) and Step (4c) is implemented, 

tube T1 = {x2
1
 x1

1
, x2

1
 x1

0
} and tube T2 = {x2

0
 x1

1
, x2

0
 x1

0
}. After the first execution of 

Step (4d) is implemented, tube T0 = {x2
1
 x1

1
, x2

1
 x1

0
, x2

0
 x1

1
, x2

0
 x1

0
}, tube T1 =  and 

tube T2 = . 

 

Then, after the second execution of Step (4a) is implemented, tube T0 = , tube T1 

= {x2
1
 x1

1
, x2

1
 x1

0
, x2

0
 x1

1
, x2

0
 x1

0
} and tube T2 = {x2

1
 x1

1
, x2

1
 x1

0
, x2

0
 x1

1
, x2

0
 x1

0
}. After 

the second execution for Step (4b) and Step (4c) is implemented, tube T1 = {x3
1
 x2

1
 x1

1
, 

x3
1
 x2

1
 x1

0
, x3

1
 x2

0
 x1

1
, x3

1
 x2

0
 x1

0
} and tube T2 = {x3

0
 x2

1
 x1

1
, x3

0
 x2

1
 x1

0
, x3

0
 x2

0
 x1

1
, x3

0
 

x2
0
 x1

0
}. Next, after the second execution of Step (4d) is implemented, tube T0 = {x3

1
 

x2
1
 x1

1
, x3

1
 x2

1
 x1

0
, x3

1
 x2

0
 x1

1
, x3

1
 x2

0
 x1

0
, x3

0
 x2

1
 x1

1
, x3

0
 x2

1
 x1

0
, x3

0
 x2

0
 x1

1
, x3

0
 x2

0
 x1

0
}, 

tube T1 =  and tube T2 = . The result for tube T0 is shown in Table 4.3. It is 

concluded from Table 4.3 that 

Yield-One’s-Complement-Integers-With-Three-Bits(T0, T1, T2) can be employed to 

generate the range of the value for a one’s complement integer with three bits.    

 

Tube The result is generated by 

Yield-One’s-Complement-Integers-With-Three-Bits(T0, T1, T2) 

T0 
{x3

1
 x2

1
 x1

1
,   x3

1
 x2

1
 x1

0
,   x3

1
 x2

0
 x1

1
,   x3

1
 x2

0
 x1

0
, 

 

x3
0
 x2

1
 x1

1
,   x3

0
 x2

1
 x1

0
,   x3

0
 x2

0
 x1

1
,   x3

0
 x2

0
 x1

0
} 

Table 4.3: The result for tube T0 is generated by 

Yield-One’s-Complement-Integers-With-Three-Bits(T0, T1, T2). 

 

4.9: 

It is supposed that a three-bit binary number, x3 x2 x1, is applied to encode a two’s 

complement integer with three bits, where the value of each bit xk is either 1 or 0 for 1 

 k  3. From Definition 4-4, it is pointed out that there is only one 0 in two’s 

complement representation. For example, in a three-bit allocation: “000” is used to 

encode “0”. The following DNA-based algorithm is applied to construct the range of 

the value for a two’s complement integer with three bits. Tubes T0, T1, T2 are, 

subsequently, the first, second and third parameters, and are set to empty tubes. 

 

Procedure Yield-Two’s-Complement-Integers-With-Three-Bits(T0, T1, T2) 
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(1) Append-head(T1, x1
1
). 

(2) Append-head(T2, x1
0
). 

(3) T0 = (T1, T2). 

(4) For k = 2 to 3 

(4a) Amplify(T0, T1, T2). 

(4b) Append-head(T1, xk
 1
). 

(4c) Append-head(T2, xk
 0
). 

(4d) T0 = (T1, T2). 

EndFor 

EndProcedure 

 

Proof of Correction: 

 

After the first execution for Step (1) and Step (2) is implemented, tube T1 = {x1
1
} 

and tube T2 = {x1
0
}. Next, after the first execution of Step (3) is implemented, tube T0 

= {x1
1
, x1

0
}, tube T1 =  and tube T2 = . Step (4) is the main loop and its lower and 

upper bounds are, respectively, two and three, so Steps (4a) through (4d) will be 

implemented two times. After the first execution of Step (4a) is implemented, tube T0 

= , tube T1 = {x1
1
, x1

0
} and tube T2 = {x1

1
, x1

0
}. Next, after the first execution for 

Step (4b) and Step (4c) is implemented, tube T1 = {x2
1
 x1

1
, x2

1
 x1

0
} and tube T2 = {x2

0
 

x1
1
, x2

0
 x1

0
}. After the first execution of Step (4d) is implemented, tube T0 = {x2

1
 x1

1
, 

x2
1
 x1

0
, x2

0
 x1

1
, x2

0
 x1

0
}, tube T1 =  and tube T2 = .  

 

Then, after the second execution of Step (4a) is implemented, tube T0 = , tube T1 

= {x2
1
 x1

1
, x2

1
 x1

0
, x2

0
 x1

1
, x2

0
 x1

0
} and tube T2 = {x2

1
 x1

1
, x2

1
 x1

0
, x2

0
 x1

1
, x2

0
 x1

0
}. After 

the second execution for Step (4b) and Step (4c) is implemented, tube T1 = {x3
1
 x2

1
 x1

1
, 

x3
1
 x2

1
 x1

0
, x3

1
 x2

0
 x1

1
, x3

1
 x2

0
 x1

0
} and tube T2 = {x3

0
 x2

1
 x1

1
, x3

0
 x2

1
 x1

0
, x3

0
 x2

0
 x1

1
, x3

0
 

x2
0
 x1

0
}. Next, after the second execution of Step (4d) is implemented, tube T0 = {x3

1
 

x2
1
 x1

1
, x3

1
 x2

1
 x1

0
, x3

1
 x2

0
 x1

1
, x3

1
 x2

0
 x1

0
, x3

0
 x2

1
 x1

1
, x3

0
 x2

1
 x1

0
, x3

0
 x2

0
 x1

1
, x3

0
 x2

0
 x1

0
}, 

tube T1 =  and tube T2 = . The result for tube T0 is shown in Table 4.4. It is 

inferred from Table 4.4 that Yield-Two’s-Complement-Integers-With-Three-Bits(T0, 

T1, T2) can be applied to construct the range of the value for a two’s complement 

integer with three bits.    

 

Tube The result is generated by 

Yield-Two’s-Complement-Integers-With-Three-Bits(T0, T1, T2) 

T0 
{x3

1
 x2

1
 x1

1
,   x3

1
 x2

1
 x1

0
,   x3

1
 x2

0
 x1

1
,   x3

1
 x2

0
 x1

0
, 
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x3
0
 x2

1
 x1

1
,   x3

0
 x2

1
 x1

0
,   x3

0
 x2

0
 x1

1
,   x3

0
 x2

0
 x1

0
} 

Table 4.4: The result for tube T0 is generated by 

Yield-Two’s-Complement-Integers-With-Three-Bits(T0, T1, T2). 

 

4.10: 

 It is assumed that a 32-bit binary number, x32  x1 is applied to encode a 

floating-point number of 32 bits in form of single precision format based on 

Excess_127, where the value of each bit xk is either 1 or 0 for 1  k  32. The 

following DNA-based algorithm is applied to yield the range of the value for a 

floating-point number with thirty-two bits in form of single precision format based on 

Excess_127. Tubes T0, T1, T2 are, subsequently, the first, second and third parameters, 

and are set to empty tubes. 

 

Procedure Yield-Single-Precision-Floating-Point-Numbers(T0, T1, T2) 

(1) Append-head(T1, x1
1
). 

(2) Append-head(T2, x1
0
). 

(3) T0 = (T1, T2). 

(4) For k = 2 to 32 

(4a) Amplify(T0, T1, T2). 

(4b) Append-head(T1, xk
 1
). 

(4c) Append-head(T2, xk
 0
). 

(4d) T0 = (T1, T2). 

EndFor 

EndProcedure 

 

Proof of Correction: 

 

After the first execution for Step (1) and Step (2) is completed, tube T1 = {x1
1
} and 

tube T2 = {x1
0
}. Then, after the first execution of Step (3) is implemented, tube T0 = 

{x1
1
, x1

0
}, tube T1 =  and tube T2 = . Step (4) is the main loop and its lower bound 

and the upper bound are, respectively, two and thirty-two, so Steps (4a) through (4d) 

will be implemented thirty-one times. After the first execution of Step (4a) is 

implemented, tube T0 = , tube T1 = {x1
1
, x1

0
} and tube T2 = {x1

1
, x1

0
}. Next, after the 

first execution for Step (4b) and Step (4c) is implemented, tube T1 = {x2
1
 x1

1
, x2

1
 x1

0
} 

and tube T2 = {x2
0
 x1

1
, x2

0
 x1

0
}. After the first execution of Step (4d) is implemented, 

tube T0 = {x2
1
 x1

1
, x2

1
 x1

0
, x2

0
 x1

1
, x2

0
 x1

0
}, tube T1 =  and tube T2 = .  

 

Then, after the second execution of Step (4a) is implemented, tube T0 = , tube T1 
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= {x2
1
 x1

1
, x2

1
 x1

0
, x2

0
 x1

1
, x2

0
 x1

0
} and tube T2 = {x2

1
 x1

1
, x2

1
 x1

0
, x2

0
 x1

1
, x2

0
 x1

0
}. After 

the rest of operations are implemented, tube T1 = , tube T2 =  and the result for 

tube T0 is shown in Table 4.5. In Table 4.5, for this bit pattern, “x32
1
 x31

1
 x30

1
 x29

1
 x28

1
 

x27
1
 x26

1
 x25

1
 x24

1
 x23

1
 x22

1
 x21

1
 x20

1
 x19

1
 x18

1
 x17

1
 x16

1
 x15

1
 x14

1
 x13

1
 x12

1
 x11

1
 x10

1
 x9

1
 x8

1
 x7

1
 

x6
1
 x5

1
 x4

1
 x3

1
 x2

1
 x1

1
”, the leftmost bit is the sign (). The next 8 bits, “x31

1
 x30

1
 x29

1
 x28

1
 

x27
1
 x26

1
 x25

1
 x24

1
”, that subtract 12710 is the exponent (12810). The next 23 bits are the 

mantissa. So, this bit pattern is used to encode (2
128

  1.11111111111111111111111). 

Similarly, in Table 4.5, for that bit pattern, “x32
0
 x31

1
 x30

1
 x29

1
 x28

1
 x27

1
 x26

1
 x25

1
 x24

1
 x23

1
 

x22
1
 x21

1
 x20

1
 x19

1
 x18

1
 x17

1
 x16

1
 x15

1
 x14

1
 x13

1
 x12

1
 x11

1
 x10

1
 x9

1
 x8

1
 x7

1
 x6

1
 x5

1
 x4

1
 x3

1
 x2

1
 x1

1
”, 

it is also used to encode +(2
128

  1.11111111111111111111111). It is derived from 

Table 4.5 that Yield-Single-Precision-Floating-Point-Numbers(T0, T1, T2) can be 

used to construct the range of the value for a floating-point number with thirty-two 

bits in form of single precision format based on Excess_127.    

 

Tube The result is generated by 

Yield-Single-Precision-Floating-Point-Numbers(T0, T1, T2) 

T0 
{x32

1
 x31

1
 x30

1
 x29

1
 x28

1
 x27

1
 x26

1
 x25

1
 x24

1
 x23

1
 x22

1
 x21

1
 x20

1
 x19

1
 x18

1
 x17

1
 x16

1
 x15

1
 

x14
1
 x13

1
 x12

1
 x11

1
 x10

1
 x9

1
 x8

1
 x7

1
 x6

1
 x5

1
 x4

1
 x3

1
 x2

1
 x1

1
 

 

x32
0
 x31

1
 x30

1
 x29

1
 x28

1
 x27

1
 x26

1
 x25

1
 x24

1
 x23

1
 x22

1
 x21

1
 x20

1
 x19

1
 x18

1
 x17

1
 x16

1
 x15

1
 

x14
1
 x13

1
 x12

1
 x11

1
 x10

1
 x9

1
 x8

1
 x7

1
 x6

1
 x5

1
 x4

1
 x3

1
 x2

1
 x1

1
} 

Table 4.5: The result for tube T0 is generated by 

Yield-Single-Precision-Floating-Point-Numbers(T0, T1, T2). 

 

4.11: 

It is supposed that a 64-bit binary number, x64  x1 is employed to encode a 

floating-point number of 64 bits in form of double precision format based on 

Excess_1023, where the value of each bit xk is either 1 or 0 for 1  k  64. The 

following DNA-based algorithm is used to construct the range of the value for a 

floating-point number with sixty-four bits in form of double precision format based on 

Excess_1023. Tubes T0, T1, T2 are, subsequently, the first, second and third parameters, 

and are set to empty tubes. 

 

Procedure Yield-Double-Precision-Floating-Point-Numbers(T0, T1, T2) 

(1) Append-head(T1, x1
1
). 

(2) Append-head(T2, x1
0
). 

(3) T0 = (T1, T2). 

(4) For k = 2 to 64 
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(4a) Amplify(T0, T1, T2). 

(4b) Append-head(T1, xk
 1
). 

(4c) Append-head(T2, xk
 0
). 

(4d) T0 = (T1, T2). 

EndFor 

EndProcedure 

 

Proof of Correction: 

 

After the first execution for Step (1) and Step (2) is implemented, tube T1 = {x1
1
} 

and tube T2 = {x1
0
}. Next, after the first execution of Step (3) is implemented, tube T0 

= {x1
1
, x1

0
}, tube T1 =  and tube T2 = . Step (4) is the main loop and its lower and 

upper bounds are, respectively, two and sixty-four, so Steps (4a) through (4d) will be 

implemented sixty-three times. After the first execution of Step (4a) is implemented, 

tube T0 = , tube T1 = {x1
1
, x1

0
} and tube T2 = {x1

1
, x1

0
}. Next, after the first 

execution for Step (4b) and Step (4c) is implemented, tube T1 = {x2
1
 x1

1
, x2

1
 x1

0
} and 

tube T2 = {x2
0
 x1

1
, x2

0
 x1

0
}. After the first execution of Step (4d) is implemented, tube 

T0 = {x2
1
 x1

1
, x2

1
 x1

0
, x2

0
 x1

1
, x2

0
 x1

0
}, tube T1 =  and tube T2 = .  

 

Then, after the second execution of Step (4a) is implemented, tube T0 = , tube T1 

= {x2
1
 x1

1
, x2

1
 x1

0
, x2

0
 x1

1
, x2

0
 x1

0
} and tube T2 = {x2

1
 x1

1
, x2

1
 x1

0
, x2

0
 x1

1
, x2

0
 x1

0
}. After 

the rest of operations are implemented, tube T1 = , tube T2 =  and the result for 

tube T0 is shown in Table 4.6. In Table 4.6, for this bit pattern, “x64
1
 x63

1
 x62

1
 x61

1
 x60

1
 

x59
1
 x58

1
 x57

1
 x56

1
 x55

1
 x54

1
 x53

1
 x52

1
 x51

1
 x50

1
 x49

1
 x48

1
 x47

1
 x46

1
 x45

1
 x44

1
 x43

1
 x42

1
 x41

1
 x40

1
 

x39
1
 x38

1
 x37

1
 x36

1
 x35

1
 x34

1
 x33

1
 x32

1
 x31

1
 x30

1
 x29

1
 x28

1
 x27

1
 x26

1
 x25

1
 x24

1
 x23

1
 x22

1
 x21

1
 x20

1
 

x19
1
 x18

1
 x17

1
 x16

1
 x15

1
 x14

1
 x13

1
 x12

1
 x11

1
 x10

1
 x9

1
 x8

1
 x7

1
 x6

1
 x5

1
 x4

1
 x3

1
 x2

1
 x1

1”
, the leftmost 

bit is the sign (). The next 11 bits that subtract 102310 is the exponent (102410). The 

next 52 bits are the mantissa. So, this bit pattern is employed to encode (2
1024

  

1.1111111111111111111111111111111111111111111111111111). Similarly, in Table 4.6, 

for that bit pattern, “x64
0
 x63

1
 x62

1
 x61

1
 x60

1
 x59

1
 x58

1
 x57

1
 x56

1
 x55

1
 x54

1
 x53

1
 x52

1
 x51

1
 x50

1
 

x49
1
 x48

1
 x47

1
 x46

1
 x45

1
 x44

1
 x43

1
 x42

1
 x41

1
 x40

1
 x39

1
 x38

1
 x37

1
 x36

1
 x35

1
 x34

1
 x33

1
 x32

1
 x31

1
 x30

1
 

x29
1
 x28

1
 x27

1
 x26

1
 x25

1
 x24

1
 x23

1
 x22

1
 x21

1
 x20

1
 x19

1
 x18

1
 x17

1
 x16

1
 x15

1
 x14

1
 x13

1
 x12

1
 x11

1
 x10

1
 

x9
1
 x8

1
 x7

1
 x6

1
 x5

1
 x4

1
 x3

1
 x2

1
 x1

1
”, it is also employed to encode +(2

1024
  

1.1111111111111111111111111111111111111111111111111111). It is concluded from 

Table 4.6 that Yield-Double-Precision-Floating-Point-Numbers(T0, T1, T2) can be 

used to construct the range of the value for a floating-point number with sixty-four 

bits in form of double precision format based on Excess_1023.    
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Tube The result is generated by 

Yield-Double-Precision-Floating-Point-Numbers(T0, T1, T2) 

T0 
{x64

1
 x63

1
 x62

1
 x61

1
 x60

1
 x59

1
 x58

1
 x57

1
 x56

1
 x55

1
 x54

1
 x53

1
 x52

1
 x51

1
 x50

1
 x49

1
 x48

1
 x47

1
 

x46
1
 x45

1
 x44

1
 x43

1
 x42

1
 x41

1
 x40

1
 x39

1
 x38

1
 x37

1
 x36

1
 x35

1
 x34

1
 x33

1
 x32

1
 x31

1
 x30

1
 x29

1
 

x28
1
 x27

1
 x26

1
 x25

1
 x24

1
 x23

1
 x22

1
 x21

1
 x20

1
 x19

1
 x18

1
 x17

1
 x16

1
 x15

1
 x14

1
 x13

1
 x12

1
 x11

1
 

x10
1
 x9

1
 x8

1
 x7

1
 x6

1
 x5

1
 x4

1
 x3

1
 x2

1
 x1

1
 

 

x64
0
 x63

1
 x62

1
 x61

1
 x60

1
 x59

1
 x58

1
 x57

1
 x56

1
 x55

1
 x54

1
 x53

1
 x52

1
 x51

1
 x50

1
 x49

1
 x48

1
 x47

1
 

x46
1
 x45

1
 x44

1
 x43

1
 x42

1
 x41

1
 x40

1
 x39

1
 x38

1
 x37

1
 x36

1
 x35

1
 x34

1
 x33

1
 x32

1
 x31

1
 x30

1
 x29

1
 

x28
1
 x27

1
 x26

1
 x25

1
 x24

1
 x23

1
 x22

1
 x21

1
 x20

1
 x19

1
 x18

1
 x17

1
 x16

1
 x15

1
 x14

1
 x13

1
 x12

1
 x11

1
 

x10
1
 x9

1
 x8

1
 x7

1
 x6

1
 x5

1
 x4

1
 x3

1
 x2

1
 x1

1
} 

Table 4.6: The result for tube T0 is generated by 

Yield-Double-Precision-Floating-Point-Numbers(T0, T1, T2). 
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Chapter 5 

 

5.1: 

It is assumed that two binary numbers of a bit, R1 and R2, are used to encode the 

first input and the second input for x  0 as shown in Table 5.6.1. Also it is supposed 

that a binary number of a bit, C1, is applied to encode the output for the logical 

operation, x  0. For the sake of convenience, it is supposed that for 1  k  2 Rk
1
 

denotes the fact that the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is 

0. Similarly, it is also assumed that C1
1
 denotes the fact that the value of C1 is 1 and 

C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is offered to 

implement, x  0, as shown in Table 5.6.1. Tubes T0, T1 and T2 are subsequently the 

first, second and third parameters, and are set to empty tubes. 

 

Procedure X-OR-ZERO(T0, T1, T2) 

(1) Append-head(T1, R1
1
). 

(2) Append-head(T2, R1
0
). 

(3) Append-head(T1, R2
0
). 

(4) Append-head(T2, R2
0
). 

(5) Append-head(T1, C1
1
). 

(6) Append-head(T2, C1
0
). 

(7) T0 = (T1, T2). 

EndProcedure 

 

Proof of Correction:  

 

The algorithm, X-OR-ZERO(T0, T1, T2), is implemented by means of the 

append-head and merge operations. Steps (1) through (4) apply the append-head 

operations to yield two different inputs to x  0 as shown in Table 5.6.1. This 

indicates that two different inputs for x  0 as shown in Table 5.6.1 were poured into 

tubes T1 and T2, respectively. Next, Step (5) uses the append-head operation to append 

C1
1
 onto the head of every input in tube T1, and Step (6) applies the append-head 

operation to append C1
0
 onto the head of every input in tube T2. This is to say that two 

different outputs to x  0 as shown in Table 5.6.1 are appended into tubes T1 and T2. 

Finally, the execution of Step (7) uses the merge operation to pour tubes T1 and T2 into 

tube T0. Tube T0 consists of the result implementing, x  0, as shown in Table 5.6.1.   

 
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5.2: 

It is supposed that two binary numbers of a bit, R1 and R2, are employed to encode 

the first input and the second input for x  1 as shown in Table 5.6.2. Also it is 

assumed that a binary number of a bit, C1, is used to encode the output for the logical 

operation, x  1. For the sake of convenience, it is assumed that for 1  k  2 Rk
1
 

denotes the fact that the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is 

0. Similarly, it is also supposed that C1
1
 denotes the fact that the value of C1 is 1 and 

C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is proposed to 

implement, x  1, as shown in Table 5.6.2. Tubes T0, T1 and T2 are subsequently the 

first, second and third parameters, and are set to empty tubes. 

 

Procedure X-AND-ONE(T0, T1, T2) 

(1) Append-head(T1, R1
1
). 

(2) Append-head(T2, R1
0
). 

(3) Append-head(T1, R2
1
). 

(4) Append-head(T2, R2
1
). 

(5) Append-head(T1, C1
1
). 

(6) Append-head(T2, C1
0
). 

(7) T0 = (T1, T2). 

EndProcedure 

 

Proof of Correction:  

 

The algorithm, X-AND-ONE(T0, T1, T2), is implemented by means of the 

append-head and merge operations. Steps (1) through (4) apply the append-head 

operations to produce two different inputs to x  1 as shown in Table 5.6.2. This is to 

say that two different inputs for x  1 as shown in Table 5.6.2 were poured into tubes 

T1 and T2, respectively. Next, Step (5) applies the append-head operation to append 

C1
1
 onto the head of every input in tube T1, and Step (6) uses the append-head 

operation to append C1
0
 onto the head of every input in tube T2. This implies that two 

different outputs to x  1 as shown in Table 5.6.2 are appended into tubes T1 and T2. 

Finally, the execution of Step (7) uses the merge operation to pour tubes T1 and T2 into 

tube T0. Tube T0 includes the result implementing, x  1, as shown in Table 5.6.2.   

 

 

5.3: 

It is assumed that two binary numbers of a bit, R1 and R2, are used to encode the 

first input and the second input for x  x as shown in Table 5.6.3. It is also supposed 
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that a binary number of a bit, C1, is applied to encode the output for the logical 

operation, x  x. For the sake of convenience, it is supposed that for 1  k  2 Rk
1
 

denotes the fact that the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is 

0. Similarly, it is also assumed that C1
1
 denotes the fact that the value of C1 is 1 and 

C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is presented to 

implement, x  x, as shown in Table 5.6.3. Tubes T0, T1 and T2 are subsequently the 

first, second and third parameters, and are set to empty tubes. 

 

Procedure X-OR-NEGATIVE-X(T0, T1, T2) 

(1) Append-head(T1, R1
1
). 

(2) Append-head(T2, R1
0
). 

(3) Append-head(T1, R2
0
). 

(4) Append-head(T2, R2
1
). 

(5) Append-head(T1, C1
1
). 

(6) Append-head(T2, C1
1
). 

(7) T0 = (T1, T2). 

EndProcedure 

 

Proof of Correction:  

 

The algorithm, X-OR-NEGATIVE-X(T0, T1, T2), is implemented by means of the 

append-head and merge operations. Steps (1) through (4) use the append-head 

operations to generate two different inputs to x  x as shown in Table 5.6.3. This 

indicates that two different inputs for x  x as shown in Table 5.6.3 were poured into 

tubes T1 and T2, respectively. Next, Step (5) uses the append-head operation to append 

C1
1
 onto the head of every input in tube T1, and Step (6) also uses the append-head 

operation to append C1
1
 onto the head of every input in tube T2. This is to say that two 

different outputs to x  x as shown in Table 5.6.3 are appended into tubes T1 and T2. 

Finally, the execution of Step (7) uses the merge operation to pour tubes T1 and T2 into 

tube T0. Tube T0 contains the result implementing, x  x, as shown in Table 5.6.3.   

 

 

5.4: 

It is supposed that two binary numbers of a bit, R1 and R2, are employed to encode 

the first input and the second input for x  x as shown in Table 5.6.4. It is also 

assumed that a binary number of a bit, C1, is used to encode the output for the logical 

operation, x  x. For the sake of convenience, it is assumed that for 1  k  2 Rk
1
 

denotes the fact that the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is 
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0. Similarly, it is also supposed that C1
1
 denotes the fact that the value of C1 is 1 and 

C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is offered to 

implement, x  x, as shown in Table 5.6.4. Tubes T0, T1 and T2 are subsequently the 

first, second and third parameters, and are set to empty tubes. 

 

Procedure X-AND-NEGATIVE-X(T0, T1, T2) 

(1) Append-head(T1, R1
1
). 

(2) Append-head(T2, R1
0
). 

(3) Append-head(T1, R2
0
). 

(4) Append-head(T2, R2
1
). 

(5) Append-head(T1, C1
0
). 

(6) Append-head(T2, C1
0
). 

(7) T0 = (T1, T2). 

EndProcedure 

 

Proof of Correction:  

 

The algorithm, X-AND-NEGATIVE-X(T0, T1, T2), is implemented by means of 

the append-head and merge operations. Steps (1) through (4) employ the append-head 

operations to yield two different inputs to x  x as shown in Table 5.6.4. This implies 

that two different inputs for x  x as shown in Table 5.6.4 were poured into tubes T1 

and T2, respectively. Next, Step (5) applies the append-head operation to append C1
0
 

onto the head of every input in tube T1, and Step (6) also applies the append-head 

operation to append C1
0
 onto the head of every input in tube T2. This indicates that 

two different outputs to x  x as shown in Table 5.6.4 are appended into tubes T1 and 

T2. Finally, the execution of Step (7) uses the merge operation to pour tubes T1 and T2 

into tube T0. Tube T0 consists of the result implementing, x  x, as shown in Table 

5.6.4.    

 

5.5: 

It is assumed that two binary numbers of a bit, R1 and R2, are used to encode the 

first input and the second input for x  x as shown in Table 5.6.5. It is also supposed 

that a binary number of a bit, C1, is applied to encode the output for the logical 

operation, x  x. For the sake of convenience, it is supposed that for 1  k  2 Rk
1
 

denotes the fact that the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is 

0. Similarly, it is also assumed that C1
1
 denotes the fact that the value of C1 is 1 and 

C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is proposed to 

implement, x  x, as shown in Table 5.6.5. Tubes T0, T1 and T2 are subsequently the 
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first, second and third parameters, and are set to empty tubes. 

 

Procedure X-OR-X(T0, T1, T2) 

(1) Append-head(T1, R1
1
). 

(2) Append-head(T2, R1
0
). 

(3) Append-head(T1, R2
1
). 

(4) Append-head(T2, R2
0
). 

(5) Append-head(T1, C1
1
). 

(6) Append-head(T2, C1
0
). 

(7) T0 = (T1, T2). 

EndProcedure 

 

Proof of Correction:  

 

The algorithm, X-OR-X(T0, T1, T2), is implemented by means of the append-head 

and merge operations. Steps (1) through (4) use the append-head operations to 

produce two different inputs to x  x as shown in Table 5.6.5. This is to say that two 

different inputs for x  x as shown in Table 5.6.5 were poured into tubes T1 and T2, 

respectively. Next, Step (5) uses the append-head operation to append C1
1
 onto the 

head of every input in tube T1, and Step (6) also uses the append-head operation to 

append C1
0
 onto the head of every input in tube T2. This indicates that two different 

outputs to x  x as shown in Table 5.6.5 are appended into tubes T1 and T2. Finally, the 

execution of Step (7) uses the merge operation to pour tubes T1 and T2 into tube T0. 

Tube T0 includes the result implementing, x  x, as shown in Table 5.6.5.    

 

5.6: 

It is supposed that two binary numbers of a bit, R1 and R2, are employed to encode 

the first input and the second input for x  x as shown in Table 5.6.6. It is also 

assumed that a binary number of a bit, C1, is employed to encode the output for the 

logical operation, x  x. For the sake of convenience, it is assumed that for 1  k  2 

Rk
1
 denotes the fact that the value of Rk is 1 and Rk

0
 denotes the fact that the value of 

Rk is 0. Similarly, it is also supposed that C1
1
 denotes the fact that the value of C1 is 1 

and C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is presented 

to implement, x  x, as shown in Table 5.6.6. Tubes T0, T1 and T2 are subsequently the 

first, second and third parameters, and are set to empty tubes. 

 

Procedure X-AND-X(T0, T1, T2) 

(1) Append-head(T1, R1
1
). 
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(2) Append-head(T2, R1
0
). 

(3) Append-head(T1, R2
1
). 

(4) Append-head(T2, R2
0
). 

(5) Append-head(T1, C1
1
). 

(6) Append-head(T2, C1
0
). 

(7) T0 = (T1, T2). 

EndProcedure 

 

Proof of Correction:  

 

The algorithm, X-AND-X(T0, T1, T2), is implemented by means of the 

append-head and merge operations. Steps (1) through (4) apply the append-head 

operations to generate two different inputs to x  x as shown in Table 5.6.6. This 

indicates that two different inputs for x  x as shown in Table 5.6.6 were poured into 

tubes T1 and T2, respectively. Next, Step (5) applies the append-head operation to 

append C1
1
 onto the head of every input in tube T1, and Step (6) also applies the 

append-head operation to append C1
0
 onto the head of every input in tube T2. This 

implies that two different outputs to x  x as shown in Table 5.6.6 are appended into 

tubes T1 and T2. Finally, the execution of Step (7) uses the merge operation to pour 

tubes T1 and T2 into tube T0. Tube T0 contains the result implementing, x  x, as 

shown in Table 5.6.6.    

 

5.7: 

It is assumed that two binary numbers of a bit, R1 and R2, are used to encode the 

first input and the second input for x  1 as shown in Table 5.6.7. It is also supposed 

that a binary number of a bit, C1, is used to encode the output for the logical operation, 

x  1. For the sake of convenience, it is supposed that for 1  k  2 Rk
1
 denotes the 

fact that the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is 0. Similarly, 

it is also assumed that C1
1
 denotes the fact that the value of C1 is 1 and C1

0
 denotes the 

fact that the value of C1 is 0. The following algorithm is proposed to implement, x  1, 

as shown in Table 5.6.7. Tubes T0, T1 and T2 are subsequently the first, second and 

third parameters, and are set to empty tubes. 

 

Procedure X-OR-ONE(T0, T1, T2) 

(1) Append-head(T1, R1
1
). 

(2) Append-head(T2, R1
0
). 

(3) Append-head(T1, R2
1
). 

(4) Append-head(T2, R2
1
). 
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(5) Append-head(T1, C1
1
). 

(6) Append-head(T2, C1
1
). 

(7) T0 = (T1, T2). 

EndProcedure 

 

Proof of Correction:  

 

The algorithm, X-OR-ONE(T0, T1, T2), is implemented by means of the 

append-head and merge operations. Steps (1) through (4) use the append-head 

operations to yield two different inputs to x  1 as shown in Table 5.6.7. This implies 

that two different inputs for x  1 as shown in Table 5.6.7 were poured into tubes T1 

and T2, respectively. Next, Step (5) applies the append-head operation to append C1
1
 

onto the head of every input in tube T1, and Step (6) also applies the append-head 

operation to append C1
1
 onto the head of every input in tube T2. This is to say that two 

different outputs to x  1 as shown in Table 5.6.7 are appended into tubes T1 and T2. 

Finally, the execution of Step (7) uses the merge operation to pour tubes T1 and T2 into 

tube T0. Tube T0 consists of the result implementing, x  1, as shown in Table 5.6.7.   

 

 

5.8: 

It is supposed that two binary numbers of a bit, R1 and R2, are employed to encode 

the first input and the second input for x  0 as shown in Table 5.6.8. It is also 

assumed that a binary number of a bit, C1, is applied to encode the output for the 

logical operation, x  0. For the sake of convenience, it is assumed that for 1  k  2 

Rk
1
 denotes the fact that the value of Rk is 1 and Rk

0
 denotes the fact that the value of 

Rk is 0. Similarly, it is also supposed that C1
1
 denotes the fact that the value of C1 is 1 

and C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is offered to 

implement, x  0, as shown in Table 5.6.8. Tubes T0, T1 and T2 are subsequently the 

first, second and third parameters, and are set to empty tubes. 

 

Procedure X-AND-ZERO(T0, T1, T2) 

(1) Append-head(T1, R1
1
). 

(2) Append-head(T2, R1
0
). 

(3) Append-head(T1, R2
0
). 

(4) Append-head(T2, R2
0
). 

(5) Append-head(T1, C1
0
). 

(6) Append-head(T2, C1
0
). 

(7) T0 = (T1, T2). 
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EndProcedure 

 

Proof of Correction:  

 

The algorithm, X-AND-ZERO(T0, T1, T2), is implemented by means of the 

append-head and merge operations. Steps (1) through (4) use the append-head 

operations to produce two different inputs to x  0 as shown in Table 5.6.8. This is to 

say that two different inputs for x  0 as shown in Table 5.6.8 were poured into tubes 

T1 and T2, respectively. Next, Step (5) uses the append-head operation to append C1
0
 

onto the head of every input in tube T1, and Step (6) also uses the append-head 

operation to append C1
0
 onto the head of every input in tube T2. This indicates that 

two different outputs to x  0 as shown in Table 5.6.8 are appended into tubes T1 and 

T2. Finally, the execution of Step (7) uses the merge operation to pour tubes T1 and T2 

into tube T0. Tube T0 includes the result implementing, x  0, as shown in Table 5.6.8.   

 

 

5.9: 

It is assumed that two binary numbers of a bit, R1 and R2, are applied to encode 

the first input and the second input for (x) as shown in Table 5.6.9. It is also 

supposed that a binary number of a bit, C1, is employed to encode the output for the 

logical operation, (x). For the sake of convenience, it is supposed that for 1  k  2 

Rk
1
 denotes the fact that the value of Rk is 1 and Rk

0
 denotes the fact that the value of 

Rk is 0. Similarly, it is also assumed that C1
1
 denotes the fact that the value of C1 is 1 

and C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is presented 

to implement, (x), as shown in Table 5.6.9. Tubes T0, T1 and T2 are subsequently the 

first, second and third parameters, and are set to empty tubes. 

 

Procedure X-NEGATIVE-NEGATIVE(T0, T1, T2) 

(1) Append-head(T1, R1
1
). 

(2) Append-head(T2, R1
0
). 

(3) Append-head(T1, R2
0
). 

(4) Append-head(T2, R2
1
). 

(5) Append-head(T1, C1
1
). 

(6) Append-head(T2, C1
0
). 

(7) T0 = (T1, T2). 

EndProcedure 

 

Proof of Correction:  
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The algorithm, X-NEGATIVE-NEGATIVE(T0, T1, T2), is implemented by 

means of the append-head and merge operations. Steps (1) through (4) apply the 

append-head operations to generate two different inputs to (x) as shown in Table 

5.6.9. This indicates that two different inputs for (x) as shown in Table 5.6.9 were 

poured into tubes T1 and T2, respectively. Next, Step (5) applies the append-head 

operation to append C1
1
 onto the head of every input in tube T1, and Step (6) also uses 

the append-head operation to append C1
0
 onto the head of every input in tube T2. This 

is to say that two different outputs to (x) as shown in Table 5.6.9 are appended into 

tubes T1 and T2. Finally, the execution of Step (7) uses the merge operation to pour 

tubes T1 and T2 into tube T0. Tube T0 contains the result implementing, (x), as shown 

in Table 5.6.9.    

 

5.10: 

It is supposed that two binary numbers of a bit, R1 and R2, are applied to encode 

the first input and the second input for x  y

 as shown in Table 5.6.10. Also it is 

assumed that a binary number of a bit, C1, is employed to encode the output for x  y

. 

For the sake of convenience, it is supposed that for 1  k  2 Rk
1
 denotes the fact that 

the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is 0. Similarly, it is 

also assumed that C1
1
 denotes the fact that the value of C1 is 1 and C1

0
 denotes the fact 

that the value of C1 is 0. The following algorithm is proposed to implement x  y

 as 

shown in Table 5.6.10. Tubes T0, T1, T2, T3, T4, T5 and T6 are subsequently the first, 

second, third, fourth, fifth, sixth and seventh parameters, and are set to empty tubes. 

 

Procedure X-AND-NEGATIVE-Y(T0, T1, T2, T3, T4, T5, T6) 

(1) Append-head(T1, R1
1
). 

(2) Append-head(T2, R1
0
). 

(3) T0 = (T1, T2). 

(4) For k = 2 to 2 

(4a) Amplify(T0, T1, T2). 

(4b) Append-head(T1, Rk
1
). 

(4c) Append-head(T2, Rk
0
). 

(4d) T0 = (T1, T2). 

EndFor 

(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
). 

(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
). 

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
). 

(8) Append-head(T3, C1
0
). 
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(9) Append-head(T4, C1
1
). 

(10) Append-head(T5, C1
0
). 

(11) Append-head(T6, C1
0
). 

(12) T0 = (T3, T4, T5, T6). 

EndProcedure 

 

Proof of Correction: 

 

The algorithm, X-AND-NEGATIVE-Y(T0, T1, T2, T3, T4, T5, T6), is implemented by 

means of the extract, amplify, append-head and merge operations. Steps (1) through 

(4d) use the amplify, append-head and merge operations to generate four different 

inputs to x  y

 as shown in Table 5.6.10. Next, Steps (5) through (7) apply the extract 

operations to form some different tubes containing different inputs (T1 to T6). T1 

contains all of the inputs that have R1 = 1, T2 contains all of the inputs that have R1 = 0, 

T3 contains that input that has R1 = 1 and R2 = 1, T4 contains that input that has R1 = 1 

and R2 = 0, T5 contains that input that has R1 = 0 and R2 = 1, and finally, T6 contains 

that input that has R1 = 0 and R2 = 0. This is to say that four different inputs for x  y

 

as shown in Table 5.6.10 were poured into tubes T3 through T6, respectively. Next, 

Steps (8) through (11) employ the append-head operations to append C1
0
 and C1

1
 onto 

the head of every input in the corresponding tubes. This implies that four different 

outputs to x  y

 as shown in Table 5.6.10 are appended into tubes T3 through T6. 

Finally, the execution of Step (12) uses the merge operation to pour tubes T3 through 

T6 into tube T0. Tube T0 consists of the result implementing, x  y

, as shown in Table 

5.6.10.   
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Chapter 6 

 

6.1: 

It is assumed that two binary numbers of a bit, R1 and R2, are employed to encode 

the first input and the second input for x  (x  y) as shown in Table 6.10.1. Also it is 

supposed that a binary number of a bit, C1, is used to encode the output for x  (x  y). 

For the sake of convenience, it is assumed that for 1  k  2 Rk
1
 denotes the fact that 

the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is 0. Similarly, it is 

also supposed that C1
1
 denotes the fact that the value of C1 is 1 and C1

0
 denotes the 

fact that the value of C1 is 0. The following algorithm is offered to implement, x  (x 

 y), as shown in Table 6.10.1. Tubes T0, T1, T2, T3, T4, T5 and T6 are subsequently the 

first, second, third, fourth, fifth, sixth and seventh parameters, and are set to empty 

tubes. 

 

Procedure X-OR-X-AND-Y(T0, T1, T2, T3, T4, T5, T6) 

(1) Append-head(T1, R1
1
). 

(2) Append-head(T2, R1
0
). 

(3) T0 = (T1, T2). 

(4) For k = 2 to 2 

(4a) Amplify(T0, T1, T2). 

(4b) Append-head(T1, Rk
1
). 

(4c) Append-head(T2, Rk
0
). 

(4d) T0 = (T1, T2). 

EndFor 

(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
). 

(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
). 

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
). 

(8) Append-head(T3, C1
1
). 

(9) Append-head(T4, C1
1
). 

(10) Append-head(T5, C1
0
). 

(11) Append-head(T6, C1
0
). 

(12) T0 = (T3, T4, T5, T6). 

EndProcedure 

 

Proof of Correction: 

 

The algorithm, X-OR-X-AND-Y(T0, T1, T2, T3, T4, T5, T6), is implemented by 
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means of the extract, amplify, append-head and merge operations. Steps (1) through 

(4d) use the amplify, append-head and merge operations to yield four different inputs 

to x  (x  y) as shown in Table 6.10.1. Next, Steps (5) through (7) use the extract 

operations to produce some different tubes including different inputs (T1 to T6). T1 

includes all of the inputs that have R1 = 1, T2 includes all of the inputs that have R1 = 0, 

T3 includes that input that has R1 = 1 and R2 = 1, T4 includes that input that has R1 = 1 

and R2 = 0, T5 includes that input that has R1 = 0 and R2 = 1, and finally, T6 includes 

that input that has R1 = 0 and R2 = 0. This indicates that four different inputs for x  (x 

 y) as shown in Table 6.10.1 were poured into tubes T3 through T6, respectively. Next, 

Steps (8) through (11) apply the append-head operations to append C1
1
 and C1

0
 onto 

the head of every input in the corresponding tubes. This is to say that four different 

outputs to x  (x  y) as shown in Table 6.10.1 are appended into tubes T3 through T6. 

Finally, the execution of Step (12) applies the merge operation to pour tubes T3 

through T6 into tube T0. Tube T0 contains the result implementing, x  (x  y), as 

shown in Table 6.10.1.    

 

6.2: 

It is supposed that two binary numbers of a bit, R1 and R2, are used to encode the 

first input and the second input for x  (x  y) as shown in Table 6.10.2. Also it is 

assumed that a binary number of a bit, C1, is applied to encode the output for x  (x  

y). For the sake of convenience, it is supposed that for 1  k  2 Rk
1
 denotes the fact 

that the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is 0. Similarly, it is 

also assumed that C1
1
 denotes the fact that the value of C1 is 1 and C1

0
 denotes the fact 

that the value of C1 is 0. The following algorithm is presented to implement, x  (x  

y), as shown in Table 6.10.2. Tubes T0, T1, T2, T3, T4, T5 and T6 are subsequently the 

first, second, third, fourth, fifth, sixth and seventh parameters, and are set to empty 

tubes. 

 

Procedure X-AND-X-OR-Y(T0, T1, T2, T3, T4, T5, T6) 

(1) Append-head(T1, R1
1
). 

(2) Append-head(T2, R1
0
). 

(3) T0 = (T1, T2). 

(4) For k = 2 to 2 

(4a) Amplify(T0, T1, T2). 

(4b) Append-head(T1, Rk
1
). 

(4c) Append-head(T2, Rk
0
). 

(4d) T0 = (T1, T2). 

EndFor 
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(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
). 

(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
). 

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
). 

(8) Append-head(T3, C1
1
). 

(9) Append-head(T4, C1
1
). 

(10) Append-head(T5, C1
0
). 

(11) Append-head(T6, C1
0
). 

(12) T0 = (T3, T4, T5, T6). 

EndProcedure 

 

Proof of Correction: 

 

The algorithm, X-AND-X-OR-Y(T0, T1, T2, T3, T4, T5, T6), is implemented by 

means of the extract, amplify, append-head and merge operations. Steps (1) through 

(4d) use the amplify, append-head and merge operations to generate four different 

inputs to x  (x  y) as shown in Table 6.10.2. Next, Steps (5) through (7) apply the 

extract operations to yield some different tubes containing different inputs (T1 to T6). 

T1 consists of all of the inputs that have R1 = 1, T2 consists of all of the inputs that 

have R1 = 0, T3 consists of that input that has R1 = 1 and R2 = 1, T4 consists of that 

input that has R1 = 1 and R2 = 0, T5 consists of that input that has R1 = 0 and R2 = 1, 

and finally, T6 consists of that input that has R1 = 0 and R2 = 0. This implies that four 

different inputs for x  (x  y) as shown in Table 6.10.2 were poured into tubes T3 

through T6, respectively. Next, Steps (8) through (11) employ the append-head 

operations to append C1
1
 and C1

0
 onto the head of every input in the corresponding 

tubes. This indicates that four different outputs to x  (x  y) as shown in Table 6.10.2 

are appended into tubes T3 through T6. Finally, the execution of Step (12) uses the 

merge operation to pour tubes T3 through T6 into tube T0. Tube T0 includes the result 

implementing, x  (x  y), as shown in Table 6.10.2.    

 

6.3: 

It is assumed that two binary numbers of a bit, R1 and R2, are applied to encode 

the first input and the second input for y  (y  x) as shown in Table 6.10.3. Also it is 

supposed that a binary number of a bit, C1, is employed to encode the output for y  (y 

 x). For the sake of convenience, it is assumed that for 1  k  2 Rk
1
 denotes the fact 

that the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is 0. Similarly, it is 

also supposed that C1
1
 denotes the fact that the value of C1 is 1 and C1

0
 denotes the 

fact that the value of C1 is 0. The following algorithm is proposed to implement, y  

(y  x), as shown in Table 6.10.3. Tubes T0, T1, T2, T3, T4, T5 and T6 are subsequently 
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the first, second, third, fourth, fifth, sixth and seventh parameters, and are set to empty 

tubes. 

 

Procedure Y-OR-Y-AND-X(T0, T1, T2, T3, T4, T5, T6) 

(1) Append-head(T1, R1
1
). 

(2) Append-head(T2, R1
0
). 

(3) T0 = (T1, T2). 

(4) For k = 2 to 2 

(4a) Amplify(T0, T1, T2). 

(4b) Append-head(T1, Rk
1
). 

(4c) Append-head(T2, Rk
0
). 

(4d) T0 = (T1, T2). 

EndFor 

(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
). 

(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
). 

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
). 

(8) Append-head(T3, C1
1
). 

(9) Append-head(T4, C1
0
). 

(10) Append-head(T5, C1
1
). 

(11) Append-head(T6, C1
0
). 

(12) T0 = (T3, T4, T5, T6). 

EndProcedure 

 

Proof of Correction: 

 

The algorithm, Y-OR-Y-AND-X(T0, T1, T2, T3, T4, T5, T6), is implemented by 

means of the extract, amplify, append-head and merge operations. Steps (1) through 

(4d) use the amplify, append-head and merge operations to produce four different 

inputs to y  (y  x) as shown in Table 6.10.3. Next, Steps (5) through (7) use the 

extract operations to generate some different tubes consisting of different inputs (T1 to 

T6). T1 contains all of the inputs that have R1 = 1, T2 contains all of the inputs that 

have R1 = 0, T3 contains that input that has R1 = 1 and R2 = 1, T4 contains that input 

that has R1 = 1 and R2 = 0, T5 contains that input that has R1 = 0 and R2 = 1, and finally, 

T6 contains that input that has R1 = 0 and R2 = 0. This is to say that four different 

inputs for y  (y  x) as shown in Table 6.10.3 were poured into tubes T3 through T6, 

respectively. Next, Steps (8) through (11) apply the append-head operations to append 

C1
1
 and C1

0
 onto the head of every input in the corresponding tubes. This is to say that 

four different outputs to y  (y  x) as shown in Table 6.10.3 are appended into tubes 
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T3 through T6. Finally, the execution of Step (12) applies the merge operation to pour 

tubes T3 through T6 into tube T0. Tube T0 consists of the result implementing, y  (y  

x), as shown in Table 6.10.3.    

 

6.4: 

It is supposed that two binary numbers of a bit, R1 and R2, are used to encode the 

first input and the second input for y  (y  x) as shown in Table 6.10.4. Also it is 

assumed that a binary number of a bit, C1, is used to encode the output for y  (y  x). 

For the sake of convenience, it is supposed that for 1  k  2 Rk
1
 denotes the fact that 

the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is 0. Similarly, it is 

also assumed that C1
1
 denotes the fact that the value of C1 is 1 and C1

0
 denotes the fact 

that the value of C1 is 0. The following algorithm is offered to implement, y  (y  x), 

as shown in Table 6.10.4. Tubes T0, T1, T2, T3, T4, T5 and T6 are subsequently the first, 

second, third, fourth, fifth, sixth and seventh parameters, and are set to empty tubes. 

 

Procedure Y-AND-Y-OR-X(T0, T1, T2, T3, T4, T5, T6) 

(1) Append-head(T1, R1
1
). 

(2) Append-head(T2, R1
0
). 

(3) T0 = (T1, T2). 

(4) For k = 2 to 2 

(4a) Amplify(T0, T1, T2). 

(4b) Append-head(T1, Rk
1
). 

(4c) Append-head(T2, Rk
0
). 

(4d) T0 = (T1, T2). 

EndFor 

(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
). 

(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
). 

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
). 

(8) Append-head(T3, C1
1
). 

(9) Append-head(T4, C1
0
). 

(10) Append-head(T5, C1
1
). 

(11) Append-head(T6, C1
0
). 

(12) T0 = (T3, T4, T5, T6). 

EndProcedure 

 

Proof of Correction: 

 

The algorithm, Y-AND-Y-OR-X(T0, T1, T2, T3, T4, T5, T6), is implemented by 
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means of the extract, amplify, append-head and merge operations. Steps (1) through 

(4d) apply the amplify, append-head and merge operations to yield four different 

inputs to y  (y  x) as shown in Table 6.10.4. Next, Steps (5) through (7) apply the 

extract operations to produce some different tubes including different inputs (T1 to T6). 

T1 includes all of the inputs that have R1 = 1, T2 includes all of the inputs that have R1 

= 0, T3 includes that input that has R1 = 1 and R2 = 1, T4 includes that input that has R1 

= 1 and R2 = 0, T5 includes that input that has R1 = 0 and R2 = 1, and finally, T6 

includes that input that has R1 = 0 and R2 = 0. This implies that four different inputs 

for y  (y  x) as shown in Table 6.10.4 were poured into tubes T3 through T6, 

respectively. Next, Steps (8) through (11) use the append-head operations to append 

C1
1
 and C1

0
 onto the head of every input in the corresponding tubes. This implies that 

four different outputs to y  (y  x) as shown in Table 6.10.4 are appended into tubes 

T3 through T6. Finally, the execution of Step (12) uses the merge operation to pour 

tubes T3 through T6 into tube T0. Tube T0 includes the result implementing, y  (y  x), 

as shown in Table 6.10.4.    

 

6.5: 

It is assumed that two binary numbers of a bit, R1 and R2, are applied to encode 

the first input and the second input for x

  y as shown in Table 6.10.5. Also it is 

supposed that a binary number of a bit, C1, is employed to encode the output for x

  y. 

For the sake of convenience, it is assumed that for 1  k  2 Rk
1
 denotes the fact that 

the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is 0. Similarly, it is 

also supposed that C1
1
 denotes the fact that the value of C1 is 1 and C1

0
 denotes the 

fact that the value of C1 is 0. The following algorithm is proposed to implement, x

  y, 

as shown in Table 6.10.5. Tubes T0, T1, T2, T3, T4, T5 and T6 are subsequently the first, 

second, third, fourth, fifth, sixth and seventh parameters, and are set to empty tubes. 

 

Procedure NEGATIVE-X-AND-Y(T0, T1, T2, T3, T4, T5, T6) 

(1) Append-head(T1, R1
1
). 

(2) Append-head(T2, R1
0
). 

(3) T0 = (T1, T2). 

(4) For k = 2 to 2 

(4a) Amplify(T0, T1, T2). 

(4b) Append-head(T1, Rk
1
). 

(4c) Append-head(T2, Rk
0
). 

(4d) T0 = (T1, T2). 

EndFor 

(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
). 
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(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
). 

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
). 

(8) Append-head(T3, C1
0
). 

(9) Append-head(T4, C1
0
). 

(10) Append-head(T5, C1
1
). 

(11) Append-head(T6, C1
0
). 

(12) T0 = (T3, T4, T5, T6). 

EndProcedure 

 

Proof of Correction: 

 

The algorithm, NEGATIVE-X-AND-Y(T0, T1, T2, T3, T4, T5, T6), is implemented 

by means of the extract, amplify, append-head and merge operations. Steps (1) 

through (4d) employ the amplify, append-head and merge operations to produce four 

different inputs to x

  y as shown in Table 6.10.5. Next, Steps (5) through (7) use the 

extract operations to generate some different tubes containing different inputs (T1 to 

T6). T1 contains all of the inputs that have R1 = 1, T2 contains all of the inputs that 

have R1 = 0, T3 contains that input that has R1 = 1 and R2 = 1, T4 contains that input 

that has R1 = 1 and R2 = 0, T5 contains that input that has R1 = 0 and R2 = 1, and finally, 

T6 contains that input that has R1 = 0 and R2 = 0. This is to say that four different 

inputs for x

  y as shown in Table 6.10.5 were poured into tubes T3 through T6, 

respectively. Next, Steps (8) through (11) apply the append-head operations to append 

C1
0
 and C1

1
 onto the head of every input in the corresponding tubes. This indicates 

that four different outputs to x

  y as shown in Table 6.10.5 are appended into tubes 

T3 through T6. Finally, the execution of Step (12) applies the merge operation to pour 

tubes T3 through T6 into tube T0. Tube T0 consists of the result implementing, x

  y, as 

shown in Table 6.10.5.    

 

6.6: 

It is supposed that two binary numbers of a bit, R1 and R2, are employed to encode 

the first input and the second input for (x  y)  (x

  y


) as shown in Table 6.10.6. 

Also it is assumed that a binary number of a bit, C1, is applied to encode the output for 

(x  y)  (x

  y


). For the sake of convenience, it is supposed that for 1  k  2 Rk

1
 

denotes the fact that the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is 

0. Similarly, it is also assumed that C1
1
 denotes the fact that the value of C1 is 1 and 

C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is presented to 

implement, (x  y)  (x

  y


), as shown in Table 6.10.6. Tubes T0, T1, T2, T3, T4, T5 and 

T6 are subsequently the first, second, third, fourth, fifth, sixth and seventh parameters, 
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and are set to empty tubes. 

 

Procedure X-AND-Y-OR-NEGATIVE-X-AND-NEGATIVE-Y(T0, T1, T2, T3, T4, 

T5, T6) 

(1) Append-head(T1, R1
1
). 

(2) Append-head(T2, R1
0
). 

(3) T0 = (T1, T2). 

(4) For k = 2 to 2 

(4a) Amplify(T0, T1, T2). 

(4b) Append-head(T1, Rk
1
). 

(4c) Append-head(T2, Rk
0
). 

(4d) T0 = (T1, T2). 

EndFor 

(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
). 

(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
). 

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
). 

(8) Append-head(T3, C1
1
). 

(9) Append-head(T4, C1
0
). 

(10) Append-head(T5, C1
0
). 

(11) Append-head(T6, C1
1
). 

(12) T0 = (T3, T4, T5, T6). 

EndProcedure 

 

Proof of Correction: 

 

The algorithm, X-AND-Y-OR-NEGATIVE-X-AND-NEGATIVE-Y(T0, T1, T2, 

T3, T4, T5, T6), is implemented by means of the extract, amplify, append-head and 

merge operations. Steps (1) through (4d) use the amplify, append-head and merge 

operations to yield four different inputs to (x  y)  (x

  y


) as shown in Table 6.10.6. 

Next, Steps (5) through (7) employ the extract operations to form some different tubes 

consisting of different inputs (T1 to T6). T1 consists of all of the inputs that have R1 = 1, 

T2 consists of all of the inputs that have R1 = 0, T3 consists of that input that has R1 = 1 

and R2 = 1, T4 consists of that input that has R1 = 1 and R2 = 0, T5 consists of that 

input that has R1 = 0 and R2 = 1, and finally, T6 consists of that input that has R1 = 0 

and R2 = 0. This indicates that four different inputs for (x  y)  (x

  y


) as shown in 

Table 6.10.6 were poured into tubes T3 through T6, respectively. Next, Steps (8) 

through (11) use the append-head operations to append C1
1
 and C1

0
 onto the head of 

every input in the corresponding tubes. This implies that four different outputs to (x  
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y)  (x

  y


) as shown in Table 6.10.6 are appended into tubes T3 through T6. Finally, 

the execution of Step (12) uses the merge operation to pour tubes T3 through T6 into 

tube T0. Tube T0 includes the result implementing, (x  y)  (x

  y


), as shown in 

Table 6.10.6.    

 

6.7: 

It is assumed that two binary numbers of a bit, R1 and R2, are used to encode the 

first input and the second input for y

 as shown in Table 6.10.7. Also it is supposed 

that a binary number of a bit, C1, is used to encode the output for y

. For the sake of 

convenience, it is assumed that for 1  k  2 Rk
1
 denotes the fact that the value of Rk is 

1 and Rk
0

 denotes the fact that the value of Rk is 0. Similarly, it is also supposed that 

C1
1
 denotes the fact that the value of C1 is 1 and C1

0
 denotes the fact that the value of 

C1 is 0. The following algorithm is proposed to implement, y

, as shown in Table 

6.10.7. Tubes T0, T1, T2, T3, T4, T5 and T6 are subsequently the first, second, third, 

fourth, fifth, sixth and seventh parameters, and are set to empty tubes. 

 

Procedure NEGATIVE-Y(T0, T1, T2, T3, T4, T5, T6) 

(1) Append-head(T1, R1
1
). 

(2) Append-head(T2, R1
0
). 

(3) T0 = (T1, T2). 

(4) For k = 2 to 2 

(4a) Amplify(T0, T1, T2). 

(4b) Append-head(T1, Rk
1
). 

(4c) Append-head(T2, Rk
0
). 

(4d) T0 = (T1, T2). 

EndFor 

(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
). 

(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
). 

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
). 

(8) Append-head(T3, C1
0
). 

(9) Append-head(T4, C1
1
). 

(10) Append-head(T5, C1
0
). 

(11) Append-head(T6, C1
1
). 

(12) T0 = (T3, T4, T5, T6). 

EndProcedure 

 

Proof of Correction: 
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The algorithm, NEGATIVE-Y(T0, T1, T2, T3, T4, T5, T6), is implemented by means 

of the extract, amplify, append-head and merge operations. Steps (1) through (4d) 

apply the amplify, append-head and merge operations to produce four different inputs 

to y

 as shown in Table 6.10.7. Next, Steps (5) through (7) use the extract operations 

to generate some different tubes including different inputs (T1 to T6). T1 includes all of 

the inputs that have R1 = 1, T2 includes all of the inputs that have R1 = 0, T3 includes 

that input that has R1 = 1 and R2 = 1, T4 includes that input that has R1 = 1 and R2 = 0, 

T5 includes that input that has R1 = 0 and R2 = 1, and finally, T6 includes that input that 

has R1 = 0 and R2 = 0. This is to say that four different inputs for y

 as shown in Table 

6.10.7 were poured into tubes T3 through T6, respectively. Next, Steps (8) through (11) 

apply the append-head operations to append C1
0
 and C1

1
 onto the head of every input 

in the corresponding tubes. This indicates that four different outputs to y

 as shown in 

Table 6.10.7 are appended into tubes T3 through T6. Finally, the execution of Step (12) 

applies the merge operation to pour tubes T3 through T6 into tube T0. Tube T0 contains 

the result implementing, y

, as shown in Table 6.10.7.    

 

6.8: 

It is supposed that two binary numbers of a bit, R1 and R2, are employed to encode 

the first input and the second input for x

 as shown in Table 6.10.8. Also it is assumed 

that a binary number of a bit, C1, is applied to encode the output for x

. For the sake of 

convenience, it is supposed that for 1  k  2 Rk
1
 denotes the fact that the value of Rk 

is 1 and Rk
0
 denotes the fact that the value of Rk is 0. Similarly, it is also assumed that 

C1
1
 denotes the fact that the value of C1 is 1 and C1

0
 denotes the fact that the value of 

C1 is 0. The following algorithm is offered to implement, x

, as shown in Table 6.10.8. 

Tubes T0, T1, T2, T3, T4, T5 and T6 are subsequently the first, second, third, fourth, fifth, 

sixth and seventh parameters, and are set to empty tubes. 

 

Procedure NEGATIVE-X(T0, T1, T2, T3, T4, T5, T6) 

(1) Append-head(T1, R1
1
). 

(2) Append-head(T2, R1
0
). 

(3) T0 = (T1, T2). 

(4) For k = 2 to 2 

(4a) Amplify(T0, T1, T2). 

(4b) Append-head(T1, Rk
1
). 

(4c) Append-head(T2, Rk
0
). 

(4d) T0 = (T1, T2). 

EndFor 

(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
). 
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(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
). 

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
). 

(8) Append-head(T3, C1
0
). 

(9) Append-head(T4, C1
0
). 

(10) Append-head(T5, C1
1
). 

(11) Append-head(T6, C1
1
). 

(12) T0 = (T3, T4, T5, T6). 

EndProcedure 

 

Proof of Correction: 

 

The algorithm, NEGATIVE-X(T0, T1, T2, T3, T4, T5, T6), is implemented by means 

of the extract, amplify, append-head and merge operations. Steps (1) through (4d) use 

the amplify, append-head and merge operations to yield four different inputs to x

 as 

shown in Table 6.10.8. Next, Steps (5) through (7) apply the extract operations to 

produce some different tubes containing different inputs (T1 to T6). T1 contains all of 

the inputs that have R1 = 1, T2 contains all of the inputs that have R1 = 0, T3 contains 

that input that has R1 = 1 and R2 = 1, T4 contains that input that has R1 = 1 and R2 = 0, 

T5 contains that input that has R1 = 0 and R2 = 1, and finally, T6 contains that input that 

has R1 = 0 and R2 = 0. This indicates that four different inputs for x

 as shown in Table 

6.10.8 were poured into tubes T3 through T6, respectively. Next, Steps (8) through (11) 

use the append-head operations to append C1
0
 and C1

1
 onto the head of every input in 

the corresponding tubes. This is to say that four different outputs to x

 as shown in 

Table 6.10.8 are appended into tubes T3 through T6. Finally, the execution of Step (12) 

uses the merge operation to pour tubes T3 through T6 into tube T0. Tube T0 consists of 

the result implementing, x

, as shown in Table 6.10.8.    

 

6.9: 

It is assumed that two binary numbers of a bit, R1 and R2, are applied to encode 

the first input and the second input for x  y

 as shown in Table 6.10.9. Also it is 

supposed that a binary number of a bit, C1, is employed to encode the output for x  y

. 

For the sake of convenience, it is assumed that for 1  k  2 Rk
1
 denotes the fact that 

the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is 0. Similarly, it is 

also supposed that C1
1
 denotes the fact that the value of C1 is 1 and C1

0
 denotes the 

fact that the value of C1 is 0. The following algorithm is presented to implement, x  

y

, as shown in Table 6.10.9. Tubes T0, T1, T2, T3, T4, T5 and T6 are subsequently the 

first, second, third, fourth, fifth, sixth and seventh parameters, and are set to empty 

tubes. 
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Procedure X-OR-NEGATIVE-Y(T0, T1, T2, T3, T4, T5, T6) 

(1) Append-head(T1, R1
1
). 

(2) Append-head(T2, R1
0
). 

(3) T0 = (T1, T2). 

(4) For k = 2 to 2 

(4a) Amplify(T0, T1, T2). 

(4b) Append-head(T1, Rk
1
). 

(4c) Append-head(T2, Rk
0
). 

(4d) T0 = (T1, T2). 

EndFor 

(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
). 

(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
). 

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
). 

(8) Append-head(T3, C1
1
). 

(9) Append-head(T4, C1
1
). 

(10) Append-head(T5, C1
0
). 

(11) Append-head(T6, C1
1
). 

(12) T0 = (T3, T4, T5, T6). 

EndProcedure 

 

Proof of Correction: 

 

The algorithm, X-OR-NEGATIVE-Y(T0, T1, T2, T3, T4, T5, T6), is implemented 

by means of the extract, amplify, append-head and merge operations. Steps (1) 

through (4d) apply the amplify, append-head and merge operations to generate four 

different inputs to x  y

 as shown in Table 6.10.9. Next, Steps (5) through (7) use the 

extract operations to yield some different tubes including different inputs (T1 to T6). 

T1 includes all of the inputs that have R1 = 1, T2 includes all of the inputs that have R1 

= 0, T3 includes that input that has R1 = 1 and R2 = 1, T4 includes that input that has R1 

= 1 and R2 = 0, T5 includes that input that has R1 = 0 and R2 = 1, and finally, T6 

includes that input that has R1 = 0 and R2 = 0. This is to say that four different inputs 

for x  y

 as shown in Table 6.10.9 were poured into tubes T3 through T6, respectively. 

Next, Steps (8) through (11) apply the append-head operations to append C1
1
 and C1

0
 

onto the head of every input in the corresponding tubes. This implies that four 

different outputs to x  y

 as shown in Table 6.10.9 are appended into tubes T3 through 

T6. Finally, the execution of Step (12) applies the merge operation to pour tubes T3 

through T6 into tube T0. Tube T0 contains the result implementing, x  y

, as shown in 
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Table 6.10.9.    

 

6.10: 

It is supposed that two binary numbers of a bit, R1 and R2, are used to encode the 

first input and the second input for x

  y as shown in Table 6.10.10. Also it is 

assumed that a binary number of a bit, C1, is applied to encode the output for x

  y. 

For the sake of convenience, it is supposed that for 1  k  2 Rk
1
 denotes the fact that 

the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is 0. Similarly, it is 

also assumed that C1
1
 denotes the fact that the value of C1 is 1 and C1

0
 denotes the fact 

that the value of C1 is 0. The following algorithm is proposed to implement, x

  y, as 

shown in Table 6.10.10. Tubes T0, T1, T2, T3, T4, T5 and T6 are subsequently the first, 

second, third, fourth, fifth, sixth and seventh parameters, and are set to empty tubes. 

 

Procedure NEGATIVE-X-OR-Y(T0, T1, T2, T3, T4, T5, T6) 

(1) Append-head(T1, R1
1
). 

(2) Append-head(T2, R1
0
). 

(3) T0 = (T1, T2). 

(4) For k = 2 to 2 

(4a) Amplify(T0, T1, T2). 

(4b) Append-head(T1, Rk
1
). 

(4c) Append-head(T2, Rk
0
). 

(4d) T0 = (T1, T2). 

EndFor 

(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
). 

(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
). 

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
). 

(8) Append-head(T3, C1
1
). 

(9) Append-head(T4, C1
0
). 

(10) Append-head(T5, C1
1
). 

(11) Append-head(T6, C1
1
). 

(12) T0 = (T3, T4, T5, T6). 

EndProcedure 

 

Proof of Correction: 

 

The algorithm, NEGATIVE-X-OR-Y(T0, T1, T2, T3, T4, T5, T6), is implemented 

by means of the extract, amplify, append-head and merge operations. Steps (1) 

through (4d) use the amplify, append-head and merge operations to yield four 
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different inputs to x

  y as shown in Table 6.10.10. Next, Steps (5) through (7) apply 

the extract operations to produce some different tubes containing different inputs (T1 

to T6). T1 consists of all of the inputs that have R1 = 1, T2 consists of all of the inputs 

that have R1 = 0, T3 consists of that input that has R1 = 1 and R2 = 1, T4 consists of that 

input that has R1 = 1 and R2 = 0, T5 consists of that input that has R1 = 0 and R2 = 1, 

and finally, T6 consists of that input that has R1 = 0 and R2 = 0. This implies that four 

different inputs for x

  y as shown in Table 6.10.10 were poured into tubes T3 through 

T6, respectively. Next, Steps (8) through (11) use the append-head operations to 

append C1
1
 and C1

0
 onto the head of every input in the corresponding tubes. This is to 

say that four different outputs to x

  y as shown in Table 6.10.10 are appended into 

tubes T3 through T6. Finally, the execution of Step (12) uses the merge operation to 

pour tubes T3 through T6 into tube T0. Tube T0 includes the result implementing, x

  y, 

as shown in Table 6.10.10.    



 60 

 

Chapter 7 

 

7.1: 

It is supposed that two binary numbers of a bit, R1 and R2, are employed to encode 

the first input and the second input for x  1 as shown in Table 7.9.1. It is also 

assumed that a binary number of a bit, C1, is applied to encode the output for the 

logical operation, x  1. For the sake of convenience, it is assumed that for 1  k  2 

Rk
1
 denotes the fact that the value of Rk is 1 and Rk

0
 denotes the fact that the value of 

Rk is 0. Similarly, it is also supposed that C1
1
 denotes the fact that the value of C1 is 1 

and C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is offered to 

demonstrate x  1 = 1. Tubes T0, T1 and T2 are subsequently the first, second and third 

parameters, and are set to empty tubes. Tubes T3 and T4 that are used in the 

DNA-based algorithm are also set to empty tubes. 

 

Procedure X-OR-ONE-IS-EQUAL-TO-ONE(T0, T1, T2) 

(1) X-OR-ONE(T0, T1, T2). 

(2) T3 = +(T0, C1
1
) and T4 = (T0, C1

1
). 

(3) If (detectct(T4) = = false) Then 

(3a) The proof to x  1 = 1 is completed, and the algorithm is terminated. 

(4) Else 

(4a) We fail to show x  1 = 1, and terminate the algorithm. 

EndIf 

EndProcedure 

 

Proof of Correction:  

 

The algorithm, X-OR-ONE-IS-EQUAL-TO-ONE(T0, T1, T2), is implemented by 

means of the append-head, merge, extract and detect operations. On the first 

execution of Step (1), it invokes the DNA-based algorithm X-OR-ONE(T0, T1, T2) 

that is the solution of the exercise 5.7 for generating the result of x  1 as shown in 

Table 7.9.1. This implies that after the DNA-based algorithm X-OR-ONE(T0, T1, T2) 

is implemented, T0 = {C1
1
 R2

1
 R1

1
, C1

1
 R2

1
 R1

0
}, T1 =  and T2 = . Next, on the first 

execute of Step (2), it uses the extract operation to yield two different tubes (T3 and 

T4) including different results. Tubes T3 = {C1
1
 R2

1
 R1

1
, C1

1
 R2

1
 R1

0
} and T4 =  are 

obtained. If a false is returned from the detect operation for tube T4 on the first 

execution of Step (3), then it is at once inferred that the proof for x  1 = 1 is 

completed and the algorithm is terminated. Otherwise, it is at once concluded that we 
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fail to complete the proof for x  1 = 1 and terminate the algorithm.    

 

7.2: 

It is assumed that two binary numbers of a bit, R1 and R2, are applied to encode 

the first input and the second input for x  0 as shown in Table 7.9.2. It is also 

supposed that a binary number of a bit, C1, is employed to encode the output for the 

logical operation, x  0. For the sake of convenience, it is supposed that for 1  k  2 

Rk
1
 denotes the fact that the value of Rk is 1 and Rk

0
 denotes the fact that the value of 

Rk is 0. Similarly, it is also assumed that C1
1
 denotes the fact that the value of C1 is 1 

and C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is presented 

to demonstrate x  0 = 0. Tubes T0, T1 and T2 are subsequently the first, second and 

third parameters, and are set to empty tubes. Tubes T3 and T4 that are applied in the 

DNA-based algorithm are also set to empty tubes. 

 

Procedure X-AND-ZERO-IS-EQUAL-TO-ZERO(T0, T1, T2) 

(1) X-AND-ZERO(T0, T1, T2). 

(2) T3 = +(T0, C1
1
) and T4 = (T0, C1

1
). 

(3) If (detectct(T3) = = false) Then 

(3a) The proof to x  0 = 0 is completed, and the algorithm is terminated. 

(4) Else 

(4a) We fail to show x  0 = 0, and terminate the algorithm. 

EndIf 

EndProcedure 

 

Proof of Correction:  

 

The algorithm, X-AND-ZERO-IS-EQUAL-TO-ZERO(T0, T1, T2), is 

implemented by means of the append-head, merge, extract and detect operations. On 

the first execution of Step (1), it calls the DNA-based algorithm X-AND-ZERO(T0, 

T1, T2) that is the solution of the exercise 5.8 for producing the result of x  0 as 

shown in Table 7.9.2. This is to say that after the DNA-based algorithm 

X-AND-ZERO(T0, T1, T2) is implemented, T0 = {C1
0
 R2

0
 R1

1
, C1

0
 R2

0
 R1

0
}, T1 =  

and T2 = . Next, on the first execute of Step (2), it applies the extract operation to 

generate two different tubes (T3 and T4) containing different results. Tubes T3 =  and 

T4 = {C1
0
 R2

0
 R1

1
, C1

0
 R2

0
 R1

0
} are obtained. If a false is returned from the detect 

operation for tube T4 on the first execution of Step (3), then it is immediately derived 

that the proof for x  0 = 0 is completed and the algorithm is terminated. Otherwise, it 

is immediately inferred that we fail to complete the proof for x  0 = 0 and terminate 
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the algorithm.    

 

7.3: 

It is supposed that two binary numbers of a bit, R1 and R2, are employed to encode 

the first input and the second input for x  0 and x as shown in Table 7.9.3. Also it is 

assumed that a binary number of a bit, C1, is used to encode the output for the logical 

operation, x  0. For the sake of convenience, it is assumed that for 1  k  2 Rk
1
 

denotes the fact that the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is 

0. Similarly, it is also supposed that C1
1
 denotes the fact that the value of C1 is 1 and 

C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is proposed to 

prove x  0 = x. Tubes T0, T1 and T2 are subsequently the first, second and third 

parameters, and are set to empty tubes. Tubes T3, T4, T5, T6, T7 and T8 that are applied 

in the DNA-based algorithm are also set to empty tubes. 

 

Procedure X-OR-ZERO-IS-EQUAL-TO-X(T0, T1, T2) 

(1) X-OR-ZERO(T0, T1, T2). 

(2) T3 = +(T0, C1
1
) and T4 = (T0, C1

1
). 

(3) T5 = +(T3, R1
1
) and T6 = (T3, R1

1
). 

(4) T7 = +(T4, R1
0
) and T8 = (T4, R1

0
). 

(5) If ((detectct(T5) = = true) AND (detectct(T7) = = true)) Then 

(5a) The proof to x  0 = x is completed, and the algorithm is terminated. 

(6) Else 

(6a) We fail to show x  0 = x, and terminate the algorithm. 

EndIf 

EndProcedure 

 

Proof of Correction:  

 

The algorithm, X-OR-ZERO-IS-EQUAL-TO-X(T0, T1, T2), is implemented by 

means of the append-head, merge, extract and detect operations. On the first 

execution of Step (1), it invokes the DNA-based algorithm X-OR-ZERO(T0, T1, T2) 

that is the solution of the exercise 5.1 for yielding the result of x  0 as shown in 

Table 7.9.3. This indicates that after the DNA-based algorithm X-OR-ZERO(T0, T1, 

T2) is implemented, T0 = {C1
1
 R2

0
 R1

1
, C1

0
 R2

0
 R1

0
}, T1 =  and T2 = . Next, Steps (2) 

through (4) use three extract operations to generate six different tubes (T3 through T8) 

consisting of different results. After those operations from Step (2) through Step (4) 

are implemented, tubes T3 = , T4 = , T5 = {C1
1
 R2

0
 R1

1
}, T6 = , T7 = {C1

0
 R2

0
 R1

0
} 

and T8 =  are obtained. If a true is returned from the first execution of Step (5), then 
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it is at once concluded that the proof for x  0 = x is completed and the algorithm is 

terminated. Otherwise, it is at once derived that we fail to complete the proof for x  0 

= x and terminate the algorithm.    

 

7.4: 

It is assumed that two binary numbers of a bit, R1 and R2, are used to encode the 

first input and the second input for x  1 and x as shown in Table 7.9.4. Also it is 

supposed that a binary number of a bit, C1, is employed to encode the output for the 

logical operation, x  1. For the sake of convenience, it is supposed that for 1  k  2 

Rk
1
 denotes the fact that the value of Rk is 1 and Rk

0
 denotes the fact that the value of 

Rk is 0. Similarly, it is also assumed that C1
1
 denotes the fact that the value of C1 is 1 

and C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is offered to 

show x  1 = x. Tubes T0, T1 and T2 are subsequently the first, second and third 

parameters, and are set to empty tubes. Tubes T3, T4, T5, T6, T7 and T8 that are 

employed in the DNA-based algorithm are also set to empty tubes. 

 

Procedure X-AND-ONE-IS-EQUAL-TO-X(T0, T1, T2) 

(1) X-AND-ONE(T0, T1, T2). 

(2) T3 = +(T0, C1
1
) and T4 = (T0, C1

1
). 

(3) T5 = +(T3, R1
1
) and T6 = (T3, R1

1
). 

(4) T7 = +(T4, R1
0
) and T8 = (T4, R1

0
). 

(5) If ((detectct(T5) = = true) AND (detectct(T7) = = true)) Then 

(5a) The proof to x  1 = x is completed, and the algorithm is terminated. 

(6) Else 

(6a) We fail to show x  1 = x, and terminate the algorithm. 

EndIf 

EndProcedure 

 

Proof of Correction:  

 

The algorithm, X-AND-ONE-IS-EQUAL-TO-X(T0, T1, T2), is implemented by 

means of the append-head, merge, extract and detect operations. On the first 

execution of Step (1), it calls the DNA-based algorithm X-AND-ONE(T0, T1, T2) that 

is the solution of the exercise 5.2 for producing the result of x  1 as shown in Table 

7.9.4. This implies that after the DNA-based algorithm X-AND-ONE(T0, T1, T2) is 

implemented, T0 = {C1
1
 R2

1
 R1

1
, C1

0
 R2

1
 R1

0
}, T1 =  and T2 = . Next, Steps (2) 

through (4) apply three extract operations to yield six different tubes (T3 through T8) 

including different results. After those operations from Step (2) through Step (4) are 
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implemented, tubes T3 = , T4 = , T5 = {C1
1
 R2

1
 R1

1
}, T6 = , T7 = {C1

0
 R2

1
 R1

0
} 

and T8 =  are obtained. If a true is returned from the first execution of Step (5), then 

it is immediately inferred that the proof for x  1 = x is completed and the algorithm is 

terminated. Otherwise, it is immediately concluded that we fail to complete the proof 

for x  1 = x and terminate the algorithm.    

 

7.5: 

It is supposed that two binary numbers of a bit, R1 and R2, are employed to encode 

the first input and the second input for x  x as shown in Table 7.9.5. It is also 

assumed that a binary number of a bit, C1, is used to encode the output for the logical 

operation, x  x. For the sake of convenience, it is assumed that for 1  k  2 Rk
1
 

denotes the fact that the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is 

0. Similarly, it is also supposed that C1
1
 denotes the fact that the value of C1 is 1 and 

C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is proposed to 

demonstrate x  x = 1. Tubes T0, T1 and T2 are subsequently the first, second and third 

parameters, and are set to empty tubes. Tubes T3 and T4 that are used in the 

DNA-based algorithm are also set to empty tubes. 

 

Procedure X-OR-NEGATIVE-X-IS-EQUAL-TO-ONE(T0, T1, T2) 

(1) X-OR-NEGATIVE-X(T0, T1, T2). 

(2) T3 = +(T0, C1
1
) and T4 = (T0, C1

1
). 

(3) If (detectct(T4) = = false) Then 

(3a) The proof to x  x = 1 is completed, and the algorithm is terminated. 

(4) Else 

(4a) We fail to show x  x = 1, and terminate the algorithm. 

EndIf 

EndProcedure 

 

Proof of Correction:  

 

The algorithm, X-OR-NEGATIVE-X-IS-EQUAL-TO-ONE(T0, T1, T2), is 

implemented by means of the append-head, merge, extract and detect operations. On 

the first execution of Step (1), it invokes the DNA-based algorithm 

X-OR-NEGATIVE-X(T0, T1, T2) that is the solution of the exercise 5.3 for yielding 

the result of x  x as shown in Table 7.9.5. This is to say that after the DNA-based 

algorithm X-OR-NEGATIVE-X(T0, T1, T2) is implemented, T0 = {C1
1
 R2

0
 R1

1
, C1

1
 

R2
1
 R1

0
}, T1 =  and T2 = . Next, on the first execution of Step (2), it uses the 

extract operation to generate two different tubes (T3 through T4) containing different 
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results. After that operation from Step (2) is implemented, tubes T3 = {C1
1
 R2

0
 R1

1
, C1

1
 

R2
1
 R1

0
} and T4 =  are obtained. If a false is returned from the detect operation for 

tube T4 on the first execution of Step (3), then it is at once derived that the proof for x 

 x = 1 is completed and the algorithm is terminated. Otherwise, it is at once inferred 

that we fail to complete the proof for x  x = 1 and terminate the algorithm.    

 

7.6: 

It is assumed that two binary numbers of a bit, R1 and R2, are applied to encode 

the first input and the second input for x  x as shown in Table 7.9.6. It is also 

supposed that a binary number of a bit, C1, is employed to encode the output for the 

logical operation, x  x. For the sake of convenience, it is supposed that for 1  k  2 

Rk
1
 denotes the fact that the value of Rk is 1 and Rk

0
 denotes the fact that the value of 

Rk is 0. Similarly, it is also assumed that C1
1
 denotes the fact that the value of C1 is 1 

and C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is presented 

to show x  x = 0. Tubes T0, T1 and T2 are subsequently the first, second and third 

parameters, and are set to empty tubes. Tubes T3 and T4 that are applied in the 

DNA-based algorithm are also set to empty tubes. 

 

Procedure X-AND-NEGATIVE-X-IS-EQUAL-TO-ZERO(T0, T1, T2) 

(1) X-AND-NEGATIVE-X(T0, T1, T2). 

(2) T3 = +(T0, C1
1
) and T4 = (T0, C1

1
). 

(3) If (detectct(T4) = = false) Then 

(3a) The proof to x  x = 0 is completed, and the algorithm is terminated. 

(4) Else 

(4a) We fail to show x  x = 0, and terminate the algorithm. 

EndIf 

EndProcedure 

 

Proof of Correction:  

 

The algorithm, X-AND-NEGATIVE-X-IS-EQUAL-TO-ZERO(T0, T1, T2), is 

implemented by means of the append-head, merge, extract and detect operations. On 

the first execution of Step (1), it calls the DNA-based algorithm 

X-AND-NEGATIVE-X(T0, T1, T2) that is the solution of the exercise 5.4 for 

producing the result of x  x as shown in Table 7.9.6. This indicates that after the 

DNA-based algorithm X-AND-NEGATIVE-X(T0, T1, T2) is implemented, T0 = {C1
0
 

R2
0
 R1

1
, C1

0
 R2

1
 R1

0
}, T1 =  and T2 = . Next, on the first execution of Step (2), it 

applies the extract operation to yield two different tubes (T3 through T4) consisting of 
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different results. After that operation from Step (2) is implemented, tubes T3 = {C1
0
 

R2
0
 R1

1
, C1

0
 R2

1
 R1

0
} and T4 =  are obtained. If a false is returned from the detect 

operation for tube T4 on the first execution of Step (3), then it is right away concluded 

that the proof for x  x = 0 is completed and the algorithm is terminated. Otherwise, it 

is right away derived that we fail to complete the proof for x  x = 0 and terminate 

the algorithm.    

 

7.7: 

It is assumed that two binary numbers of a bit, R1 and R2, are used to encode the 

first input and the second input for x  x as shown in Table 7.9.7. It is also supposed 

that a binary number of a bit, C1, is applied to encode the output for the logical 

operation, x  x. For the sake of convenience, it is supposed that for 1  k  2 Rk
1
 

denotes the fact that the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is 

0. Similarly, it is also assumed that C1
1
 denotes the fact that the value of C1 is 1 and 

C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is offered to 

prove x  x = x. Tubes T0, T1 and T2 are subsequently the first, second and third 

parameters, and are set to empty tubes. Tubes T3, T4, T5, T6, T7 and T8 that are 

employed in the DNA-based algorithm are also set to empty tubes. 

 

Procedure X-AND-X-IS-EQUAL-TO-X(T0, T1, T2) 

(1) X-AND-X(T0, T1, T2). 

(2) T3 = +(T0, C1
1
) and T4 = (T0, C1

1
). 

(3) T5 = +(T3, R1
1
) and T6 = (T3, R1

1
). 

(4) T7 = +(T4, R1
0
) and T8 = (T4, R1

0
). 

(5) If ((detectct(T5) = = true) AND (detectct(T7) = = true)) Then 

(5a) The proof to x  x = x is completed, and the algorithm is terminated. 

(6) Else 

(6a) We fail to show x  x = x, and terminate the algorithm. 

EndIf 

EndProcedure 

 

Proof of Correction:  

 

The algorithm, X-AND-X-IS-EQUAL-TO-X(T0, T1, T2), is implemented by 

means of the append-head, merge, extract and detect operations. On the first 

execution of Step (1), it calls the DNA-based algorithm X-AND-X(T0, T1, T2) that is 

the solution of the exercise 5.6 for producing the result of x  x as shown in Table 

7.9.7. This implies that after the DNA-based algorithm X-AND-X(T0, T1, T2) is 
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implemented, T0 = {C1
1
 R2

1
 R1

1
, C1

0
 R2

0
 R1

0
}, T1 =  and T2 = . Next, Steps (2) 

through (4) apply three extract operations to yield six different tubes (T3 through T8) 

including different results. After those operations from Step (2) through Step (4) are 

implemented, tubes T3 = , T4 = , T5 = {C1
1
 R2

1
 R1

1
}, T6 = , T7 = {C1

0
 R2

0
 R1

0
} 

and T8 =  are obtained. If a true is returned from the first execution of Step (5), then 

it is at once inferred that the proof for x  x = x is completed and the algorithm is 

terminated. Otherwise, it is at once concluded that we fail to complete the proof for x 

 x = x and terminate the algorithm.    

 

7.8: 

It is supposed that two binary numbers of a bit, R1 and R2, are applied to encode 

the first input and the second input for x  x as shown in Table 7.9.8. It is also 

assumed that a binary number of a bit, C1, is employed to encode the output for the 

logical operation, x  x. For the sake of convenience, it is assumed that for 1  k  2 

Rk
1
 denotes the fact that the value of Rk is 1 and Rk

0
 denotes the fact that the value of 

Rk is 0. Similarly, it is also supposed that C1
1
 denotes the fact that the value of C1 is 1 

and C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is offered to 

demonstrate x  x = x. Tubes T0, T1 and T2 are subsequently the first, second and third 

parameters, and are set to empty tubes. Tubes T3, T4, T5, T6, T7 and T8 that are used in 

the DNA-based algorithm are also set to empty tubes. 

 

Procedure X-OR-X-IS-EQUAL-TO-X(T0, T1, T2) 

(1) X-OR-X(T0, T1, T2). 

(2) T3 = +(T0, C1
1
) and T4 = (T0, C1

1
). 

(3) T5 = +(T3, R1
1
) and T6 = (T3, R1

1
). 

(4) T7 = +(T4, R1
0
) and T8 = (T4, R1

0
). 

(5) If ((detectct(T5) = = true) AND (detectct(T7) = = true)) Then 

(5a) The proof to x  x = x is completed, and the algorithm is terminated. 

(6) Else 

(6a) We fail to show x  x = x, and terminate the algorithm. 

EndIf 

EndProcedure 

 

Proof of Correction: 

 

The algorithm, X-OR-X-IS-EQUAL-TO-X(T0, T1, T2), is implemented by means 

of the append-head, merge, extract and detect operations. On the first execution of 

Step (1), it invokes the DNA-based algorithm X-OR-X(T0, T1, T2) that is the solution 
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of the exercise 5.5 for generating the result of x  x as shown in Table 7.9.8. This is to 

say that after the DNA-based algorithm X-OR-X(T0, T1, T2) is implemented, T0 = 

{C1
1
 R2

1
 R1

1
, C1

0
 R2

0
 R1

0
}, T1 =  and T2 = . Next, Steps (2) through (4) employ 

three extract operations to produce six different tubes (T3 through T8) consisting of 

different results. After those operations from Step (2) through Step (4) are 

implemented, tubes T3 = , T4 = , T5 = {C1
1
 R2

1
 R1

1
}, T6 = , T7 = {C1

0
 R2

0
 R1

0
} 

and T8 =  are obtained. If a true is returned from the first execution of Step (5), then 

it is immediately concluded that the proof for x  x = x is completed and the algorithm 

is terminated. Otherwise, it is immediately inferred that we fail to complete the proof 

for x  x = x and terminate the algorithm.    

 

7.9: 

It is supposed that two binary numbers of a bit, R1 and R2, are used to encode the 

two inputs for the OR operation of two bits, x  y and y  x, as shown in Table 7.9.9. 

Also it is assumed that a binary number of a bit, C1, is applied to encode the output for 

the OR operation. For the sake of convenience, it is assumed that for 1  k  2 Rk
1
 

denotes the fact that the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is 

0. Similarly, it is supposed that C1
1
 denotes the fact that the value of C1 is 1 and C1

0
 

denotes the fact that the value of C1 is 0. The following algorithm is presented to 

prove x  y = y  x that satisfies the commutative law. Tubes T0, T1, T2, T3, T4, T5 and 

T6 are subsequently the first, second, third, fourth, fifth, sixth and seventh parameters, 

and are set to empty tubes. All of other tubes used in the following DNA-based 

algorithm are initially set to empty tubes. 

 

Procedure COMMUTATIVE-LAW-OF-OR(T0, T1, T2, T3, T4, T5, T6) 

(1) OR(T0, T1, T2, T3, T4, T5, T6, R1, R2). 

(2) OR(T20, T21, T22, T23, T24, T25, T26, R2, R1). 

(3) T7 = +(T0, R1
1
) and T8 = (T0, R1

1
). 

(4) T9 = +(T7, R2
1
) and T10 = (T7, R2

1
). 

(5) T11 = +(T8, R2
1
) and T12 = (T8, R2

1
). 

(6) T27 = +(T20, R2
1
) and T28 = (T20, R2

1
). 

(7) T29 = +(T27, R1
1
) and T30 = (T27, R1

1
). 

(8) T31 = +(T28, R1
1
) and T32 = (T28, R1

1
). 

(9) T9
ON

 = +(T9, C1
1
) and T9

OFF
 = (T9, C1

1
). 

(10) T29
ON

 = +(T29, C1
1
) and T29

OFF
 = (T29, C1

1
). 

(11) T10
ON

 = +(T10, C1
1
) and T10

OFF
 = (T10, C1

1
). 

(12) T30
ON

 = +(T30, C1
1
) and T30

OFF
 = (T30, C1

1
). 

(13) T11
ON

 = +(T11, C1
1
) and T11

OFF
 = (T11, C1

1
). 
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(14) T31
ON

 = +(T31, C1
1
) and T31

OFF
 = (T31, C1

1
). 

(15) T12
ON

 = +(T12, C1
1
) and T12

OFF
 = (T12, C1

1
). 

(16) T32
ON

 = +(T32, C1
1
) and T32

OFF
 = (T32, C1

1
). 

(17) If ((detectct(T9
ON

) = = true) AND (detect(T29
ON

) = = true) AND 

(detectct(T10
ON

) = = true) AND (detect(T30
ON

) = = true) AND 

(detectct(T11
ON

) = = true) AND (detect(T31
ON

) = = true) AND 

(detectct(T12
OFF

) = = true) AND (detect(T32
OFF

) = = true)) Then 

(17a) The proof to x  y = y  x that satisfies the commutative law is completed, 

and the algorithm is terminated. 

(18) Else 

(18a) We fail to show x  y = y  x that satisfies the commutative law, and 

terminate the algorithm. 

EndIf 

EndProcedure 

 

Proof of Correction: 

 

The algorithm, COMMUTATIVE-LAW-OF-OR(T0, T1, T2, T3, T4, T5, T6), is 

implemented by means of the append-head, merge, extract and detect operations. On 

the first execution of Step (1), it calls the DNA-based algorithm OR(T0, T1, T2, T3, T4, 

T5, T6, R1, R2) that is the solution of the exercise 3.3 for yielding the result of x  y as 

shown in Table 7.9.9, where the eighth parameter, R1, is used to encode the first input 

and the ninth parameter, R2, is applied to encode the second input. This implies that 

after the DNA-based algorithm OR(T0, T1, T2, T3, T4, T5, T6, R1, R2) is implemented, 

T0 = {C1
1
 R2

1
 R1

1
, C1

1
 R2

0
 R1

1
, C1

1
 R2

1
 R1

0
, C1

0
 R2

0
 R1

0
}, T1 = , T2 = , T3 = , T4 = 

, T5 =  and T6 = . Next, on the first execution of Step (2), it invokes the 

DNA-based algorithm OR(T20, T21, T22, T23, T24, T25, T26, R2, R1) that is the solution of 

the exercise 3.3 for yielding the result of y  x as shown in Table 7.9.9, where the 

eighth parameter, R2, is used to encode the first input and the ninth parameter, R1, is 

applied to encode the second input. This indicates that after the DNA-based algorithm 

OR(T20, T21, T22, T23, T24, T25, T26, R2, R1) is implemented, T20 = {C1
1
 R1

1
 R2

1
, C1

1
 R1

0
 

R2
1
, C1

1
 R1

1
 R2

0
, C1

0
 R1

0
 R2

0
}, T21 = , T22 = , T23 = , T24 = , T25 =  and T26 = 

. 

 

Next, Steps (3) through (5) use three extract operations to generate six different 

tubes (T7 through T12) including different results. After those operations from Step (3) 

through Step (5) are implemented, tubes T7 = , T8 = , T9 = {C1
1
 R2

1
 R1

1
}, T10 = 

{C1
1
 R2

0
 R1

1
}, T11 = {C1

1
 R2

1
 R1

0
} and T12 = {C1

0
 R2

0
 R1

0
} are obtained. Next, on those 
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operations from Steps (6) through (8), they apply three extract operations to produce 

six different tubes (T27 through T32) containing different results. After those operations 

from Step (6) through Step (8) are implemented, tubes T27 = , T28 = , T29 = {C1
1
 

R1
1
 R2

1
}, T30 = {C1

1
 R1

0
 R2

1
}, T31 = {C1

1
 R1

1
 R2

0
} and T32 = {C1

0
 R1

0
 R2

0
} are obtained. 

 

Next, Steps (9) through (16) employ eight extract operations to yield sixteen 

different tubes consisting of different results. After those operations from Step (9) 

through Step (16) are implemented, tubes T9
ON

 = {C1
1
 R2

1
 R1

1
}, T9

OFF
 = , T10

ON
 = 

{C1
1
 R2

0
 R1

1
}, T10

OFF
 = , T11

ON
 = {C1

1
 R2

1
 R1

0
}, T11

OFF
 = , T12

ON
 = , T12

OFF
 = {C1

0
 

R2
0
 R1

0
}, T29

ON
 = {C1

1
 R1

1
 R2

1
}, T29

OFF
 = , T30

ON
 = {C1

1
 R1

0
 R2

1
}, T30

OFF
 = , T31

ON
 

= {C1
1
 R1

1
 R2

0
}, T31

OFF
 = , T32

ON
 =  and T32

OFF
 = {C1

0
 R1

0
 R2

0
} are obtained. If a 

true is returned from the first execution of Step (17), then it is at once derived that the 

proof for x  y = y  x that satisfies the commutative law is completed and the 

algorithm is terminated. Otherwise, it is right away concluded that we fail to complete 

the proof for x  y = y  x that satisfies the commutative law and terminate the 

algorithm.    

 

7.10: 

It is supposed that two binary numbers of a bit, R1 and R2, are employed to encode 

two inputs for x  y and y  x as shown in Table 7.9.10. Also it is assumed that a 

binary number of a bit, C1, is applied to encode the output for x  y and y  x. For the 

sake of convenience, it is supposed that for 1  k  2 Rk
1
 denotes the fact that the 

value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is 0. Similarly, it is 

assumed that C1
1
 denotes the fact that the value of C1 is 1 and C1

0
 denotes the fact that 

the value of C1 is 0. The following algorithm is presented to prove x  y = y  x that 

satisfies the commutative law. Tubes T0, T1, T2, T3, T4, T5 and T6 are subsequently the 

first, second, third, fourth, fifth, sixth and seventh parameters, and are set to empty 

tubes. All of other tubes used in the following DNA-based algorithm are initially set 

to empty tubes. 

 

Procedure COMMUTATIVE-LAW-OF-AND(T0, T1, T2, T3, T4, T5, T6) 

(1) AND(T0, T1, T2, T3, T4, T5, T6, R1, R2). 

(2) AND(T20, T21, T22, T23, T24, T25, T26, R2, R1). 

(3) T7 = +(T0, R1
1
) and T8 = (T0, R1

1
). 

(4) T9 = +(T7, R2
1
) and T10 = (T7, R2

1
). 

(5) T11 = +(T8, R2
1
) and T12 = (T8, R2

1
). 

(6) T27 = +(T20, R2
1
) and T28 = (T20, R2

1
). 

(7) T29 = +(T27, R1
1
) and T30 = (T27, R1

1
). 
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(8) T31 = +(T28, R1
1
) and T32 = (T28, R1

1
). 

(9) T9
ON

 = +(T9, C1
1
) and T9

OFF
 = (T9, C1

1
). 

(10) T29
ON

 = +(T29, C1
1
) and T29

OFF
 = (T29, C1

1
). 

(11) T10
ON

 = +(T10, C1
1
) and T10

OFF
 = (T10, C1

1
). 

(12) T30
ON

 = +(T30, C1
1
) and T30

OFF
 = (T30, C1

1
). 

(13) T11
ON

 = +(T11, C1
1
) and T11

OFF
 = (T11, C1

1
). 

(14) T31
ON

 = +(T31, C1
1
) and T31

OFF
 = (T31, C1

1
). 

(15) T12
ON

 = +(T12, C1
1
) and T12

OFF
 = (T12, C1

1
). 

(16) T32
ON

 = +(T32, C1
1
) and T32

OFF
 = (T32, C1

1
). 

(17) If ((detectct(T9
ON

) = = true) AND (detect(T29
ON

) = = true) AND 

(detectct(T10
OFF

) = = true) AND (detect(T30
OFF

) = = true) AND 

(detectct(T11
OFF

) = = true) AND (detect(T31
OFF

) = = true) AND 

(detectct(T12
OFF

) = = true) AND (detect(T32
OFF

) = = true)) Then 

(17a) The proof to x  y = y  x that satisfies the commutative law is completed, 

and the algorithm is terminated. 

(18) Else 

(18a) We fail to show x  y = y  x that satisfies the commutative law, and 

terminate the algorithm. 

EndIf 

EndProcedure 

 

Proof of Correction: 

 

The algorithm, COMMUTATIVE-LAW-OF-AND(T0, T1, T2, T3, T4, T5, T6), is 

implemented by means of the append-head, merge, extract and detect operations. On 

the first execution of Step (1), it invokes the DNA-based algorithm AND(T0, T1, T2, T3, 

T4, T5, T6, R1, R2) that is the solution of the exercise 3.2 for producing the result of x  

y as shown in Table 7.9.10, where the eighth parameter, R1, is applied to encode the 

first input and the ninth parameter, R2, is employed to encode the second input. This is 

to say that after the DNA-based algorithm AND(T0, T1, T2, T3, T4, T5, T6, R1, R2) is 

implemented, T0 = {C1
1
 R2

1
 R1

1
, C1

0
 R2

0
 R1

1
, C1

0
 R2

1
 R1

0
, C1

0
 R2

0
 R1

0
}, T1 = , T2 = , 

T3 = , T4 = , T5 =  and T6 = . Next, on the first execution of Step (2), it calls the 

DNA-based algorithm AND(T20, T21, T22, T23, T24, T25, T26, R2, R1) that is the solution 

of the exercise 3.2 for generating the result of y  x as shown in Table 7.9.10, where 

the eighth parameter, R2, is employed to encode the first input and the ninth parameter, 

R1, is applied to encode the second input. This implies that after the DNA-based 

algorithm AND(T20, T21, T22, T23, T24, T25, T26, R2, R1) is implemented, T20 = {C1
1
 R1

1
 

R2
1
, C1

0
 R1

0
 R2

1
, C1

0
 R1

1
 R2

0
, C1

0
 R1

0
 R2

0
}, T21 = , T22 = , T23 = , T24 = , T25 =  
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and T26 = . 

 

Next, Steps (3) through (5) employ three extract operations to yield six different 

tubes (T7 through T12) containing different results. After those operations from Step (3) 

through Step (5) are implemented, tubes T7 = , T8 = , T9 = {C1
1
 R2

1
 R1

1
}, T10 = 

{C1
0
 R2

0
 R1

1
}, T11 = {C1

0
 R2

1
 R1

0
} and T12 = {C1

0
 R2

0
 R1

0
} are obtained. Next, on those 

operations from Steps (6) through (8), they use three extract operations to generate six 

different tubes (T27 through T32) consisting of different results. After those operations 

from Step (6) through Step (8) are implemented, tubes T27 = , T28 = , T29 = {C1
1
 

R1
1
 R2

1
}, T30 = {C1

0
 R1

0
 R2

1
}, T31 = {C1

0
 R1

1
 R2

0
} and T32 = {C1

0
 R1

0
 R2

0
} are obtained. 

 

Next, Steps (9) through (16) employ eight extract operations to produce sixteen 

different tubes including different results. After those operations from Step (9) 

through Step (16) are implemented, tubes T9
ON

 = {C1
1
 R2

1
 R1

1
}, T9

OFF
 = , T10

ON
 = , 

T10
OFF

 = {C1
0
 R2

0
 R1

1
}, T11

ON
 = , T11

OFF
 = {C1

0
 R2

1
 R1

0
}, T12

ON
 = , T12

OFF
 = {C1

0
 

R2
0
 R1

0
}, T29

ON
 = {C1

1
 R1

1
 R2

1
}, T29

OFF
 = , T30

ON
 = , T30

OFF
 = {C1

0
 R1

0
 R2

1
}, T31

ON
 

= , T31
OFF

 = {C1
0
 R1

1
 R2

0
}, T32

ON
 =  and T32

OFF
 = {C1

0
 R1

0
 R2

0
} are obtained. If a 

true is returned from the first execution of Step (17), then it is immediately inferred 

that the proof for x  y = y  x that satisfies the commutative law is completed and the 

algorithm is terminated. Otherwise, it is at once inferred that we fail to complete the 

proof for x  y = y  x that satisfies the commutative law and terminate the algorithm.   

 


