
 1

Answers to Exercises

Chapter 1

1.1 :

The internal mechanism of a digital computer can simply be denoted as a black

box which is shown in Figure 1.1. From Figure 1.1, a digital computer can be thought

of as a data processor. A digital program also can be thought of as a set of instructions

written in a digital computer language that indicates the data processor what to do

with the input data. The output data depend on the combination of two factors: the

input data and the digital program. With the same digital program, you can produce

different outputs if you change the input. Similarly, with the same input data, you can

generate different outputs if you change the digital program.

 A digital program

Input Data Output Data

Figure 1.1: Computational model of a digital computer.

1.2 :

The internal mechanism of bio-molecular computer can simply be defined as

another black box which is shown in Figure 1.2, where some robotics or electronic

computing is used to carry out automatically the majority of the operations with the

test tubes without the intervention of the user. From Figure 1.2, input data can be

encoded in test tubes. Each encoded data in test tubes can be thought of a data

processor. A bio-molecular program also can be thought of as a set of biological

operations written in a high-level natural language that tells each data processor what

to do. The output data also are based on the combination of two factors: the input data

and the bio-molecular program. With the same bio-molecular program, you can

produce different outputs if you change the input. Similarly, with the same input data,

you can generate different outputs if you change the bio-molecular program. Finally,

if the input data and the bio-molecular program remain the same, the output should be

A digital computer

 2

the same.

 A bio-molecular program

Input data in a tube

 Output data in a tube

 …

Figure 1.2: Some robotics or electronic computing in an advanced computational

model of bio-molecular computer carries out automatically the majority of the

operations with the test tubes without the intervention of the user.

1.3 :

A digital program in a digital computer can be thought of as a set of instructions

written in a digital computer language that indicates the data processor what to do

with the input data. A bio-molecular program in bio-molecular computer can be

thought of as a set of biological operations written in a high-level natural language

that tells each data processor what to do.

1.4 :

Memory is the main storage area in the inside of a digital computer. It is used to

store data and digital programs during processing. This implies that both the data and

programs should have the same format because they are stored in memory. They are,

in fact, stored as binary patterns (a sequence of 0s and 1s) in memory.

Tubes in bio-molecular computer are devices in which input data and output data

are stored and each biological operation is completed. The function of tubes in

bio-molecular computer are actually the same that of memory and input/output

devices in a digital computer.

1.5 :

 3

An input/output subsystem in a digital computer is an auxiliary storage area and is

also the communication between the digital computer and the outside world. Inputs

are data received by a digital computer, and outputs are data sent from it. For instance,

a keyboard, or a mouse is an input device for a computer, while a monitor or a printer

is an output device for the computer. A hard disk or a tape is simultaneously input and

output devices.

Input data that are encoded are stored in tubes in bio-molecular computer. Output

data that are produced by a bio-molecular program are also stored in tubes. Tubes are

the only storage device in bio-molecular computer.

1.6 :

A bit is the smallest unit of data that can be stored in a digital computer and

bio-molecular computer; it is either 0 or 1. To a digital computer, bit 0 is encoded by

the off state of a switch and bit 1 is encoded by the on state of the switch. For

bio-molecular computer, different sequences of bio-molecules encode, respectively,

bit 0 and bit 1.

1.7 :

The so-called von Neumann architecture is a model for a computing machine that

uses a single storage structure to hold both the set of instructions on how to perform

the computation and the data required or generated by the computation. A digital

computer system of the von Neumann architecture is shown in Figure 1.3.

From Figure 1.3, the input subsystem accepts input data and the digital program

from outside the digital computer and the output subsystem sends the result of

processing to the outside. Memory is the main storage area in the inside of the digital

computer system. The arithmetic logic unit is the core of the digital computer system

and is applied to perform calculation and logical operations. The control unit is

employed to control the operations of the memory, ALU, and the input/output

subsystem.

A digital program in the von Neumann architecture is made of a finite number of

instructions. In the architecture, the control unit fetches one instruction from memory,

interprets it, and then excites it. In other words, the instructions in the digital program

are executed one after another. Of course, one instruction may request the control unit

to jump to some previous or following one instruction, but this does not mean that the

instructions are not executed sequentially.

 4

A Digital Program

 Input Data Output Data

Figure 1.3: A digital computer system of the von Neumann architecture has four

subsystems.

1.8:

In bio-molecular computer, data also are represented as binary patterns (a

sequence of 0s and 1s). Those binary patterns are encoded by sequences of

bio-molecules and are stored in a tube. This is to say that a tube is the only storage

area in bio-molecular computer and is also the memory and the input/output

subsystem of the von Neumann architecture. Bio-molecular programs are made of a

set of bio-molecular operations and are used to perform calculation and logical

operations. So, bio-molecular programs can be regarded as the arithmetic logic unit of

the von Neumann architecture. A robot is used to automatically control the operations

of a tube (the memory and the input/output subsystem) and bio-molecular programs

(the ALU). This implies that the robot can be regarded as the control unit of the von

Neumann architecture.

In Figure 1.4, bio-molecular computer of the von Neumann architecture is shown.

From Figure 1.4, a robot fetches one bio-molecular operation from a bio-molecular

program (the ALU), and then carries out the bio-molecular operation for those data

stored in the tube (the memory). In other words, the bio-molecular operations are

Input/Output

Arithmetic Logic

Unit

Control

Unit

Memory

 5

executed one after another. Certainly, one bio-molecular operation perhaps requests

the robot to perform some previous or following bio-molecular operations.

 (Control Unit)

Figure 1.4: The bio-molecular computer of the von Neumann architecture.

Bio-molecular

Programs

(Arithmetic Logic Unit)

A Tube

(Memory and

Input/Output

Subsystem)

 6

Chapter 2

2.1:

(a) In a digital computer, the on state and the off state of a switch subsequently

encode the values 1 and 0 of a bit.

(b) In bio-molecular computer, different sequences of bio-molecules encode the

values 1 and 0 of a bit. This indicates that two different sequences of

bio-molecules can be regarded as the on state and the off state of a switch in a

digital computer, where the on state is regarded as 1 and the off state is regarded

as 0.

2.2:

(a) In a digital computer, a bit pattern that is a string of bits is also a combination of

0s and 1s. The values 1 and 0 of each bit in a bit pattern are encoded by the on

state and the off state of a switch.

(b) In bio-molecular computer, a bit pattern is a combination of 0s and 1s. If a bit

pattern that is made of n bits can be stored in a tube in bio-molecular computer,

then (2  n) different sequences of bio-molecules are needed.

2.3: We would like to give many thanks to Louie Lu who wrote the following C

programs.

#include <stdio.h>

#define MAX_LEN 100

char * hexadecimal-number-to-its-corresponding-binary-number(char *s)

{ int i, c, dec = 0, dec_tmp;

 static char b[MAX_LEN];

 while ((c = *s++) != NULL)

{ dec = dec * 16 + (isdigit(c) ? c - '0' : c - 'A' + 10); }

 i = 0;

 dec_tmp = dec;

 while (dec_tmp)

{ i++;

 dec_tmp /= 2;

 }

 7

 while (dec)

{ b[--i] = dec % 2 + '0';

 dec /= 2;

 }

 return b;

}

int main()

{ char s[MAX_LEN];

 printf(“Please input a hexadecimal number: “);

 scanf("%s", s);

 printf("The corresponding binary number is: %s",

hexadecimal-number-to-its-corresponding-binary-number (s));

}

2.4: We would like to give many thanks to Louie Lu who wrote the following C

programs.

#include <stdio.h>

#define MAX_LEN 100

char * binary-number-to-its-corresponding-hexadecimal-number(char *s)

{ int c, j, i=0, dec=0;

 static char h[MAX_LEN];

 static char hex[] = {"0123456789ABCDEF"};

 while ((c = *s++) != NULL)

{ dec <<= 1;

 if (c == '1') dec += 1;

 }

 while (dec)

{ h[i++] = hex[dec % 16];

 dec /= 16;

 }

 for (j=0; j < i / 2; ++j)

{ c = h[j];

 h[j] = h[i - j - 1];

 h[i - j - 1] = c;

 }

 return h;

 8

}

int main()

{ char s[MAX_LEN];

 printf(“Please input a binary number: “);

 scanf("%s", s);

 printf("The corresponding hexadecimal number is : %s",

binary-number-to-its-corresponding-hexadecimal-number(s));

}

2.5: We would like to give many thanks to Shang-De Jlang who wrote the following

C programs.

#include <stdio.h>

#include <stdlib.h>

int main()

{ char oct[1000];

long int i = 0;

 printf("Please input an octal number: ");

 scanf("%s",&oct);

 while(oct[i])

{

 switch(oct[i])

{ case '0': printf("000"); break;

 case '1': printf("001"); break;

 case '2': printf("010"); break;

 case '3': printf("011"); break;

 case '4': printf("100"); break;

 case '5': printf("101"); break;

 case '6': printf("110"); break;

 case '7': printf("111"); break;

 default: printf("\n An invalid octal number %c",oct[i]); return 0;

 }

 i++;

 }

 system("pause");

 return 0;

}

 9

2.6: We would like to give many thanks to Shang-De Jlang who wrote the following

C programs.

#include <stdio.h>

#include <stdlib.h>

long int binarynumber, octalnumber = 0, j = 1, remainder;

int main()

{ printf("Please input a binary number: ");

 scanf("%ld",&binarynumber);

 while(binarynumber != 0)

{ remainder = binarynumber % 10;

 octalnumber = octalnumber + remainder * j;

 j = j * 2;

 binarynumber = binarynumber / 10;

}

 printf("The corresponding octal value is: %lo \n", octalnumber);

 system("pause");

 return 0;

}

 10

Chapter 3

3.1:

It is assumed that a binary number of a bit, r, is used to encode the first input to

the NOT operation of two bits as shown in Table 3.12.1. Also it is supposed that a

binary number of a bit r is employed to encode the first output to the NOT

operation. For the sake of convenience, it is assumed that r
1
 denotes the fact that the

value of r is 1 and r
0

 denotes the fact that the value of r is 0. Similarly, it is supposed

that
1

r denotes the fact that the value of r is 1 and
0

r denotes the fact that the

value of r is 0. The following algorithm is proposed to implement the NOT

operation of two bits as shown in Table 3.12.1. Tubes T0, T1, and T2 are subsequently

the first, second and third parameters, and are set to empty tubes.

Procedure NOT(T0, T1, T2)

(1) Append-head(T1, r
1
).

(2) Append-head(T2, r
0
).

(3) Append-head(T1,
0

r).

(4) Append-head(T2,
1

r).

(5) T0 = (T1, T2).

EndProcedure

Proof of Correction:

The algorithm, NOT(T0, T1, T2), is implemented by means of the append-head and

merge operations. Step (1) and Step (2) use the append-head operations to append r
1

and r
0
 onto tubes T1 and T2. This is to say that T1 includes the first input that have r =

1 and T2 consists of the first input that have r = 0, and two different inputs for the

NOT operation of two bits as shown in Table 3.12.1 were poured into tubes T1

through T2, respectively. Next, Step (3) and Step (4) also use the append-head

operations to append
0

r and
1

r onto tubes T1 and T2. This indicates that two

different outputs to the NOT operation of two bits as shown in Table 3.12.1 are

appended into tubes T1 through T2. Finally, on the first execution of Step (5), it applies

the merge operation to pour tubes T1 through T2 into tube T0. Tube T0 contains the

 11

result implementing the NOT operation of two bits as shown in Table 3.12.1. 

3.2:

It is assumed that two binary numbers of a bit, R1 and R2, are used to, respectively,

encode the first input and the second input for the AND operation of two bits as

shown in Table 3.12.2. Also it is supposed that a binary number of a bit, C1, is used to

encode the output for the AND operation. For the sake of convenience, it is assumed

that for 1  k  2 Rk
1
 denotes the fact that the value of Rk is 1 and Rk

0
 denotes the fact

that the value of Rk is 0. Similarly, it is supposed that C1
1
 denotes the fact that the

value of C1 is 1 and C1
0

 denotes the fact that the value of C1 is 0. The following

algorithm is offered to implement the AND operation of two bits as shown in Table

3.12.2. Tubes T0, T1, T2, T3, T4, T5 and T6 are subsequently the first, second, third,

fourth, fifth, sixth and seventh parameters, and are set to empty tubes. The eighth

parameter, R1, is used to encode the first input to the AND operation of two bits and

the ninth parameter, R2, is applied to encode the second input to the AND operation of

two bits.

Procedure AND(T0, T1, T2, T3, T4, T5, T6, R1, R2)

(1) Append-head(T1, R1
1
).

(2) Append-head(T2, R1
0
).

(3) T0 = (T1, T2).

(4) For k = 2 to 2

(4a) Amplify(T0, T1, T2).

(4b) Append-head(T1, Rk
1
).

(4c) Append-head(T2, Rk
0
).

(4d) T0 = (T1, T2).

EndFor

(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
).

(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
).

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
).

(8) Append-head(T3, C1
1
).

(9) Append-head(T4, C1
0
).

(10) Append-head(T5, C1
0
).

(11) Append-head(T6, C1
0
).

(12) T0 = (T3, T4, T5, T6).

EndProcedure

Proof of Correction:

 12

The algorithm, AND(T0, T1, T2, T3, T4, T5, T6, R1, R2), is implemented by means of

the extract, amplify, append-head and merge operations. Steps (1) through (4d) use

the amplify, append-head and merge operations to construct four different inputs to

the AND operation of two bits as shown in Table 3.12.2. Next, Steps (5) through (7)

use the extract operations to form some different test tubes including different inputs

(T1 to T6). T1 includes all of the inputs that have R1 = 1, T2 includes all of the inputs

that have R1 = 0, T3 includes that input that has R1 = 1 and R2 = 1, T4 includes that

input that has R1 = 1 and R2 = 0, T5 includes that input that has R1 = 0 and R2 = 1, and

finally, T6 includes that input that has R1 = 0 and R2 = 0. This indicates that four

different inputs for the AND operation of two bits as shown in Table 3.12.2 were

poured into tubes T3 through T6, respectively. Next, Steps (8) through (11) use the

append-head operations to append C1
1
 and C1

0
 onto the head of every input in the

corresponding tubes. This is to say that four different outputs to the AND operation of

two bits as shown in Table 3.12.2 are appended into tubes T3 through T6. Finally, the

execution of Step (12) applies the merge operation to pour tubes T3 through T6 into

tube T0. Tube T0 contains the result implementing the AND operation of two bits as

shown in Table 3.12.2. 

3.3:

It is assumed that two binary numbers of a bit, R1 and R2, are used to, respectively,

encode the first input and the second input for the OR operation of two bits as shown

in Table 3.12.3. Also it is supposed that a binary number of a bit, C1, is used to encode

the output for the OR operation. For the sake of convenience, it is supposed that for 1

 k  2 Rk
1
 denotes the fact that the value of Rk is 1 and Rk

0
 denotes the fact that the

value of Rk is 0. Similarly, it is supposed that C1
1
 denotes the fact that the value of C1

is 1 and C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is

proposed to implement the OR operation of two bits as shown in Table 3.12.3. Tubes

T0, T1, T2, T3, T4, T5 and T6 are subsequently the first, second, third, fourth, fifth, sixth

and seventh parameters, and are set to empty tubes. The eighth parameter, R1, is

employed to encode the first input to the OR operation of two bits and the ninth

parameter, R2, is used to encode the second input to the OR operation of two bits.

Procedure OR(T0, T1, T2, T3, T4, T5, T6, R1, R2)

(1) Append-head(T1, R1
1
).

(2) Append-head(T2, R1
0
).

(3) T0 = (T1, T2).

(4) For k = 2 to 2

 13

(4a) Amplify(T0, T1, T2).

(4b) Append-head(T1, Rk
1
).

(4c) Append-head(T2, Rk
0
).

(4d) T0 = (T1, T2).

EndFor

(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
).

(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
).

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
).

(8) Append-head(T3, C1
1
).

(9) Append-head(T4, C1
1
).

(10) Append-head(T5, C1
1
).

(11) Append-head(T6, C1
0
).

(12) T0 = (T3, T4, T5, T6).

EndProcedure

Proof of Correction:

The algorithm, OR(T0, T1, T2, T3, T4, T5, T6, R1, R2), is implemented by means of

the extract, append-head, amplify and merge operations. Steps (1) through (4d) use

the amplify, append-head and merge operations to construct four different inputs to

the OR operation of two bits as shown in Table 3.12.3. Next, Steps (5) through (7) use

the extract operations to form some different test tubes including different inputs (T1

to T6). T1 includes all of the inputs that have R1 = 1, T2 includes all of the inputs that

have R1 = 0, T3 includes that input that has R1 = 1 and R2 = 1, T4 includes that input

that has R1 = 1 and R2 = 0, T5 includes that input that has R1 = 0 and R2 = 1, and finally,

T6 includes that input that has R1 = 0 and R2 = 0. This implies that four different inputs

for the OR operation of two bits as shown in Table 3.12.3 were poured into tubes T3

through T6, respectively. Next, Steps (8) through (11) use the append-head operations

to append C1
1
 and C1

0
 onto the head of every input in the corresponding tubes. This is

to say that four different outputs to the OR operation of two bits as shown in Table

3.12.3 are appended into tubes T3 through T6. Finally, the execution of Step (12)

applies the merge operation to pour tubes T3 through T6 into tube T0. Tube T0 contains

the result implementing the OR operation of two bits as shown in Table 3.12.3. 

3.4:

It is supposed that a binary number of a bit, r, is applied to encode the first input

to the BUFFER operation of two bits as shown in Table 3.12.4. Also it is assumed

that a binary number of a bit b is used to encode the first output to the BUFFER

 14

operation. For the sake of convenience, it is supposed that r
1
 denotes the fact that the

value of r is 1 and r
0

 denotes the fact that the value of r is 0. Similarly, it is also

assumed that b
1
 denotes the fact that the value of b is 1 and b

0
 denotes the fact that the

value of b is 0. The following algorithm is offered to implement the BUFFER

operation of two bits as shown in Table 3.12.4. Tubes T0, T1, and T2 are subsequently

the first, second and third parameters, and are set to empty tubes.

Procedure BUFFER(T0, T1, T2)

(1) Append-head(T1, r
1
).

(2) Append-head(T2, r
0
).

(3) Append-head(T1, b
1
).

(4) Append-head(T2, b
0
).

(5) T0 = (T1, T2).

EndProcedure

Proof of Correction:

The algorithm, BUFFER(T0, T1, T2), is implemented by means of the

append-head and merge operations. Step (1) and Step (2) apply the append-head

operations to append r
1
 and r

0
 onto tubes T1 and T2. This indicates that T1 contains the

first input that have r = 1 and T2 includes the first input that have r = 0, and two

different inputs for the BUFFER operation of two bits as shown in Table 3.12.4 were

poured into tubes T1 through T2, respectively. Next, Step (3) and Step (4) also employ

the append-head operations to append b
1
 and b

0
 onto tubes T1 and T2. This implies

that two different outputs to the BUFFER operation of two bits as shown in Table

3.12.4 are appended into tubes T1 through T2. Finally, on the first execution of Step (5),

it uses the merge operation to pour tubes T1 through T2 into tube T0. Tube T0 consists

of the result implementing the BUFFER operation of two bits as shown in Table

3.12.4. 

3.5:

It is supposed that two binary numbers of a bit, R1 and R2, are applied to encode

the first input and the second input for the NAND operation of two bits as shown in

Table 3.12.5. Also it is assumed that a binary number of a bit, C1, is employed to

encode the output for the NAND operation. For the sake of convenience, it is

supposed that for 1  k  2 Rk
1
 denotes the fact that the value of Rk is 1 and Rk

0

denotes the fact that the value of Rk is 0. Similarly, it is also assumed that C1
1
 denotes

the fact that the value of C1 is 1 and C1
0

 denotes the fact that the value of C1 is 0. The

 15

following algorithm is presented to implement the NAND operation of two bits as

shown in Table 3.12.5. Tubes T0, T1, T2, T3, T4, T5 and T6 are subsequently the first,

second, third, fourth, fifth, sixth and seventh parameters, and are set to empty tubes.

Procedure NAND(T0, T1, T2, T3, T4, T5, T6)

(1) Append-head(T1, R1
1
).

(2) Append-head(T2, R1
0
).

(3) T0 = (T1, T2).

(4) For k = 2 to 2

(4a) Amplify(T0, T1, T2).

(4b) Append-head(T1, Rk
1
).

(4c) Append-head(T2, Rk
0
).

(4d) T0 = (T1, T2).

EndFor

(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
).

(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
).

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
).

(8) Append-head(T3, C1
0
).

(9) Append-head(T4, C1
1
).

(10) Append-head(T5, C1
1
).

(11) Append-head(T6, C1
1
).

(12) T0 = (T3, T4, T5, T6).

EndProcedure

Proof of Correction:

The algorithm, NAND(T0, T1, T2, T3, T4, T5, T6), is implemented by means of the

extract, amplify, append-head and merge operations. Steps (1) through (4d) apply the

amplify, append-head and merge operations to construct four different inputs to the

NAND operation of two bits as shown in Table 3.12.5. Next, Steps (5) through (7)

apply the extract operations to form some different test tubes including different

inputs (T1 to T6). T1 consists of all of the inputs that have R1 = 1, T2 contains all of the

inputs that have R1 = 0, T3 contains that input that has R1 = 1 and R2 = 1, T4 contains

that input that has R1 = 1 and R2 = 0, T5 contains that input that has R1 = 0 and R2 = 1,

and finally, T6 contains that input that has R1 = 0 and R2 = 0. This is to say that four

different inputs for the NAND operation of two bits as shown in Table 3.12.5 were

poured into tubes T3 through T6, respectively. Next, Steps (8) through (11) use the

append-head operations to append C1
0
 and C1

1
 onto the head of every input in the

 16

corresponding tubes. This implies that four different outputs to the NAND operation

of two bits as shown in Table 3.12.5 are appended into tubes T3 through T6. Finally,

the execution of Step (12) uses the merge operation to pour tubes T3 through T6 into

tube T0. Tube T0 includes the result implementing the NAND operation of two bits as

shown in Table 3.12.5. 

3.6:

It is supposed that two binary numbers of a bit, R1 and R2, are employed to encode

the first input and the second input for the NOR operation of two bits as shown in

Table 3.12.6. Also it is assumed that a binary number of a bit, C1, is used to encode

the output for the OR operation. For the sake of convenience, it is assumed that for 1

 k  2 Rk
1
 denotes the fact that the value of Rk is 1 and Rk

0
 denotes the fact that the

value of Rk is 0. Similarly, it is also assumed that C1
1
 denotes the fact that the value of

C1 is 1 and C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is

offered to implement the NOR operation of two bits as shown in Table 3.12.6. Tubes

T0, T1, T2, T3, T4, T5 and T6 are subsequently the first, second, third, fourth, fifth, sixth

and seventh parameters, and are set to empty tubes.

Procedure NOR(T0, T1, T2, T3, T4, T5, T6)

(1) Append-head(T1, R1
1
).

(2) Append-head(T2, R1
0
).

(3) T0 = (T1, T2).

(4) For k = 2 to 2

(4a) Amplify(T0, T1, T2).

(4b) Append-head(T1, Rk
1
).

(4c) Append-head(T2, Rk
0
).

(4d) T0 = (T1, T2).

EndFor

(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
).

(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
).

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
).

(8) Append-head(T3, C1
0
).

(9) Append-head(T4, C1
0
).

(10) Append-head(T5, C1
0
).

(11) Append-head(T6, C1
1
).

(12) T0 = (T3, T4, T5, T6).

EndProcedure

 17

Proof of Correction:

The algorithm, NOR(T0, T1, T2, T3, T4, T5, T6), is implemented by means of the

extract, append-head, amplify and merge operations. Steps (1) through (4d) employ

the amplify, append-head and merge operations to construct four different inputs to

the NOR operation of two bits as shown in Table 3.12.6. Next, Steps (5) through (7)

apply the extract operations to form some different test tubes containing different

inputs (T1 to T6). T1 consists of all of the inputs that have R1 = 1, T2 consists of all of

the inputs that have R1 = 0, T3 consists of that input that has R1 = 1 and R2 = 1, T4

consists of that input that has R1 = 1 and R2 = 0, T5 consists of that input that has R1 =

0 and R2 = 1, and finally, T6 consists of that input that has R1 = 0 and R2 = 0. This is to

say that four different inputs for the NOR operation of two bits as shown in Table

3.12.6 were poured into tubes T3 through T6, respectively. Next, Steps (8) through (11)

apply the append-head operations to append C1
0
 and C1

1
 onto the head of every input

in the corresponding tubes. This indicates that four different outputs to the NOR

operation of two bits as shown in Table 3.12.6 are appended into tubes T3 through T6.

Finally, the execution of Step (12) uses the merge operation to pour tubes T3 through

T6 into tube T0. Tube T0 includes the result implementing the NOR operation of two

bits as shown in Table 3.12.6. 

3.7:

It is assumed that two binary numbers of a bit, R1 and R2, are used to encode the

first input and the second input for the Exclusive-OR operation of two bits as shown

in Table 3.12.7. Also it is supposed that a binary number of a bit, C1, is applied to

encode the output for the Exclusive-OR operation. For the sake of convenience, it is

assumed that for 1  k  2 Rk
1
 denotes the fact that the value of Rk is 1 and Rk

0
 denotes

the fact that the value of Rk is 0. Similarly, it is also supposed that C1
1
 denotes the fact

that the value of C1 is 1 and C1
0

 denotes the fact that the value of C1 is 0. The

following algorithm is proposed to implement the Exclusive-OR operation of two bits

as shown in Table 3.12.7. Tubes T0, T1, T2, T3, T4, T5 and T6 are subsequently the first,

second, third, fourth, fifth, sixth and seventh parameters, and are set to empty tubes.

Procedure EXCLUSIVE-OR(T0, T1, T2, T3, T4, T5, T6)

(1) Append-head(T1, R1
1
).

(2) Append-head(T2, R1
0
).

(3) T0 = (T1, T2).

(4) For k = 2 to 2

(4a) Amplify(T0, T1, T2).

 18

(4b) Append-head(T1, Rk
1
).

(4c) Append-head(T2, Rk
0
).

(4d) T0 = (T1, T2).

EndFor

(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
).

(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
).

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
).

(8) Append-head(T3, C1
0
).

(9) Append-head(T4, C1
1
).

(10) Append-head(T5, C1
1
).

(11) Append-head(T6, C1
0
).

(12) T0 = (T3, T4, T5, T6).

EndProcedure

Proof of Correction:

The algorithm, EXCLUSIVE-OR(T0, T1, T2, T3, T4, T5, T6), is implemented by

means of the extract, append-head, amplify and merge operations. Steps (1) through

(4d) use the amplify, append-head and merge operations to generate four different

inputs to the Exclusive-OR operation of two bits as shown in Table 3.12.7. Next,

Steps (5) through (7) employ the extract operations to form some different test tubes

including different inputs (T1 to T6). T1 includes all of the inputs that have R1 = 1, T2

includes all of the inputs that have R1 = 0, T3 includes that input that has R1 = 1 and R2

= 1, T4 includes that input that has R1 = 1 and R2 = 0, T5 includes that input that has R1

= 0 and R2 = 1, and finally, T6 includes that input that has R1 = 0 and R2 = 0. This

indicates that four different inputs for the Exclusive-OR operation of two bits as

shown in Table 3.12.7 were poured into tubes T3 through T6, respectively. Next, Steps

(8) through (11) apply the append-head operations to append C1
0
 and C1

1
 onto the

head of every input in the corresponding tubes. This is to say that four different

outputs to the Exclusive-OR operation of two bits as shown in Table 3.12.7 are

appended into tubes T3 through T6. Finally, the execution of Step (12) applies the

merge operation to pour tubes T3 through T6 into tube T0. Tube T0 contains the result

implementing the Exclusive-OR operation of two bits as shown in Table 3.12.7.



3.8:

It is supposed that two binary numbers of a bit, R1 and R2, are applied to encode

the first input and the second input for the Exclusive-NOR operation of two bits as

 19

shown in Table 3.12.8. Also it is assumed that a binary number of a bit, C1, is

employed to encode the output for the Exclusive-NOR operation. For the sake of

convenience, it is supposed that for 1  k  2 Rk
1
 denotes the fact that the value of Rk

is 1 and Rk
0
 denotes the fact that the value of Rk is 0. Similarly, it is also assumed that

C1
1
 denotes the fact that the value of C1 is 1 and C1

0
 denotes the fact that the value of

C1 is 0. The following algorithm is proposed to implement the Exclusive-NOR

operation of two bits as shown in Table 3.12.8. Tubes T0, T1, T2, T3, T4, T5 and T6 are

subsequently the first, second, third, fourth, fifth, sixth and seventh parameters, and

are set to empty tubes.

Procedure EXCLUSIVE-NOR(T0, T1, T2, T3, T4, T5, T6)

(1) Append-head(T1, R1
1
).

(2) Append-head(T2, R1
0
).

(3) T0 = (T1, T2).

(4) For k = 2 to 2

(4a) Amplify(T0, T1, T2).

(4b) Append-head(T1, Rk
1
).

(4c) Append-head(T2, Rk
0
).

(4d) T0 = (T1, T2).

EndFor

(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
).

(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
).

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
).

(8) Append-head(T3, C1
1
).

(9) Append-head(T4, C1
0
).

(10) Append-head(T5, C1
0
).

(11) Append-head(T6, C1
1
).

(12) T0 = (T3, T4, T5, T6).

EndProcedure

Proof of Correction:

The algorithm, EXCLUSIVE-NOR(T0, T1, T2, T3, T4, T5, T6), is implemented by

means of the extract, append-head, amplify and merge operations. Steps (1) through

(4d) use the amplify, append-head and merge operations to produce four different

inputs to the Exclusive-NOR operation of two bits as shown in Table 3.12.8. Next,

Steps (5) through (7) employ the extract operations to form some different test tubes

containing different inputs (T1 to T6). T1 consists of all of the inputs that have R1 = 1,

 20

T2 consists of all of the inputs that have R1 = 0, T3 consists of that input that has R1 = 1

and R2 = 1, T4 consists of that input that has R1 = 1 and R2 = 0, T5 consists of that

input that has R1 = 0 and R2 = 1, and finally, T6 consists of that input that has R1 = 0

and R2 = 0. This is to say that four different inputs for the Exclusive-NOR operation

of two bits as shown in Table 3.12.8 were poured into tubes T3 through T6,

respectively. Next, Steps (8) through (11) apply the append-head operations to append

C1
1
 and C1

0
 onto the head of every input in the corresponding tubes. This implies that

four different outputs to the Exclusive-NOR operation of two bits as shown in Table

3.12.8 are appended into tubes T3 through T6. Finally, the execution of Step (12)

applies the merge operation to pour tubes T3 through T6 into tube T0. Tube T0 consists

of the result implementing the Exclusive-NOR operation of two bits as shown in

Table 3.12.8. 

3.9:

It is assumed that two binary numbers of a bit, R1 and R2, are used to encode the

first input and the second input for the NULL operation of two bits as shown in Table

3.12.9. Also it is supposed that a binary number of a bit, C1, is applied to encode the

output for the NULL operation. For the sake of convenience, it is supposed that for 1

 k  2 Rk
1
 denotes the fact that the value of Rk is 1 and Rk

0
 denotes the fact that the

value of Rk is 0. Similarly, it is also supposed that C1
1
 denotes the fact that the value

of C1 is 1 and C1
0
 denotes the fact that the value of C1 is 0. The following algorithm is

proposed to implement the NULL operation of two bits as shown in Table 3.12.9.

Tubes T0, T1, T2, T3, T4, T5 and T6 are subsequently the first, second, third, fourth, fifth,

sixth and seventh parameters, and are set to empty tubes.

Procedure NULL(T0, T1, T2, T3, T4, T5, T6)

(1) Append-head(T1, R1
1
).

(2) Append-head(T2, R1
0
).

(3) T0 = (T1, T2).

(4) For k = 2 to 2

(4a) Amplify(T0, T1, T2).

(4b) Append-head(T1, Rk
1
).

(4c) Append-head(T2, Rk
0
).

(4d) T0 = (T1, T2).

EndFor

(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
).

(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
).

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
).

 21

(8) Append-head(T3, C1
0
).

(9) Append-head(T4, C1
0
).

(10) Append-head(T5, C1
0
).

(11) Append-head(T6, C1
0
).

(12) T0 = (T3, T4, T5, T6).

EndProcedure

Proof of Correction:

The algorithm, NULL(T0, T1, T2, T3, T4, T5, T6), is implemented by means of the

extract, append-head, amplify and merge operations. Steps (1) through (4d) use the

amplify, append-head and merge operations to yield four different inputs to the NULL

operation of two bits as shown in Table 3.12.9. Next, Steps (5) through (7) use the

extract operations to generate some different test tubes including different inputs (T1

to T6). T1 contains all of the inputs that have R1 = 1, T2 contains all of the inputs that

have R1 = 0, T3 contains that input that has R1 = 1 and R2 = 1, T4 contains that input

that has R1 = 1 and R2 = 0, T5 contains that input that has R1 = 0 and R2 = 1, and finally,

T6 contains that input that has R1 = 0 and R2 = 0. This implies that four different inputs

for the NULL operation of two bits as shown in Table 3.12.9 were poured into tubes

T3 through T6, respectively. Next, Steps (8) through (11) use the append-head

operations to append C1
0
 onto the head of every input in the corresponding tubes. This

indicates that four different outputs to the NULL operation of two bits as shown in

Table 3.12.9 are appended into tubes T3 through T6. Finally, the execution of Step (12)

applies the merge operation to pour tubes T3 through T6 into tube T0. Tube T0 contains

the result implementing the NULL operation of two bits as shown in Table 3.12.9.



3.10:

It is supposed that two binary numbers of a bit, R1 and R2, are employed to encode

the first input and the second input for the IDENTITY operation of two bits as shown

in Table 3.12.10. Also it is assumed that a binary number of a bit, C1, is used to

encode the output for the IDENTITY operation. For the sake of convenience, it is

assumed that for 1  k  2 Rk
1
 denotes the fact that the value of Rk is 1 and Rk

0
 denotes

the fact that the value of Rk is 0. Similarly, it is also assumed that C1
1
 denotes the fact

that the value of C1 is 1 and C1
0

 denotes the fact that the value of C1 is 0. The

following algorithm is proposed to implement the IDENTITY operation of two bits

as shown in Table 3.12.10. Tubes T0, T1, T2, T3, T4, T5 and T6 are subsequently the first,

second, third, fourth, fifth, sixth and seventh parameters, and are set to empty tubes.

 22

Procedure IDENTITY(T0, T1, T2, T3, T4, T5, T6)

(1) Append-head(T1, R1
1
).

(2) Append-head(T2, R1
0
).

(3) T0 = (T1, T2).

(4) For k = 2 to 2

(4a) Amplify(T0, T1, T2).

(4b) Append-head(T1, Rk
1
).

(4c) Append-head(T2, Rk
0
).

(4d) T0 = (T1, T2).

EndFor

(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
).

(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
).

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
).

(8) Append-head(T3, C1
1
).

(9) Append-head(T4, C1
1
).

(10) Append-head(T5, C1
1
).

(11) Append-head(T6, C1
1
).

(12) T0 = (T3, T4, T5, T6).

EndProcedure

Proof of Correction:

The algorithm, IDENTITY(T0, T1, T2, T3, T4, T5, T6), is implemented by means of

the extract, append-head, amplify and merge operations. Steps (1) through (4d) use

the amplify, append-head and merge operations to produce four different inputs to the

IDENTITY operation of two bits as shown in Table 3.12.10. Next, Steps (5) through

(7) apply the extract operations to yield some different test tubes containing different

inputs (T1 to T6). T1 includes all of the inputs that have R1 = 1, T2 includes all of the

inputs that have R1 = 0, T3 includes that input that has R1 = 1 and R2 = 1, T4 includes

that input that has R1 = 1 and R2 = 0, T5 includes that input that has R1 = 0 and R2 = 1,

and finally, T6 includes that input that has R1 = 0 and R2 = 0. This is to say that four

different inputs for the IDENTITY operation of two bits as shown in Table 3.12.10

were poured into tubes T3 through T6, respectively. Next, Steps (8) through (11) apply

the append-head operations to append C1
1
 onto the head of every input in the

corresponding tubes. This implies that four different outputs to the IDENTITY

operation of two bits as shown in Table 3.12.10 are appended into tubes T3 through T6.

Finally, the execution of Step (12) uses the merge operation to pour tubes T3 through

 23

T6 into tube T0. Tube T0 consists of the result implementing the IDENTITY operation

of two bits as shown in Table 3.12.10. 

 24

Chapter 4

4.1:

For a decimal system, its base is 10. In the decimal system, there are ten digits, 0,

1, 2, 3, 4, 5, 6, 7, 8, and 9. For a decimal system, the first position is 10 raised to the

power 0, the second position is 10 raised to the power 1 and the n
th

 position is 10

raised to the power (n  1). For example, the relationship between the powers and the

decimal number 128 is shown in Figure 4.1.

10
2
 10

1
 10

0

100 10 1

(a) Decimal Positions

1 2 8

 1 * 100 + 2 * 10 + 8 * 1

 (b) Decimal Representation

Figure 4.1: The relationship between the powers and the decimal number 128 is

shown in a decimal system

For a binary system, its base is 2. There are only two digits in the binary system,

0 and 1. For a binary system, the first position is 2 raised to the power 0, the second

position is 2 raised to the power 1 and the n
th

 position is 2 raised to the power (n  1).

The positional weights for a binary system and the value 128 in binary are shown in

Figure 4.2. In the position table, each position is double the previous position. Again,

this is because the base of the system is 2.

2
7
 2

6
 2

5
 2

4
 2

3
 2

2
 2

1
 2

0

128 64 32 16 8 4 2 1

(a) Binary Positions

10000000

 1 * 128

 (b) Binary Representation

Figure 4.2: The positional weights for a binary system and the value 128 in binary are

shown

4.2:

 25

The corresponding binary number of the decimal number 128 is 10000000, and

the corresponding binary number of the decimal number 33 is 00100001.

4.3:

The corresponding decimal number of the binary number 10000000 is 128, and

the corresponding decimal number of the binary number 00100001 is 33.

4.4: We would like to give many thanks to Cai-Cheng Zhe who wrote the following C

programs.

#include <stdio.h>

#include <stdlib.h>

int main()

{

 int i, j, k, decimal, Ans[50]={0};

 i = 0;

 printf("Please enter a decimal number：");

 scanf("%d",&decimal);

 k = decimal;

 while(decimal)

{ Ans[i] = decimal % 2;

 decimal = decimal / 2;

 i = i + 1;

 }

 printf("The decimal number is %d\n ", k);

 printf(“The corresponding binary number is”);

 for(j=i-1; j>=0; j--) { printf("%d", Ans[j]); }

 printf("\n");

 system("pause");

 return 0;

}

4.5: We would like to give many thanks to Cai-Cheng Zhe who wrote the following C

programs.

#include <stdio.h>

#include <stdlib.h>

int main()

 26

{ int i, j, k, binary, decimal;

 j = 1;

 decimal = 0;

 printf("Please enter a binary number：");

 scanf("%d",&binary);

 k = binary;

 while(binary)

{ i = binary % 10 ;

 decimal += (i * j);

 j *= 2;

 binary /= 10;

 }

 printf("The binary number is %d \n", k);

 printf("The corresponding binary number is %d \n", decimal);

 system("pause");

 return 0;

}

4.6:

It is assumed that a three-bit binary number, x3 x2 x1, is employed to encode an

unsigned integer with three bits, where the value of each bit xk is either 1 or 0 for 1  k

 3. The bits x3 and x1 are used to encode, respectively, the most significant bit and the

least significant bit for the unsigned integer with three bits. The following DNA-based

algorithm is applied to yield the range of the value for an unsigned integer with three

bits. Tubes T0, T1, T2 are, subsequently, the first, second and third parameters, and are

set to empty tubes.

Procedure Yield-Unsigned-Integers-With-Three-Bits(T0, T1, T2)

(1) Append-head(T1, x1
1
).

(2) Append-head(T2, x1
0
).

(3) T0 = (T1, T2).

(4) For k = 2 to 3

(4a) Amplify(T0, T1, T2).

(4b) Append-head(T1, xk
 1
).

(4c) Append-head(T2, xk
 0
).

(4d) T0 = (T1, T2).

EndFor

EndProcedure

 27

Proof of Correction:

After the first execution for Step (1) and the first execution for Step (2) are

implemented, tube T1 = {x1
1
} and tube T2 = {x1

0
}. Then, after the first execution of

Step (3) is implemented, tube T0 = {x1
1
, x1

0
}, tube T1 =  and tube T2 = . Step (4) is

the main loop and the lower bound and the upper bound are, respectively, two and

three, so Steps (4a) through (4d) will be executed two times. After the first execution

of Step (4a) is implemented, tube T0 = , tube T1 = {x1
1
, x1

0
} and tube T2 = {x1

1
, x1

0
}.

Next, after the first execution for Step (4b) and Step (4c) is implemented, tube T1 =

{x2
1
 x1

1
, x2

1
 x1

0
} and tube T2 = {x2

0
 x1

1
, x2

0
 x1

0
}. After the first execution of Step (4d)

is implemented, tube T0 = {x2
1
 x1

1
, x2

1
 x1

0
, x2

0
 x1

1
, x2

0
 x1

0
}, tube T1 =  and tube T2 =

.

Then, after the second execution of Step (4a) is implemented, tube T0 = , tube T1

= {x2
1
 x1

1
, x2

1
 x1

0
, x2

0
 x1

1
, x2

0
 x1

0
} and tube T2 = {x2

1
 x1

1
, x2

1
 x1

0
, x2

0
 x1

1
, x2

0
 x1

0
}. After

the second execution for Step (4b) and Step (4c) is implemented, tube T1 = {x3
1
 x2

1
 x1

1
,

x3
1
 x2

1
 x1

0
, x3

1
 x2

0
 x1

1
, x3

1
 x2

0
 x1

0
} and tube T2 = {x3

0
 x2

1
 x1

1
, x3

0
 x2

1
 x1

0
, x3

0
 x2

0
 x1

1
, x3

0

x2
0
 x1

0
}. Next, after the second execution of Step (4d) is implemented, tube T0 = {x3

1

x2
1
 x1

1
, x3

1
 x2

1
 x1

0
, x3

1
 x2

0
 x1

1
, x3

1
 x2

0
 x1

0
, x3

0
 x2

1
 x1

1
, x3

0
 x2

1
 x1

0
, x3

0
 x2

0
 x1

1
, x3

0
 x2

0
 x1

0
},

tube T1 =  and tube T2 = . The result for tube T0 is shown in Table 4.1. It is

inferred from Table 4.1 that Yield-Unsigned-Integers-With-Three-Bits(T0, T1, T2)

can be used to yield the range of the value for an unsigned integer with three bits.



Tube The result is yielded by Yield-Unsigned-Integers-With-Three-Bits(T0, T1, T2)

T0
{x3

1
 x2

1
 x1

1
, x3

1
 x2

1
 x1

0
, x3

1
 x2

0
 x1

1
, x3

1
 x2

0
 x1

0
,

x3
0
 x2

1
 x1

1
, x3

0
 x2

1
 x1

0
, x3

0
 x2

0
 x1

1
, x3

0
 x2

0
 x1

0
}

Table 4.1: The result for tube T0 is generated by

Yield-Unsigned-Integers-With-Three-Bits(T0, T1, T2).

4.7:

It is supposed that a three-bit binary number, x3 x2 x1, is employed to encode a

sign-and-magnitude integer with three bits, where the value of each bit xk is either 1 or

0 for 1  k  3. The bit x3 is applied to encode the sign, and the bits x2 and x1 is used to

encode, respectively, the most significant bit and the least significant bit for a

sign-and-magnitude integer with n bits. From Definition 4-2, it is very clear that there

 28

are two 0s in sign-and-magnitude representation: positive and negative. For example,

in a three-bit allocation: “000” is used to encode “+0” and “100” is employed to

encode “0”. The following DNA-based algorithm is used to produce the range of the

value for a sign-and-magnitude integer with three bits. Tubes T0, T1, T2 are,

subsequently, the first, second and third parameters, and are set to empty tubes.

Procedure Yield-Sign-and-Magtitude-Integers-With-Three-Bits(T0, T1, T2)

(1) Append-head(T1, x1
1
).

(2) Append-head(T2, x1
0
).

(3) T0 = (T1, T2).

(4) For k = 2 to 3

(4a) Amplify(T0, T1, T2).

(4b) Append-head(T1, xk
 1
).

(4c) Append-head(T2, xk
 0
).

(4d) T0 = (T1, T2).

EndFor

EndProcedure

Proof of Correction:

After the first execution of Step (1) and the first execution of Step (2) are

implemented, tube T1 = {x1
1
} and tube T2 = {x1

0
}. Then, after the first execution of

Step (3) is implemented, tube T0 = {x1
1
, x1

0
}, tube T1 =  and tube T2 = . Step (4) is

the main loop and the lower bound and the upper bound are, subsequently, are two

and three, so Steps (4a) through (4d) will be implemented two times. After the first

execution of Step (4a) is implemented, tube T0 = , tube T1 = {x1
1
, x1

0
} and tube T2 =

{x1
1
, x1

0
}. Next, after the first execution for Step (4b) and Step (4c) is implemented,

tube T1 = {x2
1
 x1

1
, x2

1
 x1

0
} and tube T2 = {x2

0
 x1

1
, x2

0
 x1

0
}. After the first execution of

Step (4d) is implemented, tube T0 = {x2
1
 x1

1
, x2

1
 x1

0
, x2

0
 x1

1
, x2

0
 x1

0
}, tube T1 =  and

tube T2 = .

Then, after the second execution of Step (4a) is implemented, tube T0 = , tube T1

= {x2
1
 x1

1
, x2

1
 x1

0
, x2

0
 x1

1
, x2

0
 x1

0
} and tube T2 = {x2

1
 x1

1
, x2

1
 x1

0
, x2

0
 x1

1
, x2

0
 x1

0
}. After

the second execution for Step (4b) and Step (4c) is implemented, tube T1 = {x3
1
 x2

1
 x1

1
,

x3
1
 x2

1
 x1

0
, x3

1
 x2

0
 x1

1
, x3

1
 x2

0
 x1

0
} and tube T2 = {x3

0
 x2

1
 x1

1
, x3

0
 x2

1
 x1

0
, x3

0
 x2

0
 x1

1
, x3

0

x2
0
 x1

0
}. Next, after the second execution of Step (4d) is implemented, tube T0 = {x3

1

x2
1
 x1

1
, x3

1
 x2

1
 x1

0
, x3

1
 x2

0
 x1

1
, x3

1
 x2

0
 x1

0
, x3

0
 x2

1
 x1

1
, x3

0
 x2

1
 x1

0
, x3

0
 x2

0
 x1

1
, x3

0
 x2

0
 x1

0
},

tube T1 =  and tube T2 = . The result for tube T0 is shown in Table 4.2. It is derived

 29

from Table 4.2 that Yield-Sign-and-Magtitude-Integers-With-Three-Bits(T0, T1, T2)

can be used to produce the range of the value for a sign-and-magnitude integer with

three bits. 

Tube The result is generated by

Yield-Sign-and-Magtitude-Integers-With-Three-Bits(T0, T1, T2)

T0
{x3

1
 x2

1
 x1

1
, x3

1
 x2

1
 x1

0
, x3

1
 x2

0
 x1

1
, x3

1
 x2

0
 x1

0
,

x3
0
 x2

1
 x1

1
, x3

0
 x2

1
 x1

0
, x3

0
 x2

0
 x1

1
, x3

0
 x2

0
 x1

0
}

Table 4.2: The result for tube T0 is generated by

Yield-Sign-and-Magtitude-Integers-With-Three-Bits(T0, T1, T2).

4.8:

It is assumed that a three-bit binary number, x3 x2 x1, is employed to encode a

one’s complement integer with three bits, where the value of each bit xk is either 1 or

0 for 1  k  3. From Definition 4-3, it is indicated that there are two 0s in one’s

complement representation: positive and negative. For example, in a three-bit

allocation: “000” is used to encode “+0” and “111” is applied to encode “0”. The

following DNA-based algorithm is used to produce the range of the value for a one’s

complement integer with three bits. Tubes T0, T1, T2 are, subsequently, the first,

second and third parameters, and are set to empty tubes.

Procedure Yield-One’s-Complement-Integers-With-Three-Bits(T0, T1, T2)

(1) Append-head(T1, x1
1
).

(2) Append-head(T2, x1
0
).

(3) T0 = (T1, T2).

(4) For k = 2 to 3

(4a) Amplify(T0, T1, T2).

(4b) Append-head(T1, xk
 1
).

(4c) Append-head(T2, xk
 0
).

(4d) T0 = (T1, T2).

EndFor

EndProcedure

Proof of Correction:

After the first execution of Step (1) and the first execution of Step (2) are

implemented, tube T1 = {x1
1
} and tube T2 = {x1

0
}. Then, after the first execution of

 30

Step (3) is implemented, tube T0 = {x1
1
, x1

0
}, tube T1 =  and tube T2 = . Step (4) is

the main loop and the lower bound and the upper bound are, respectively, two and

three, so Steps (4a) through (4d) will be implemented two times. After the first

execution of Step (4a) is implemented, tube T0 = , tube T1 = {x1
1
, x1

0
} and tube T2 =

{x1
1
, x1

0
}. Next, after the first execution for Step (4b) and Step (4c) is implemented,

tube T1 = {x2
1
 x1

1
, x2

1
 x1

0
} and tube T2 = {x2

0
 x1

1
, x2

0
 x1

0
}. After the first execution of

Step (4d) is implemented, tube T0 = {x2
1
 x1

1
, x2

1
 x1

0
, x2

0
 x1

1
, x2

0
 x1

0
}, tube T1 =  and

tube T2 = .

Then, after the second execution of Step (4a) is implemented, tube T0 = , tube T1

= {x2
1
 x1

1
, x2

1
 x1

0
, x2

0
 x1

1
, x2

0
 x1

0
} and tube T2 = {x2

1
 x1

1
, x2

1
 x1

0
, x2

0
 x1

1
, x2

0
 x1

0
}. After

the second execution for Step (4b) and Step (4c) is implemented, tube T1 = {x3
1
 x2

1
 x1

1
,

x3
1
 x2

1
 x1

0
, x3

1
 x2

0
 x1

1
, x3

1
 x2

0
 x1

0
} and tube T2 = {x3

0
 x2

1
 x1

1
, x3

0
 x2

1
 x1

0
, x3

0
 x2

0
 x1

1
, x3

0

x2
0
 x1

0
}. Next, after the second execution of Step (4d) is implemented, tube T0 = {x3

1

x2
1
 x1

1
, x3

1
 x2

1
 x1

0
, x3

1
 x2

0
 x1

1
, x3

1
 x2

0
 x1

0
, x3

0
 x2

1
 x1

1
, x3

0
 x2

1
 x1

0
, x3

0
 x2

0
 x1

1
, x3

0
 x2

0
 x1

0
},

tube T1 =  and tube T2 = . The result for tube T0 is shown in Table 4.3. It is

concluded from Table 4.3 that

Yield-One’s-Complement-Integers-With-Three-Bits(T0, T1, T2) can be employed to

generate the range of the value for a one’s complement integer with three bits. 

Tube The result is generated by

Yield-One’s-Complement-Integers-With-Three-Bits(T0, T1, T2)

T0
{x3

1
 x2

1
 x1

1
, x3

1
 x2

1
 x1

0
, x3

1
 x2

0
 x1

1
, x3

1
 x2

0
 x1

0
,

x3
0
 x2

1
 x1

1
, x3

0
 x2

1
 x1

0
, x3

0
 x2

0
 x1

1
, x3

0
 x2

0
 x1

0
}

Table 4.3: The result for tube T0 is generated by

Yield-One’s-Complement-Integers-With-Three-Bits(T0, T1, T2).

4.9:

It is supposed that a three-bit binary number, x3 x2 x1, is applied to encode a two’s

complement integer with three bits, where the value of each bit xk is either 1 or 0 for 1

 k  3. From Definition 4-4, it is pointed out that there is only one 0 in two’s

complement representation. For example, in a three-bit allocation: “000” is used to

encode “0”. The following DNA-based algorithm is applied to construct the range of

the value for a two’s complement integer with three bits. Tubes T0, T1, T2 are,

subsequently, the first, second and third parameters, and are set to empty tubes.

Procedure Yield-Two’s-Complement-Integers-With-Three-Bits(T0, T1, T2)

 31

(1) Append-head(T1, x1
1
).

(2) Append-head(T2, x1
0
).

(3) T0 = (T1, T2).

(4) For k = 2 to 3

(4a) Amplify(T0, T1, T2).

(4b) Append-head(T1, xk
 1
).

(4c) Append-head(T2, xk
 0
).

(4d) T0 = (T1, T2).

EndFor

EndProcedure

Proof of Correction:

After the first execution for Step (1) and Step (2) is implemented, tube T1 = {x1
1
}

and tube T2 = {x1
0
}. Next, after the first execution of Step (3) is implemented, tube T0

= {x1
1
, x1

0
}, tube T1 =  and tube T2 = . Step (4) is the main loop and its lower and

upper bounds are, respectively, two and three, so Steps (4a) through (4d) will be

implemented two times. After the first execution of Step (4a) is implemented, tube T0

= , tube T1 = {x1
1
, x1

0
} and tube T2 = {x1

1
, x1

0
}. Next, after the first execution for

Step (4b) and Step (4c) is implemented, tube T1 = {x2
1
 x1

1
, x2

1
 x1

0
} and tube T2 = {x2

0

x1
1
, x2

0
 x1

0
}. After the first execution of Step (4d) is implemented, tube T0 = {x2

1
 x1

1
,

x2
1
 x1

0
, x2

0
 x1

1
, x2

0
 x1

0
}, tube T1 =  and tube T2 = .

Then, after the second execution of Step (4a) is implemented, tube T0 = , tube T1

= {x2
1
 x1

1
, x2

1
 x1

0
, x2

0
 x1

1
, x2

0
 x1

0
} and tube T2 = {x2

1
 x1

1
, x2

1
 x1

0
, x2

0
 x1

1
, x2

0
 x1

0
}. After

the second execution for Step (4b) and Step (4c) is implemented, tube T1 = {x3
1
 x2

1
 x1

1
,

x3
1
 x2

1
 x1

0
, x3

1
 x2

0
 x1

1
, x3

1
 x2

0
 x1

0
} and tube T2 = {x3

0
 x2

1
 x1

1
, x3

0
 x2

1
 x1

0
, x3

0
 x2

0
 x1

1
, x3

0

x2
0
 x1

0
}. Next, after the second execution of Step (4d) is implemented, tube T0 = {x3

1

x2
1
 x1

1
, x3

1
 x2

1
 x1

0
, x3

1
 x2

0
 x1

1
, x3

1
 x2

0
 x1

0
, x3

0
 x2

1
 x1

1
, x3

0
 x2

1
 x1

0
, x3

0
 x2

0
 x1

1
, x3

0
 x2

0
 x1

0
},

tube T1 =  and tube T2 = . The result for tube T0 is shown in Table 4.4. It is

inferred from Table 4.4 that Yield-Two’s-Complement-Integers-With-Three-Bits(T0,

T1, T2) can be applied to construct the range of the value for a two’s complement

integer with three bits. 

Tube The result is generated by

Yield-Two’s-Complement-Integers-With-Three-Bits(T0, T1, T2)

T0
{x3

1
 x2

1
 x1

1
, x3

1
 x2

1
 x1

0
, x3

1
 x2

0
 x1

1
, x3

1
 x2

0
 x1

0
,

 32

x3
0
 x2

1
 x1

1
, x3

0
 x2

1
 x1

0
, x3

0
 x2

0
 x1

1
, x3

0
 x2

0
 x1

0
}

Table 4.4: The result for tube T0 is generated by

Yield-Two’s-Complement-Integers-With-Three-Bits(T0, T1, T2).

4.10:

 It is assumed that a 32-bit binary number, x32  x1 is applied to encode a

floating-point number of 32 bits in form of single precision format based on

Excess_127, where the value of each bit xk is either 1 or 0 for 1  k  32. The

following DNA-based algorithm is applied to yield the range of the value for a

floating-point number with thirty-two bits in form of single precision format based on

Excess_127. Tubes T0, T1, T2 are, subsequently, the first, second and third parameters,

and are set to empty tubes.

Procedure Yield-Single-Precision-Floating-Point-Numbers(T0, T1, T2)

(1) Append-head(T1, x1
1
).

(2) Append-head(T2, x1
0
).

(3) T0 = (T1, T2).

(4) For k = 2 to 32

(4a) Amplify(T0, T1, T2).

(4b) Append-head(T1, xk
 1
).

(4c) Append-head(T2, xk
 0
).

(4d) T0 = (T1, T2).

EndFor

EndProcedure

Proof of Correction:

After the first execution for Step (1) and Step (2) is completed, tube T1 = {x1
1
} and

tube T2 = {x1
0
}. Then, after the first execution of Step (3) is implemented, tube T0 =

{x1
1
, x1

0
}, tube T1 =  and tube T2 = . Step (4) is the main loop and its lower bound

and the upper bound are, respectively, two and thirty-two, so Steps (4a) through (4d)

will be implemented thirty-one times. After the first execution of Step (4a) is

implemented, tube T0 = , tube T1 = {x1
1
, x1

0
} and tube T2 = {x1

1
, x1

0
}. Next, after the

first execution for Step (4b) and Step (4c) is implemented, tube T1 = {x2
1
 x1

1
, x2

1
 x1

0
}

and tube T2 = {x2
0
 x1

1
, x2

0
 x1

0
}. After the first execution of Step (4d) is implemented,

tube T0 = {x2
1
 x1

1
, x2

1
 x1

0
, x2

0
 x1

1
, x2

0
 x1

0
}, tube T1 =  and tube T2 = .

Then, after the second execution of Step (4a) is implemented, tube T0 = , tube T1

 33

= {x2
1
 x1

1
, x2

1
 x1

0
, x2

0
 x1

1
, x2

0
 x1

0
} and tube T2 = {x2

1
 x1

1
, x2

1
 x1

0
, x2

0
 x1

1
, x2

0
 x1

0
}. After

the rest of operations are implemented, tube T1 = , tube T2 =  and the result for

tube T0 is shown in Table 4.5. In Table 4.5, for this bit pattern, “x32
1
 x31

1
 x30

1
 x29

1
 x28

1

x27
1
 x26

1
 x25

1
 x24

1
 x23

1
 x22

1
 x21

1
 x20

1
 x19

1
 x18

1
 x17

1
 x16

1
 x15

1
 x14

1
 x13

1
 x12

1
 x11

1
 x10

1
 x9

1
 x8

1
 x7

1

x6
1
 x5

1
 x4

1
 x3

1
 x2

1
 x1

1
”, the leftmost bit is the sign (). The next 8 bits, “x31

1
 x30

1
 x29

1
 x28

1

x27
1
 x26

1
 x25

1
 x24

1
”, that subtract 12710 is the exponent (12810). The next 23 bits are the

mantissa. So, this bit pattern is used to encode (2
128

  1.11111111111111111111111).

Similarly, in Table 4.5, for that bit pattern, “x32
0
 x31

1
 x30

1
 x29

1
 x28

1
 x27

1
 x26

1
 x25

1
 x24

1
 x23

1

x22
1
 x21

1
 x20

1
 x19

1
 x18

1
 x17

1
 x16

1
 x15

1
 x14

1
 x13

1
 x12

1
 x11

1
 x10

1
 x9

1
 x8

1
 x7

1
 x6

1
 x5

1
 x4

1
 x3

1
 x2

1
 x1

1
”,

it is also used to encode +(2
128

  1.11111111111111111111111). It is derived from

Table 4.5 that Yield-Single-Precision-Floating-Point-Numbers(T0, T1, T2) can be

used to construct the range of the value for a floating-point number with thirty-two

bits in form of single precision format based on Excess_127. 

Tube The result is generated by

Yield-Single-Precision-Floating-Point-Numbers(T0, T1, T2)

T0
{x32

1
 x31

1
 x30

1
 x29

1
 x28

1
 x27

1
 x26

1
 x25

1
 x24

1
 x23

1
 x22

1
 x21

1
 x20

1
 x19

1
 x18

1
 x17

1
 x16

1
 x15

1

x14
1
 x13

1
 x12

1
 x11

1
 x10

1
 x9

1
 x8

1
 x7

1
 x6

1
 x5

1
 x4

1
 x3

1
 x2

1
 x1

1



x32
0
 x31

1
 x30

1
 x29

1
 x28

1
 x27

1
 x26

1
 x25

1
 x24

1
 x23

1
 x22

1
 x21

1
 x20

1
 x19

1
 x18

1
 x17

1
 x16

1
 x15

1

x14
1
 x13

1
 x12

1
 x11

1
 x10

1
 x9

1
 x8

1
 x7

1
 x6

1
 x5

1
 x4

1
 x3

1
 x2

1
 x1

1
}

Table 4.5: The result for tube T0 is generated by

Yield-Single-Precision-Floating-Point-Numbers(T0, T1, T2).

4.11:

It is supposed that a 64-bit binary number, x64  x1 is employed to encode a

floating-point number of 64 bits in form of double precision format based on

Excess_1023, where the value of each bit xk is either 1 or 0 for 1  k  64. The

following DNA-based algorithm is used to construct the range of the value for a

floating-point number with sixty-four bits in form of double precision format based on

Excess_1023. Tubes T0, T1, T2 are, subsequently, the first, second and third parameters,

and are set to empty tubes.

Procedure Yield-Double-Precision-Floating-Point-Numbers(T0, T1, T2)

(1) Append-head(T1, x1
1
).

(2) Append-head(T2, x1
0
).

(3) T0 = (T1, T2).

(4) For k = 2 to 64

 34

(4a) Amplify(T0, T1, T2).

(4b) Append-head(T1, xk
 1
).

(4c) Append-head(T2, xk
 0
).

(4d) T0 = (T1, T2).

EndFor

EndProcedure

Proof of Correction:

After the first execution for Step (1) and Step (2) is implemented, tube T1 = {x1
1
}

and tube T2 = {x1
0
}. Next, after the first execution of Step (3) is implemented, tube T0

= {x1
1
, x1

0
}, tube T1 =  and tube T2 = . Step (4) is the main loop and its lower and

upper bounds are, respectively, two and sixty-four, so Steps (4a) through (4d) will be

implemented sixty-three times. After the first execution of Step (4a) is implemented,

tube T0 = , tube T1 = {x1
1
, x1

0
} and tube T2 = {x1

1
, x1

0
}. Next, after the first

execution for Step (4b) and Step (4c) is implemented, tube T1 = {x2
1
 x1

1
, x2

1
 x1

0
} and

tube T2 = {x2
0
 x1

1
, x2

0
 x1

0
}. After the first execution of Step (4d) is implemented, tube

T0 = {x2
1
 x1

1
, x2

1
 x1

0
, x2

0
 x1

1
, x2

0
 x1

0
}, tube T1 =  and tube T2 = .

Then, after the second execution of Step (4a) is implemented, tube T0 = , tube T1

= {x2
1
 x1

1
, x2

1
 x1

0
, x2

0
 x1

1
, x2

0
 x1

0
} and tube T2 = {x2

1
 x1

1
, x2

1
 x1

0
, x2

0
 x1

1
, x2

0
 x1

0
}. After

the rest of operations are implemented, tube T1 = , tube T2 =  and the result for

tube T0 is shown in Table 4.6. In Table 4.6, for this bit pattern, “x64
1
 x63

1
 x62

1
 x61

1
 x60

1

x59
1
 x58

1
 x57

1
 x56

1
 x55

1
 x54

1
 x53

1
 x52

1
 x51

1
 x50

1
 x49

1
 x48

1
 x47

1
 x46

1
 x45

1
 x44

1
 x43

1
 x42

1
 x41

1
 x40

1

x39
1
 x38

1
 x37

1
 x36

1
 x35

1
 x34

1
 x33

1
 x32

1
 x31

1
 x30

1
 x29

1
 x28

1
 x27

1
 x26

1
 x25

1
 x24

1
 x23

1
 x22

1
 x21

1
 x20

1

x19
1
 x18

1
 x17

1
 x16

1
 x15

1
 x14

1
 x13

1
 x12

1
 x11

1
 x10

1
 x9

1
 x8

1
 x7

1
 x6

1
 x5

1
 x4

1
 x3

1
 x2

1
 x1

1”
, the leftmost

bit is the sign (). The next 11 bits that subtract 102310 is the exponent (102410). The

next 52 bits are the mantissa. So, this bit pattern is employed to encode (2
1024

 

1.11). Similarly, in Table 4.6,

for that bit pattern, “x64
0
 x63

1
 x62

1
 x61

1
 x60

1
 x59

1
 x58

1
 x57

1
 x56

1
 x55

1
 x54

1
 x53

1
 x52

1
 x51

1
 x50

1

x49
1
 x48

1
 x47

1
 x46

1
 x45

1
 x44

1
 x43

1
 x42

1
 x41

1
 x40

1
 x39

1
 x38

1
 x37

1
 x36

1
 x35

1
 x34

1
 x33

1
 x32

1
 x31

1
 x30

1

x29
1
 x28

1
 x27

1
 x26

1
 x25

1
 x24

1
 x23

1
 x22

1
 x21

1
 x20

1
 x19

1
 x18

1
 x17

1
 x16

1
 x15

1
 x14

1
 x13

1
 x12

1
 x11

1
 x10

1

x9
1
 x8

1
 x7

1
 x6

1
 x5

1
 x4

1
 x3

1
 x2

1
 x1

1
”, it is also employed to encode +(2

1024
 

1.11). It is concluded from

Table 4.6 that Yield-Double-Precision-Floating-Point-Numbers(T0, T1, T2) can be

used to construct the range of the value for a floating-point number with sixty-four

bits in form of double precision format based on Excess_1023. 

 35

Tube The result is generated by

Yield-Double-Precision-Floating-Point-Numbers(T0, T1, T2)

T0
{x64

1
 x63

1
 x62

1
 x61

1
 x60

1
 x59

1
 x58

1
 x57

1
 x56

1
 x55

1
 x54

1
 x53

1
 x52

1
 x51

1
 x50

1
 x49

1
 x48

1
 x47

1

x46
1
 x45

1
 x44

1
 x43

1
 x42

1
 x41

1
 x40

1
 x39

1
 x38

1
 x37

1
 x36

1
 x35

1
 x34

1
 x33

1
 x32

1
 x31

1
 x30

1
 x29

1

x28
1
 x27

1
 x26

1
 x25

1
 x24

1
 x23

1
 x22

1
 x21

1
 x20

1
 x19

1
 x18

1
 x17

1
 x16

1
 x15

1
 x14

1
 x13

1
 x12

1
 x11

1

x10
1
 x9

1
 x8

1
 x7

1
 x6

1
 x5

1
 x4

1
 x3

1
 x2

1
 x1

1



x64
0
 x63

1
 x62

1
 x61

1
 x60

1
 x59

1
 x58

1
 x57

1
 x56

1
 x55

1
 x54

1
 x53

1
 x52

1
 x51

1
 x50

1
 x49

1
 x48

1
 x47

1

x46
1
 x45

1
 x44

1
 x43

1
 x42

1
 x41

1
 x40

1
 x39

1
 x38

1
 x37

1
 x36

1
 x35

1
 x34

1
 x33

1
 x32

1
 x31

1
 x30

1
 x29

1

x28
1
 x27

1
 x26

1
 x25

1
 x24

1
 x23

1
 x22

1
 x21

1
 x20

1
 x19

1
 x18

1
 x17

1
 x16

1
 x15

1
 x14

1
 x13

1
 x12

1
 x11

1

x10
1
 x9

1
 x8

1
 x7

1
 x6

1
 x5

1
 x4

1
 x3

1
 x2

1
 x1

1
}

Table 4.6: The result for tube T0 is generated by

Yield-Double-Precision-Floating-Point-Numbers(T0, T1, T2).

 36

Chapter 5

5.1:

It is assumed that two binary numbers of a bit, R1 and R2, are used to encode the

first input and the second input for x  0 as shown in Table 5.6.1. Also it is supposed

that a binary number of a bit, C1, is applied to encode the output for the logical

operation, x  0. For the sake of convenience, it is supposed that for 1  k  2 Rk
1

denotes the fact that the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is

0. Similarly, it is also assumed that C1
1
 denotes the fact that the value of C1 is 1 and

C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is offered to

implement, x  0, as shown in Table 5.6.1. Tubes T0, T1 and T2 are subsequently the

first, second and third parameters, and are set to empty tubes.

Procedure X-OR-ZERO(T0, T1, T2)

(1) Append-head(T1, R1
1
).

(2) Append-head(T2, R1
0
).

(3) Append-head(T1, R2
0
).

(4) Append-head(T2, R2
0
).

(5) Append-head(T1, C1
1
).

(6) Append-head(T2, C1
0
).

(7) T0 = (T1, T2).

EndProcedure

Proof of Correction:

The algorithm, X-OR-ZERO(T0, T1, T2), is implemented by means of the

append-head and merge operations. Steps (1) through (4) apply the append-head

operations to yield two different inputs to x  0 as shown in Table 5.6.1. This

indicates that two different inputs for x  0 as shown in Table 5.6.1 were poured into

tubes T1 and T2, respectively. Next, Step (5) uses the append-head operation to append

C1
1
 onto the head of every input in tube T1, and Step (6) applies the append-head

operation to append C1
0
 onto the head of every input in tube T2. This is to say that two

different outputs to x  0 as shown in Table 5.6.1 are appended into tubes T1 and T2.

Finally, the execution of Step (7) uses the merge operation to pour tubes T1 and T2 into

tube T0. Tube T0 consists of the result implementing, x  0, as shown in Table 5.6.1.



 37

5.2:

It is supposed that two binary numbers of a bit, R1 and R2, are employed to encode

the first input and the second input for x  1 as shown in Table 5.6.2. Also it is

assumed that a binary number of a bit, C1, is used to encode the output for the logical

operation, x  1. For the sake of convenience, it is assumed that for 1  k  2 Rk
1

denotes the fact that the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is

0. Similarly, it is also supposed that C1
1
 denotes the fact that the value of C1 is 1 and

C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is proposed to

implement, x  1, as shown in Table 5.6.2. Tubes T0, T1 and T2 are subsequently the

first, second and third parameters, and are set to empty tubes.

Procedure X-AND-ONE(T0, T1, T2)

(1) Append-head(T1, R1
1
).

(2) Append-head(T2, R1
0
).

(3) Append-head(T1, R2
1
).

(4) Append-head(T2, R2
1
).

(5) Append-head(T1, C1
1
).

(6) Append-head(T2, C1
0
).

(7) T0 = (T1, T2).

EndProcedure

Proof of Correction:

The algorithm, X-AND-ONE(T0, T1, T2), is implemented by means of the

append-head and merge operations. Steps (1) through (4) apply the append-head

operations to produce two different inputs to x  1 as shown in Table 5.6.2. This is to

say that two different inputs for x  1 as shown in Table 5.6.2 were poured into tubes

T1 and T2, respectively. Next, Step (5) applies the append-head operation to append

C1
1
 onto the head of every input in tube T1, and Step (6) uses the append-head

operation to append C1
0
 onto the head of every input in tube T2. This implies that two

different outputs to x  1 as shown in Table 5.6.2 are appended into tubes T1 and T2.

Finally, the execution of Step (7) uses the merge operation to pour tubes T1 and T2 into

tube T0. Tube T0 includes the result implementing, x  1, as shown in Table 5.6.2.



5.3:

It is assumed that two binary numbers of a bit, R1 and R2, are used to encode the

first input and the second input for x  x as shown in Table 5.6.3. It is also supposed

 38

that a binary number of a bit, C1, is applied to encode the output for the logical

operation, x  x. For the sake of convenience, it is supposed that for 1  k  2 Rk
1

denotes the fact that the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is

0. Similarly, it is also assumed that C1
1
 denotes the fact that the value of C1 is 1 and

C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is presented to

implement, x  x, as shown in Table 5.6.3. Tubes T0, T1 and T2 are subsequently the

first, second and third parameters, and are set to empty tubes.

Procedure X-OR-NEGATIVE-X(T0, T1, T2)

(1) Append-head(T1, R1
1
).

(2) Append-head(T2, R1
0
).

(3) Append-head(T1, R2
0
).

(4) Append-head(T2, R2
1
).

(5) Append-head(T1, C1
1
).

(6) Append-head(T2, C1
1
).

(7) T0 = (T1, T2).

EndProcedure

Proof of Correction:

The algorithm, X-OR-NEGATIVE-X(T0, T1, T2), is implemented by means of the

append-head and merge operations. Steps (1) through (4) use the append-head

operations to generate two different inputs to x  x as shown in Table 5.6.3. This

indicates that two different inputs for x  x as shown in Table 5.6.3 were poured into

tubes T1 and T2, respectively. Next, Step (5) uses the append-head operation to append

C1
1
 onto the head of every input in tube T1, and Step (6) also uses the append-head

operation to append C1
1
 onto the head of every input in tube T2. This is to say that two

different outputs to x  x as shown in Table 5.6.3 are appended into tubes T1 and T2.

Finally, the execution of Step (7) uses the merge operation to pour tubes T1 and T2 into

tube T0. Tube T0 contains the result implementing, x  x, as shown in Table 5.6.3.



5.4:

It is supposed that two binary numbers of a bit, R1 and R2, are employed to encode

the first input and the second input for x  x as shown in Table 5.6.4. It is also

assumed that a binary number of a bit, C1, is used to encode the output for the logical

operation, x  x. For the sake of convenience, it is assumed that for 1  k  2 Rk
1

denotes the fact that the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is

 39

0. Similarly, it is also supposed that C1
1
 denotes the fact that the value of C1 is 1 and

C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is offered to

implement, x  x, as shown in Table 5.6.4. Tubes T0, T1 and T2 are subsequently the

first, second and third parameters, and are set to empty tubes.

Procedure X-AND-NEGATIVE-X(T0, T1, T2)

(1) Append-head(T1, R1
1
).

(2) Append-head(T2, R1
0
).

(3) Append-head(T1, R2
0
).

(4) Append-head(T2, R2
1
).

(5) Append-head(T1, C1
0
).

(6) Append-head(T2, C1
0
).

(7) T0 = (T1, T2).

EndProcedure

Proof of Correction:

The algorithm, X-AND-NEGATIVE-X(T0, T1, T2), is implemented by means of

the append-head and merge operations. Steps (1) through (4) employ the append-head

operations to yield two different inputs to x  x as shown in Table 5.6.4. This implies

that two different inputs for x  x as shown in Table 5.6.4 were poured into tubes T1

and T2, respectively. Next, Step (5) applies the append-head operation to append C1
0

onto the head of every input in tube T1, and Step (6) also applies the append-head

operation to append C1
0
 onto the head of every input in tube T2. This indicates that

two different outputs to x  x as shown in Table 5.6.4 are appended into tubes T1 and

T2. Finally, the execution of Step (7) uses the merge operation to pour tubes T1 and T2

into tube T0. Tube T0 consists of the result implementing, x  x, as shown in Table

5.6.4. 

5.5:

It is assumed that two binary numbers of a bit, R1 and R2, are used to encode the

first input and the second input for x  x as shown in Table 5.6.5. It is also supposed

that a binary number of a bit, C1, is applied to encode the output for the logical

operation, x  x. For the sake of convenience, it is supposed that for 1  k  2 Rk
1

denotes the fact that the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is

0. Similarly, it is also assumed that C1
1
 denotes the fact that the value of C1 is 1 and

C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is proposed to

implement, x  x, as shown in Table 5.6.5. Tubes T0, T1 and T2 are subsequently the

 40

first, second and third parameters, and are set to empty tubes.

Procedure X-OR-X(T0, T1, T2)

(1) Append-head(T1, R1
1
).

(2) Append-head(T2, R1
0
).

(3) Append-head(T1, R2
1
).

(4) Append-head(T2, R2
0
).

(5) Append-head(T1, C1
1
).

(6) Append-head(T2, C1
0
).

(7) T0 = (T1, T2).

EndProcedure

Proof of Correction:

The algorithm, X-OR-X(T0, T1, T2), is implemented by means of the append-head

and merge operations. Steps (1) through (4) use the append-head operations to

produce two different inputs to x  x as shown in Table 5.6.5. This is to say that two

different inputs for x  x as shown in Table 5.6.5 were poured into tubes T1 and T2,

respectively. Next, Step (5) uses the append-head operation to append C1
1
 onto the

head of every input in tube T1, and Step (6) also uses the append-head operation to

append C1
0
 onto the head of every input in tube T2. This indicates that two different

outputs to x  x as shown in Table 5.6.5 are appended into tubes T1 and T2. Finally, the

execution of Step (7) uses the merge operation to pour tubes T1 and T2 into tube T0.

Tube T0 includes the result implementing, x  x, as shown in Table 5.6.5. 

5.6:

It is supposed that two binary numbers of a bit, R1 and R2, are employed to encode

the first input and the second input for x  x as shown in Table 5.6.6. It is also

assumed that a binary number of a bit, C1, is employed to encode the output for the

logical operation, x  x. For the sake of convenience, it is assumed that for 1  k  2

Rk
1
 denotes the fact that the value of Rk is 1 and Rk

0
 denotes the fact that the value of

Rk is 0. Similarly, it is also supposed that C1
1
 denotes the fact that the value of C1 is 1

and C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is presented

to implement, x  x, as shown in Table 5.6.6. Tubes T0, T1 and T2 are subsequently the

first, second and third parameters, and are set to empty tubes.

Procedure X-AND-X(T0, T1, T2)

(1) Append-head(T1, R1
1
).

 41

(2) Append-head(T2, R1
0
).

(3) Append-head(T1, R2
1
).

(4) Append-head(T2, R2
0
).

(5) Append-head(T1, C1
1
).

(6) Append-head(T2, C1
0
).

(7) T0 = (T1, T2).

EndProcedure

Proof of Correction:

The algorithm, X-AND-X(T0, T1, T2), is implemented by means of the

append-head and merge operations. Steps (1) through (4) apply the append-head

operations to generate two different inputs to x  x as shown in Table 5.6.6. This

indicates that two different inputs for x  x as shown in Table 5.6.6 were poured into

tubes T1 and T2, respectively. Next, Step (5) applies the append-head operation to

append C1
1
 onto the head of every input in tube T1, and Step (6) also applies the

append-head operation to append C1
0
 onto the head of every input in tube T2. This

implies that two different outputs to x  x as shown in Table 5.6.6 are appended into

tubes T1 and T2. Finally, the execution of Step (7) uses the merge operation to pour

tubes T1 and T2 into tube T0. Tube T0 contains the result implementing, x  x, as

shown in Table 5.6.6. 

5.7:

It is assumed that two binary numbers of a bit, R1 and R2, are used to encode the

first input and the second input for x  1 as shown in Table 5.6.7. It is also supposed

that a binary number of a bit, C1, is used to encode the output for the logical operation,

x  1. For the sake of convenience, it is supposed that for 1  k  2 Rk
1
 denotes the

fact that the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is 0. Similarly,

it is also assumed that C1
1
 denotes the fact that the value of C1 is 1 and C1

0
 denotes the

fact that the value of C1 is 0. The following algorithm is proposed to implement, x  1,

as shown in Table 5.6.7. Tubes T0, T1 and T2 are subsequently the first, second and

third parameters, and are set to empty tubes.

Procedure X-OR-ONE(T0, T1, T2)

(1) Append-head(T1, R1
1
).

(2) Append-head(T2, R1
0
).

(3) Append-head(T1, R2
1
).

(4) Append-head(T2, R2
1
).

 42

(5) Append-head(T1, C1
1
).

(6) Append-head(T2, C1
1
).

(7) T0 = (T1, T2).

EndProcedure

Proof of Correction:

The algorithm, X-OR-ONE(T0, T1, T2), is implemented by means of the

append-head and merge operations. Steps (1) through (4) use the append-head

operations to yield two different inputs to x  1 as shown in Table 5.6.7. This implies

that two different inputs for x  1 as shown in Table 5.6.7 were poured into tubes T1

and T2, respectively. Next, Step (5) applies the append-head operation to append C1
1

onto the head of every input in tube T1, and Step (6) also applies the append-head

operation to append C1
1
 onto the head of every input in tube T2. This is to say that two

different outputs to x  1 as shown in Table 5.6.7 are appended into tubes T1 and T2.

Finally, the execution of Step (7) uses the merge operation to pour tubes T1 and T2 into

tube T0. Tube T0 consists of the result implementing, x  1, as shown in Table 5.6.7.



5.8:

It is supposed that two binary numbers of a bit, R1 and R2, are employed to encode

the first input and the second input for x  0 as shown in Table 5.6.8. It is also

assumed that a binary number of a bit, C1, is applied to encode the output for the

logical operation, x  0. For the sake of convenience, it is assumed that for 1  k  2

Rk
1
 denotes the fact that the value of Rk is 1 and Rk

0
 denotes the fact that the value of

Rk is 0. Similarly, it is also supposed that C1
1
 denotes the fact that the value of C1 is 1

and C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is offered to

implement, x  0, as shown in Table 5.6.8. Tubes T0, T1 and T2 are subsequently the

first, second and third parameters, and are set to empty tubes.

Procedure X-AND-ZERO(T0, T1, T2)

(1) Append-head(T1, R1
1
).

(2) Append-head(T2, R1
0
).

(3) Append-head(T1, R2
0
).

(4) Append-head(T2, R2
0
).

(5) Append-head(T1, C1
0
).

(6) Append-head(T2, C1
0
).

(7) T0 = (T1, T2).

 43

EndProcedure

Proof of Correction:

The algorithm, X-AND-ZERO(T0, T1, T2), is implemented by means of the

append-head and merge operations. Steps (1) through (4) use the append-head

operations to produce two different inputs to x  0 as shown in Table 5.6.8. This is to

say that two different inputs for x  0 as shown in Table 5.6.8 were poured into tubes

T1 and T2, respectively. Next, Step (5) uses the append-head operation to append C1
0

onto the head of every input in tube T1, and Step (6) also uses the append-head

operation to append C1
0
 onto the head of every input in tube T2. This indicates that

two different outputs to x  0 as shown in Table 5.6.8 are appended into tubes T1 and

T2. Finally, the execution of Step (7) uses the merge operation to pour tubes T1 and T2

into tube T0. Tube T0 includes the result implementing, x  0, as shown in Table 5.6.8.



5.9:

It is assumed that two binary numbers of a bit, R1 and R2, are applied to encode

the first input and the second input for (x) as shown in Table 5.6.9. It is also

supposed that a binary number of a bit, C1, is employed to encode the output for the

logical operation, (x). For the sake of convenience, it is supposed that for 1  k  2

Rk
1
 denotes the fact that the value of Rk is 1 and Rk

0
 denotes the fact that the value of

Rk is 0. Similarly, it is also assumed that C1
1
 denotes the fact that the value of C1 is 1

and C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is presented

to implement, (x), as shown in Table 5.6.9. Tubes T0, T1 and T2 are subsequently the

first, second and third parameters, and are set to empty tubes.

Procedure X-NEGATIVE-NEGATIVE(T0, T1, T2)

(1) Append-head(T1, R1
1
).

(2) Append-head(T2, R1
0
).

(3) Append-head(T1, R2
0
).

(4) Append-head(T2, R2
1
).

(5) Append-head(T1, C1
1
).

(6) Append-head(T2, C1
0
).

(7) T0 = (T1, T2).

EndProcedure

Proof of Correction:

 44

The algorithm, X-NEGATIVE-NEGATIVE(T0, T1, T2), is implemented by

means of the append-head and merge operations. Steps (1) through (4) apply the

append-head operations to generate two different inputs to (x) as shown in Table

5.6.9. This indicates that two different inputs for (x) as shown in Table 5.6.9 were

poured into tubes T1 and T2, respectively. Next, Step (5) applies the append-head

operation to append C1
1
 onto the head of every input in tube T1, and Step (6) also uses

the append-head operation to append C1
0
 onto the head of every input in tube T2. This

is to say that two different outputs to (x) as shown in Table 5.6.9 are appended into

tubes T1 and T2. Finally, the execution of Step (7) uses the merge operation to pour

tubes T1 and T2 into tube T0. Tube T0 contains the result implementing, (x), as shown

in Table 5.6.9. 

5.10:

It is supposed that two binary numbers of a bit, R1 and R2, are applied to encode

the first input and the second input for x  y

 as shown in Table 5.6.10. Also it is

assumed that a binary number of a bit, C1, is employed to encode the output for x  y

.

For the sake of convenience, it is supposed that for 1  k  2 Rk
1
 denotes the fact that

the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is 0. Similarly, it is

also assumed that C1
1
 denotes the fact that the value of C1 is 1 and C1

0
 denotes the fact

that the value of C1 is 0. The following algorithm is proposed to implement x  y

 as

shown in Table 5.6.10. Tubes T0, T1, T2, T3, T4, T5 and T6 are subsequently the first,

second, third, fourth, fifth, sixth and seventh parameters, and are set to empty tubes.

Procedure X-AND-NEGATIVE-Y(T0, T1, T2, T3, T4, T5, T6)

(1) Append-head(T1, R1
1
).

(2) Append-head(T2, R1
0
).

(3) T0 = (T1, T2).

(4) For k = 2 to 2

(4a) Amplify(T0, T1, T2).

(4b) Append-head(T1, Rk
1
).

(4c) Append-head(T2, Rk
0
).

(4d) T0 = (T1, T2).

EndFor

(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
).

(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
).

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
).

(8) Append-head(T3, C1
0
).

 45

(9) Append-head(T4, C1
1
).

(10) Append-head(T5, C1
0
).

(11) Append-head(T6, C1
0
).

(12) T0 = (T3, T4, T5, T6).

EndProcedure

Proof of Correction:

The algorithm, X-AND-NEGATIVE-Y(T0, T1, T2, T3, T4, T5, T6), is implemented by

means of the extract, amplify, append-head and merge operations. Steps (1) through

(4d) use the amplify, append-head and merge operations to generate four different

inputs to x  y

 as shown in Table 5.6.10. Next, Steps (5) through (7) apply the extract

operations to form some different tubes containing different inputs (T1 to T6). T1

contains all of the inputs that have R1 = 1, T2 contains all of the inputs that have R1 = 0,

T3 contains that input that has R1 = 1 and R2 = 1, T4 contains that input that has R1 = 1

and R2 = 0, T5 contains that input that has R1 = 0 and R2 = 1, and finally, T6 contains

that input that has R1 = 0 and R2 = 0. This is to say that four different inputs for x  y


as shown in Table 5.6.10 were poured into tubes T3 through T6, respectively. Next,

Steps (8) through (11) employ the append-head operations to append C1
0
 and C1

1
 onto

the head of every input in the corresponding tubes. This implies that four different

outputs to x  y

 as shown in Table 5.6.10 are appended into tubes T3 through T6.

Finally, the execution of Step (12) uses the merge operation to pour tubes T3 through

T6 into tube T0. Tube T0 consists of the result implementing, x  y

, as shown in Table

5.6.10. 

 46

Chapter 6

6.1:

It is assumed that two binary numbers of a bit, R1 and R2, are employed to encode

the first input and the second input for x  (x  y) as shown in Table 6.10.1. Also it is

supposed that a binary number of a bit, C1, is used to encode the output for x  (x  y).

For the sake of convenience, it is assumed that for 1  k  2 Rk
1
 denotes the fact that

the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is 0. Similarly, it is

also supposed that C1
1
 denotes the fact that the value of C1 is 1 and C1

0
 denotes the

fact that the value of C1 is 0. The following algorithm is offered to implement, x  (x

 y), as shown in Table 6.10.1. Tubes T0, T1, T2, T3, T4, T5 and T6 are subsequently the

first, second, third, fourth, fifth, sixth and seventh parameters, and are set to empty

tubes.

Procedure X-OR-X-AND-Y(T0, T1, T2, T3, T4, T5, T6)

(1) Append-head(T1, R1
1
).

(2) Append-head(T2, R1
0
).

(3) T0 = (T1, T2).

(4) For k = 2 to 2

(4a) Amplify(T0, T1, T2).

(4b) Append-head(T1, Rk
1
).

(4c) Append-head(T2, Rk
0
).

(4d) T0 = (T1, T2).

EndFor

(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
).

(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
).

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
).

(8) Append-head(T3, C1
1
).

(9) Append-head(T4, C1
1
).

(10) Append-head(T5, C1
0
).

(11) Append-head(T6, C1
0
).

(12) T0 = (T3, T4, T5, T6).

EndProcedure

Proof of Correction:

The algorithm, X-OR-X-AND-Y(T0, T1, T2, T3, T4, T5, T6), is implemented by

 47

means of the extract, amplify, append-head and merge operations. Steps (1) through

(4d) use the amplify, append-head and merge operations to yield four different inputs

to x  (x  y) as shown in Table 6.10.1. Next, Steps (5) through (7) use the extract

operations to produce some different tubes including different inputs (T1 to T6). T1

includes all of the inputs that have R1 = 1, T2 includes all of the inputs that have R1 = 0,

T3 includes that input that has R1 = 1 and R2 = 1, T4 includes that input that has R1 = 1

and R2 = 0, T5 includes that input that has R1 = 0 and R2 = 1, and finally, T6 includes

that input that has R1 = 0 and R2 = 0. This indicates that four different inputs for x  (x

 y) as shown in Table 6.10.1 were poured into tubes T3 through T6, respectively. Next,

Steps (8) through (11) apply the append-head operations to append C1
1
 and C1

0
 onto

the head of every input in the corresponding tubes. This is to say that four different

outputs to x  (x  y) as shown in Table 6.10.1 are appended into tubes T3 through T6.

Finally, the execution of Step (12) applies the merge operation to pour tubes T3

through T6 into tube T0. Tube T0 contains the result implementing, x  (x  y), as

shown in Table 6.10.1. 

6.2:

It is supposed that two binary numbers of a bit, R1 and R2, are used to encode the

first input and the second input for x  (x  y) as shown in Table 6.10.2. Also it is

assumed that a binary number of a bit, C1, is applied to encode the output for x  (x 

y). For the sake of convenience, it is supposed that for 1  k  2 Rk
1
 denotes the fact

that the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is 0. Similarly, it is

also assumed that C1
1
 denotes the fact that the value of C1 is 1 and C1

0
 denotes the fact

that the value of C1 is 0. The following algorithm is presented to implement, x  (x 

y), as shown in Table 6.10.2. Tubes T0, T1, T2, T3, T4, T5 and T6 are subsequently the

first, second, third, fourth, fifth, sixth and seventh parameters, and are set to empty

tubes.

Procedure X-AND-X-OR-Y(T0, T1, T2, T3, T4, T5, T6)

(1) Append-head(T1, R1
1
).

(2) Append-head(T2, R1
0
).

(3) T0 = (T1, T2).

(4) For k = 2 to 2

(4a) Amplify(T0, T1, T2).

(4b) Append-head(T1, Rk
1
).

(4c) Append-head(T2, Rk
0
).

(4d) T0 = (T1, T2).

EndFor

 48

(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
).

(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
).

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
).

(8) Append-head(T3, C1
1
).

(9) Append-head(T4, C1
1
).

(10) Append-head(T5, C1
0
).

(11) Append-head(T6, C1
0
).

(12) T0 = (T3, T4, T5, T6).

EndProcedure

Proof of Correction:

The algorithm, X-AND-X-OR-Y(T0, T1, T2, T3, T4, T5, T6), is implemented by

means of the extract, amplify, append-head and merge operations. Steps (1) through

(4d) use the amplify, append-head and merge operations to generate four different

inputs to x  (x  y) as shown in Table 6.10.2. Next, Steps (5) through (7) apply the

extract operations to yield some different tubes containing different inputs (T1 to T6).

T1 consists of all of the inputs that have R1 = 1, T2 consists of all of the inputs that

have R1 = 0, T3 consists of that input that has R1 = 1 and R2 = 1, T4 consists of that

input that has R1 = 1 and R2 = 0, T5 consists of that input that has R1 = 0 and R2 = 1,

and finally, T6 consists of that input that has R1 = 0 and R2 = 0. This implies that four

different inputs for x  (x  y) as shown in Table 6.10.2 were poured into tubes T3

through T6, respectively. Next, Steps (8) through (11) employ the append-head

operations to append C1
1
 and C1

0
 onto the head of every input in the corresponding

tubes. This indicates that four different outputs to x  (x  y) as shown in Table 6.10.2

are appended into tubes T3 through T6. Finally, the execution of Step (12) uses the

merge operation to pour tubes T3 through T6 into tube T0. Tube T0 includes the result

implementing, x  (x  y), as shown in Table 6.10.2. 

6.3:

It is assumed that two binary numbers of a bit, R1 and R2, are applied to encode

the first input and the second input for y  (y  x) as shown in Table 6.10.3. Also it is

supposed that a binary number of a bit, C1, is employed to encode the output for y  (y

 x). For the sake of convenience, it is assumed that for 1  k  2 Rk
1
 denotes the fact

that the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is 0. Similarly, it is

also supposed that C1
1
 denotes the fact that the value of C1 is 1 and C1

0
 denotes the

fact that the value of C1 is 0. The following algorithm is proposed to implement, y 

(y  x), as shown in Table 6.10.3. Tubes T0, T1, T2, T3, T4, T5 and T6 are subsequently

 49

the first, second, third, fourth, fifth, sixth and seventh parameters, and are set to empty

tubes.

Procedure Y-OR-Y-AND-X(T0, T1, T2, T3, T4, T5, T6)

(1) Append-head(T1, R1
1
).

(2) Append-head(T2, R1
0
).

(3) T0 = (T1, T2).

(4) For k = 2 to 2

(4a) Amplify(T0, T1, T2).

(4b) Append-head(T1, Rk
1
).

(4c) Append-head(T2, Rk
0
).

(4d) T0 = (T1, T2).

EndFor

(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
).

(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
).

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
).

(8) Append-head(T3, C1
1
).

(9) Append-head(T4, C1
0
).

(10) Append-head(T5, C1
1
).

(11) Append-head(T6, C1
0
).

(12) T0 = (T3, T4, T5, T6).

EndProcedure

Proof of Correction:

The algorithm, Y-OR-Y-AND-X(T0, T1, T2, T3, T4, T5, T6), is implemented by

means of the extract, amplify, append-head and merge operations. Steps (1) through

(4d) use the amplify, append-head and merge operations to produce four different

inputs to y  (y  x) as shown in Table 6.10.3. Next, Steps (5) through (7) use the

extract operations to generate some different tubes consisting of different inputs (T1 to

T6). T1 contains all of the inputs that have R1 = 1, T2 contains all of the inputs that

have R1 = 0, T3 contains that input that has R1 = 1 and R2 = 1, T4 contains that input

that has R1 = 1 and R2 = 0, T5 contains that input that has R1 = 0 and R2 = 1, and finally,

T6 contains that input that has R1 = 0 and R2 = 0. This is to say that four different

inputs for y  (y  x) as shown in Table 6.10.3 were poured into tubes T3 through T6,

respectively. Next, Steps (8) through (11) apply the append-head operations to append

C1
1
 and C1

0
 onto the head of every input in the corresponding tubes. This is to say that

four different outputs to y  (y  x) as shown in Table 6.10.3 are appended into tubes

 50

T3 through T6. Finally, the execution of Step (12) applies the merge operation to pour

tubes T3 through T6 into tube T0. Tube T0 consists of the result implementing, y  (y 

x), as shown in Table 6.10.3. 

6.4:

It is supposed that two binary numbers of a bit, R1 and R2, are used to encode the

first input and the second input for y  (y  x) as shown in Table 6.10.4. Also it is

assumed that a binary number of a bit, C1, is used to encode the output for y  (y  x).

For the sake of convenience, it is supposed that for 1  k  2 Rk
1
 denotes the fact that

the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is 0. Similarly, it is

also assumed that C1
1
 denotes the fact that the value of C1 is 1 and C1

0
 denotes the fact

that the value of C1 is 0. The following algorithm is offered to implement, y  (y  x),

as shown in Table 6.10.4. Tubes T0, T1, T2, T3, T4, T5 and T6 are subsequently the first,

second, third, fourth, fifth, sixth and seventh parameters, and are set to empty tubes.

Procedure Y-AND-Y-OR-X(T0, T1, T2, T3, T4, T5, T6)

(1) Append-head(T1, R1
1
).

(2) Append-head(T2, R1
0
).

(3) T0 = (T1, T2).

(4) For k = 2 to 2

(4a) Amplify(T0, T1, T2).

(4b) Append-head(T1, Rk
1
).

(4c) Append-head(T2, Rk
0
).

(4d) T0 = (T1, T2).

EndFor

(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
).

(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
).

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
).

(8) Append-head(T3, C1
1
).

(9) Append-head(T4, C1
0
).

(10) Append-head(T5, C1
1
).

(11) Append-head(T6, C1
0
).

(12) T0 = (T3, T4, T5, T6).

EndProcedure

Proof of Correction:

The algorithm, Y-AND-Y-OR-X(T0, T1, T2, T3, T4, T5, T6), is implemented by

 51

means of the extract, amplify, append-head and merge operations. Steps (1) through

(4d) apply the amplify, append-head and merge operations to yield four different

inputs to y  (y  x) as shown in Table 6.10.4. Next, Steps (5) through (7) apply the

extract operations to produce some different tubes including different inputs (T1 to T6).

T1 includes all of the inputs that have R1 = 1, T2 includes all of the inputs that have R1

= 0, T3 includes that input that has R1 = 1 and R2 = 1, T4 includes that input that has R1

= 1 and R2 = 0, T5 includes that input that has R1 = 0 and R2 = 1, and finally, T6

includes that input that has R1 = 0 and R2 = 0. This implies that four different inputs

for y  (y  x) as shown in Table 6.10.4 were poured into tubes T3 through T6,

respectively. Next, Steps (8) through (11) use the append-head operations to append

C1
1
 and C1

0
 onto the head of every input in the corresponding tubes. This implies that

four different outputs to y  (y  x) as shown in Table 6.10.4 are appended into tubes

T3 through T6. Finally, the execution of Step (12) uses the merge operation to pour

tubes T3 through T6 into tube T0. Tube T0 includes the result implementing, y  (y  x),

as shown in Table 6.10.4. 

6.5:

It is assumed that two binary numbers of a bit, R1 and R2, are applied to encode

the first input and the second input for x

  y as shown in Table 6.10.5. Also it is

supposed that a binary number of a bit, C1, is employed to encode the output for x

  y.

For the sake of convenience, it is assumed that for 1  k  2 Rk
1
 denotes the fact that

the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is 0. Similarly, it is

also supposed that C1
1
 denotes the fact that the value of C1 is 1 and C1

0
 denotes the

fact that the value of C1 is 0. The following algorithm is proposed to implement, x

  y,

as shown in Table 6.10.5. Tubes T0, T1, T2, T3, T4, T5 and T6 are subsequently the first,

second, third, fourth, fifth, sixth and seventh parameters, and are set to empty tubes.

Procedure NEGATIVE-X-AND-Y(T0, T1, T2, T3, T4, T5, T6)

(1) Append-head(T1, R1
1
).

(2) Append-head(T2, R1
0
).

(3) T0 = (T1, T2).

(4) For k = 2 to 2

(4a) Amplify(T0, T1, T2).

(4b) Append-head(T1, Rk
1
).

(4c) Append-head(T2, Rk
0
).

(4d) T0 = (T1, T2).

EndFor

(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
).

 52

(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
).

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
).

(8) Append-head(T3, C1
0
).

(9) Append-head(T4, C1
0
).

(10) Append-head(T5, C1
1
).

(11) Append-head(T6, C1
0
).

(12) T0 = (T3, T4, T5, T6).

EndProcedure

Proof of Correction:

The algorithm, NEGATIVE-X-AND-Y(T0, T1, T2, T3, T4, T5, T6), is implemented

by means of the extract, amplify, append-head and merge operations. Steps (1)

through (4d) employ the amplify, append-head and merge operations to produce four

different inputs to x

  y as shown in Table 6.10.5. Next, Steps (5) through (7) use the

extract operations to generate some different tubes containing different inputs (T1 to

T6). T1 contains all of the inputs that have R1 = 1, T2 contains all of the inputs that

have R1 = 0, T3 contains that input that has R1 = 1 and R2 = 1, T4 contains that input

that has R1 = 1 and R2 = 0, T5 contains that input that has R1 = 0 and R2 = 1, and finally,

T6 contains that input that has R1 = 0 and R2 = 0. This is to say that four different

inputs for x

  y as shown in Table 6.10.5 were poured into tubes T3 through T6,

respectively. Next, Steps (8) through (11) apply the append-head operations to append

C1
0
 and C1

1
 onto the head of every input in the corresponding tubes. This indicates

that four different outputs to x

  y as shown in Table 6.10.5 are appended into tubes

T3 through T6. Finally, the execution of Step (12) applies the merge operation to pour

tubes T3 through T6 into tube T0. Tube T0 consists of the result implementing, x

  y, as

shown in Table 6.10.5. 

6.6:

It is supposed that two binary numbers of a bit, R1 and R2, are employed to encode

the first input and the second input for (x  y)  (x

  y


) as shown in Table 6.10.6.

Also it is assumed that a binary number of a bit, C1, is applied to encode the output for

(x  y)  (x

  y


). For the sake of convenience, it is supposed that for 1  k  2 Rk

1

denotes the fact that the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is

0. Similarly, it is also assumed that C1
1
 denotes the fact that the value of C1 is 1 and

C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is presented to

implement, (x  y)  (x

  y


), as shown in Table 6.10.6. Tubes T0, T1, T2, T3, T4, T5 and

T6 are subsequently the first, second, third, fourth, fifth, sixth and seventh parameters,

 53

and are set to empty tubes.

Procedure X-AND-Y-OR-NEGATIVE-X-AND-NEGATIVE-Y(T0, T1, T2, T3, T4,

T5, T6)

(1) Append-head(T1, R1
1
).

(2) Append-head(T2, R1
0
).

(3) T0 = (T1, T2).

(4) For k = 2 to 2

(4a) Amplify(T0, T1, T2).

(4b) Append-head(T1, Rk
1
).

(4c) Append-head(T2, Rk
0
).

(4d) T0 = (T1, T2).

EndFor

(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
).

(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
).

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
).

(8) Append-head(T3, C1
1
).

(9) Append-head(T4, C1
0
).

(10) Append-head(T5, C1
0
).

(11) Append-head(T6, C1
1
).

(12) T0 = (T3, T4, T5, T6).

EndProcedure

Proof of Correction:

The algorithm, X-AND-Y-OR-NEGATIVE-X-AND-NEGATIVE-Y(T0, T1, T2,

T3, T4, T5, T6), is implemented by means of the extract, amplify, append-head and

merge operations. Steps (1) through (4d) use the amplify, append-head and merge

operations to yield four different inputs to (x  y)  (x

  y


) as shown in Table 6.10.6.

Next, Steps (5) through (7) employ the extract operations to form some different tubes

consisting of different inputs (T1 to T6). T1 consists of all of the inputs that have R1 = 1,

T2 consists of all of the inputs that have R1 = 0, T3 consists of that input that has R1 = 1

and R2 = 1, T4 consists of that input that has R1 = 1 and R2 = 0, T5 consists of that

input that has R1 = 0 and R2 = 1, and finally, T6 consists of that input that has R1 = 0

and R2 = 0. This indicates that four different inputs for (x  y)  (x

  y


) as shown in

Table 6.10.6 were poured into tubes T3 through T6, respectively. Next, Steps (8)

through (11) use the append-head operations to append C1
1
 and C1

0
 onto the head of

every input in the corresponding tubes. This implies that four different outputs to (x 

 54

y)  (x

  y


) as shown in Table 6.10.6 are appended into tubes T3 through T6. Finally,

the execution of Step (12) uses the merge operation to pour tubes T3 through T6 into

tube T0. Tube T0 includes the result implementing, (x  y)  (x

  y


), as shown in

Table 6.10.6. 

6.7:

It is assumed that two binary numbers of a bit, R1 and R2, are used to encode the

first input and the second input for y

 as shown in Table 6.10.7. Also it is supposed

that a binary number of a bit, C1, is used to encode the output for y

. For the sake of

convenience, it is assumed that for 1  k  2 Rk
1
 denotes the fact that the value of Rk is

1 and Rk
0

 denotes the fact that the value of Rk is 0. Similarly, it is also supposed that

C1
1
 denotes the fact that the value of C1 is 1 and C1

0
 denotes the fact that the value of

C1 is 0. The following algorithm is proposed to implement, y

, as shown in Table

6.10.7. Tubes T0, T1, T2, T3, T4, T5 and T6 are subsequently the first, second, third,

fourth, fifth, sixth and seventh parameters, and are set to empty tubes.

Procedure NEGATIVE-Y(T0, T1, T2, T3, T4, T5, T6)

(1) Append-head(T1, R1
1
).

(2) Append-head(T2, R1
0
).

(3) T0 = (T1, T2).

(4) For k = 2 to 2

(4a) Amplify(T0, T1, T2).

(4b) Append-head(T1, Rk
1
).

(4c) Append-head(T2, Rk
0
).

(4d) T0 = (T1, T2).

EndFor

(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
).

(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
).

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
).

(8) Append-head(T3, C1
0
).

(9) Append-head(T4, C1
1
).

(10) Append-head(T5, C1
0
).

(11) Append-head(T6, C1
1
).

(12) T0 = (T3, T4, T5, T6).

EndProcedure

Proof of Correction:

 55

The algorithm, NEGATIVE-Y(T0, T1, T2, T3, T4, T5, T6), is implemented by means

of the extract, amplify, append-head and merge operations. Steps (1) through (4d)

apply the amplify, append-head and merge operations to produce four different inputs

to y

 as shown in Table 6.10.7. Next, Steps (5) through (7) use the extract operations

to generate some different tubes including different inputs (T1 to T6). T1 includes all of

the inputs that have R1 = 1, T2 includes all of the inputs that have R1 = 0, T3 includes

that input that has R1 = 1 and R2 = 1, T4 includes that input that has R1 = 1 and R2 = 0,

T5 includes that input that has R1 = 0 and R2 = 1, and finally, T6 includes that input that

has R1 = 0 and R2 = 0. This is to say that four different inputs for y

 as shown in Table

6.10.7 were poured into tubes T3 through T6, respectively. Next, Steps (8) through (11)

apply the append-head operations to append C1
0
 and C1

1
 onto the head of every input

in the corresponding tubes. This indicates that four different outputs to y

 as shown in

Table 6.10.7 are appended into tubes T3 through T6. Finally, the execution of Step (12)

applies the merge operation to pour tubes T3 through T6 into tube T0. Tube T0 contains

the result implementing, y

, as shown in Table 6.10.7. 

6.8:

It is supposed that two binary numbers of a bit, R1 and R2, are employed to encode

the first input and the second input for x

 as shown in Table 6.10.8. Also it is assumed

that a binary number of a bit, C1, is applied to encode the output for x

. For the sake of

convenience, it is supposed that for 1  k  2 Rk
1
 denotes the fact that the value of Rk

is 1 and Rk
0
 denotes the fact that the value of Rk is 0. Similarly, it is also assumed that

C1
1
 denotes the fact that the value of C1 is 1 and C1

0
 denotes the fact that the value of

C1 is 0. The following algorithm is offered to implement, x

, as shown in Table 6.10.8.

Tubes T0, T1, T2, T3, T4, T5 and T6 are subsequently the first, second, third, fourth, fifth,

sixth and seventh parameters, and are set to empty tubes.

Procedure NEGATIVE-X(T0, T1, T2, T3, T4, T5, T6)

(1) Append-head(T1, R1
1
).

(2) Append-head(T2, R1
0
).

(3) T0 = (T1, T2).

(4) For k = 2 to 2

(4a) Amplify(T0, T1, T2).

(4b) Append-head(T1, Rk
1
).

(4c) Append-head(T2, Rk
0
).

(4d) T0 = (T1, T2).

EndFor

(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
).

 56

(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
).

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
).

(8) Append-head(T3, C1
0
).

(9) Append-head(T4, C1
0
).

(10) Append-head(T5, C1
1
).

(11) Append-head(T6, C1
1
).

(12) T0 = (T3, T4, T5, T6).

EndProcedure

Proof of Correction:

The algorithm, NEGATIVE-X(T0, T1, T2, T3, T4, T5, T6), is implemented by means

of the extract, amplify, append-head and merge operations. Steps (1) through (4d) use

the amplify, append-head and merge operations to yield four different inputs to x

 as

shown in Table 6.10.8. Next, Steps (5) through (7) apply the extract operations to

produce some different tubes containing different inputs (T1 to T6). T1 contains all of

the inputs that have R1 = 1, T2 contains all of the inputs that have R1 = 0, T3 contains

that input that has R1 = 1 and R2 = 1, T4 contains that input that has R1 = 1 and R2 = 0,

T5 contains that input that has R1 = 0 and R2 = 1, and finally, T6 contains that input that

has R1 = 0 and R2 = 0. This indicates that four different inputs for x

 as shown in Table

6.10.8 were poured into tubes T3 through T6, respectively. Next, Steps (8) through (11)

use the append-head operations to append C1
0
 and C1

1
 onto the head of every input in

the corresponding tubes. This is to say that four different outputs to x

 as shown in

Table 6.10.8 are appended into tubes T3 through T6. Finally, the execution of Step (12)

uses the merge operation to pour tubes T3 through T6 into tube T0. Tube T0 consists of

the result implementing, x

, as shown in Table 6.10.8. 

6.9:

It is assumed that two binary numbers of a bit, R1 and R2, are applied to encode

the first input and the second input for x  y

 as shown in Table 6.10.9. Also it is

supposed that a binary number of a bit, C1, is employed to encode the output for x  y

.

For the sake of convenience, it is assumed that for 1  k  2 Rk
1
 denotes the fact that

the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is 0. Similarly, it is

also supposed that C1
1
 denotes the fact that the value of C1 is 1 and C1

0
 denotes the

fact that the value of C1 is 0. The following algorithm is presented to implement, x 

y

, as shown in Table 6.10.9. Tubes T0, T1, T2, T3, T4, T5 and T6 are subsequently the

first, second, third, fourth, fifth, sixth and seventh parameters, and are set to empty

tubes.

 57

Procedure X-OR-NEGATIVE-Y(T0, T1, T2, T3, T4, T5, T6)

(1) Append-head(T1, R1
1
).

(2) Append-head(T2, R1
0
).

(3) T0 = (T1, T2).

(4) For k = 2 to 2

(4a) Amplify(T0, T1, T2).

(4b) Append-head(T1, Rk
1
).

(4c) Append-head(T2, Rk
0
).

(4d) T0 = (T1, T2).

EndFor

(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
).

(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
).

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
).

(8) Append-head(T3, C1
1
).

(9) Append-head(T4, C1
1
).

(10) Append-head(T5, C1
0
).

(11) Append-head(T6, C1
1
).

(12) T0 = (T3, T4, T5, T6).

EndProcedure

Proof of Correction:

The algorithm, X-OR-NEGATIVE-Y(T0, T1, T2, T3, T4, T5, T6), is implemented

by means of the extract, amplify, append-head and merge operations. Steps (1)

through (4d) apply the amplify, append-head and merge operations to generate four

different inputs to x  y

 as shown in Table 6.10.9. Next, Steps (5) through (7) use the

extract operations to yield some different tubes including different inputs (T1 to T6).

T1 includes all of the inputs that have R1 = 1, T2 includes all of the inputs that have R1

= 0, T3 includes that input that has R1 = 1 and R2 = 1, T4 includes that input that has R1

= 1 and R2 = 0, T5 includes that input that has R1 = 0 and R2 = 1, and finally, T6

includes that input that has R1 = 0 and R2 = 0. This is to say that four different inputs

for x  y

 as shown in Table 6.10.9 were poured into tubes T3 through T6, respectively.

Next, Steps (8) through (11) apply the append-head operations to append C1
1
 and C1

0

onto the head of every input in the corresponding tubes. This implies that four

different outputs to x  y

 as shown in Table 6.10.9 are appended into tubes T3 through

T6. Finally, the execution of Step (12) applies the merge operation to pour tubes T3

through T6 into tube T0. Tube T0 contains the result implementing, x  y

, as shown in

 58

Table 6.10.9. 

6.10:

It is supposed that two binary numbers of a bit, R1 and R2, are used to encode the

first input and the second input for x

  y as shown in Table 6.10.10. Also it is

assumed that a binary number of a bit, C1, is applied to encode the output for x

  y.

For the sake of convenience, it is supposed that for 1  k  2 Rk
1
 denotes the fact that

the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is 0. Similarly, it is

also assumed that C1
1
 denotes the fact that the value of C1 is 1 and C1

0
 denotes the fact

that the value of C1 is 0. The following algorithm is proposed to implement, x

  y, as

shown in Table 6.10.10. Tubes T0, T1, T2, T3, T4, T5 and T6 are subsequently the first,

second, third, fourth, fifth, sixth and seventh parameters, and are set to empty tubes.

Procedure NEGATIVE-X-OR-Y(T0, T1, T2, T3, T4, T5, T6)

(1) Append-head(T1, R1
1
).

(2) Append-head(T2, R1
0
).

(3) T0 = (T1, T2).

(4) For k = 2 to 2

(4a) Amplify(T0, T1, T2).

(4b) Append-head(T1, Rk
1
).

(4c) Append-head(T2, Rk
0
).

(4d) T0 = (T1, T2).

EndFor

(5) T1 = +(T0, R1
1
) and T2 = (T0, R1

1
).

(6) T3 = +(T1, R2
1
) and T4 = (T1, R2

1
).

(7) T5 = +(T2, R2
1
) and T6 = (T2, R2

1
).

(8) Append-head(T3, C1
1
).

(9) Append-head(T4, C1
0
).

(10) Append-head(T5, C1
1
).

(11) Append-head(T6, C1
1
).

(12) T0 = (T3, T4, T5, T6).

EndProcedure

Proof of Correction:

The algorithm, NEGATIVE-X-OR-Y(T0, T1, T2, T3, T4, T5, T6), is implemented

by means of the extract, amplify, append-head and merge operations. Steps (1)

through (4d) use the amplify, append-head and merge operations to yield four

 59

different inputs to x

  y as shown in Table 6.10.10. Next, Steps (5) through (7) apply

the extract operations to produce some different tubes containing different inputs (T1

to T6). T1 consists of all of the inputs that have R1 = 1, T2 consists of all of the inputs

that have R1 = 0, T3 consists of that input that has R1 = 1 and R2 = 1, T4 consists of that

input that has R1 = 1 and R2 = 0, T5 consists of that input that has R1 = 0 and R2 = 1,

and finally, T6 consists of that input that has R1 = 0 and R2 = 0. This implies that four

different inputs for x

  y as shown in Table 6.10.10 were poured into tubes T3 through

T6, respectively. Next, Steps (8) through (11) use the append-head operations to

append C1
1
 and C1

0
 onto the head of every input in the corresponding tubes. This is to

say that four different outputs to x

  y as shown in Table 6.10.10 are appended into

tubes T3 through T6. Finally, the execution of Step (12) uses the merge operation to

pour tubes T3 through T6 into tube T0. Tube T0 includes the result implementing, x

  y,

as shown in Table 6.10.10. 

 60

Chapter 7

7.1:

It is supposed that two binary numbers of a bit, R1 and R2, are employed to encode

the first input and the second input for x  1 as shown in Table 7.9.1. It is also

assumed that a binary number of a bit, C1, is applied to encode the output for the

logical operation, x  1. For the sake of convenience, it is assumed that for 1  k  2

Rk
1
 denotes the fact that the value of Rk is 1 and Rk

0
 denotes the fact that the value of

Rk is 0. Similarly, it is also supposed that C1
1
 denotes the fact that the value of C1 is 1

and C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is offered to

demonstrate x  1 = 1. Tubes T0, T1 and T2 are subsequently the first, second and third

parameters, and are set to empty tubes. Tubes T3 and T4 that are used in the

DNA-based algorithm are also set to empty tubes.

Procedure X-OR-ONE-IS-EQUAL-TO-ONE(T0, T1, T2)

(1) X-OR-ONE(T0, T1, T2).

(2) T3 = +(T0, C1
1
) and T4 = (T0, C1

1
).

(3) If (detectct(T4) = = false) Then

(3a) The proof to x  1 = 1 is completed, and the algorithm is terminated.

(4) Else

(4a) We fail to show x  1 = 1, and terminate the algorithm.

EndIf

EndProcedure

Proof of Correction:

The algorithm, X-OR-ONE-IS-EQUAL-TO-ONE(T0, T1, T2), is implemented by

means of the append-head, merge, extract and detect operations. On the first

execution of Step (1), it invokes the DNA-based algorithm X-OR-ONE(T0, T1, T2)

that is the solution of the exercise 5.7 for generating the result of x  1 as shown in

Table 7.9.1. This implies that after the DNA-based algorithm X-OR-ONE(T0, T1, T2)

is implemented, T0 = {C1
1
 R2

1
 R1

1
, C1

1
 R2

1
 R1

0
}, T1 =  and T2 = . Next, on the first

execute of Step (2), it uses the extract operation to yield two different tubes (T3 and

T4) including different results. Tubes T3 = {C1
1
 R2

1
 R1

1
, C1

1
 R2

1
 R1

0
} and T4 =  are

obtained. If a false is returned from the detect operation for tube T4 on the first

execution of Step (3), then it is at once inferred that the proof for x  1 = 1 is

completed and the algorithm is terminated. Otherwise, it is at once concluded that we

 61

fail to complete the proof for x  1 = 1 and terminate the algorithm. 

7.2:

It is assumed that two binary numbers of a bit, R1 and R2, are applied to encode

the first input and the second input for x  0 as shown in Table 7.9.2. It is also

supposed that a binary number of a bit, C1, is employed to encode the output for the

logical operation, x  0. For the sake of convenience, it is supposed that for 1  k  2

Rk
1
 denotes the fact that the value of Rk is 1 and Rk

0
 denotes the fact that the value of

Rk is 0. Similarly, it is also assumed that C1
1
 denotes the fact that the value of C1 is 1

and C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is presented

to demonstrate x  0 = 0. Tubes T0, T1 and T2 are subsequently the first, second and

third parameters, and are set to empty tubes. Tubes T3 and T4 that are applied in the

DNA-based algorithm are also set to empty tubes.

Procedure X-AND-ZERO-IS-EQUAL-TO-ZERO(T0, T1, T2)

(1) X-AND-ZERO(T0, T1, T2).

(2) T3 = +(T0, C1
1
) and T4 = (T0, C1

1
).

(3) If (detectct(T3) = = false) Then

(3a) The proof to x  0 = 0 is completed, and the algorithm is terminated.

(4) Else

(4a) We fail to show x  0 = 0, and terminate the algorithm.

EndIf

EndProcedure

Proof of Correction:

The algorithm, X-AND-ZERO-IS-EQUAL-TO-ZERO(T0, T1, T2), is

implemented by means of the append-head, merge, extract and detect operations. On

the first execution of Step (1), it calls the DNA-based algorithm X-AND-ZERO(T0,

T1, T2) that is the solution of the exercise 5.8 for producing the result of x  0 as

shown in Table 7.9.2. This is to say that after the DNA-based algorithm

X-AND-ZERO(T0, T1, T2) is implemented, T0 = {C1
0
 R2

0
 R1

1
, C1

0
 R2

0
 R1

0
}, T1 = 

and T2 = . Next, on the first execute of Step (2), it applies the extract operation to

generate two different tubes (T3 and T4) containing different results. Tubes T3 =  and

T4 = {C1
0
 R2

0
 R1

1
, C1

0
 R2

0
 R1

0
} are obtained. If a false is returned from the detect

operation for tube T4 on the first execution of Step (3), then it is immediately derived

that the proof for x  0 = 0 is completed and the algorithm is terminated. Otherwise, it

is immediately inferred that we fail to complete the proof for x  0 = 0 and terminate

 62

the algorithm. 

7.3:

It is supposed that two binary numbers of a bit, R1 and R2, are employed to encode

the first input and the second input for x  0 and x as shown in Table 7.9.3. Also it is

assumed that a binary number of a bit, C1, is used to encode the output for the logical

operation, x  0. For the sake of convenience, it is assumed that for 1  k  2 Rk
1

denotes the fact that the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is

0. Similarly, it is also supposed that C1
1
 denotes the fact that the value of C1 is 1 and

C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is proposed to

prove x  0 = x. Tubes T0, T1 and T2 are subsequently the first, second and third

parameters, and are set to empty tubes. Tubes T3, T4, T5, T6, T7 and T8 that are applied

in the DNA-based algorithm are also set to empty tubes.

Procedure X-OR-ZERO-IS-EQUAL-TO-X(T0, T1, T2)

(1) X-OR-ZERO(T0, T1, T2).

(2) T3 = +(T0, C1
1
) and T4 = (T0, C1

1
).

(3) T5 = +(T3, R1
1
) and T6 = (T3, R1

1
).

(4) T7 = +(T4, R1
0
) and T8 = (T4, R1

0
).

(5) If ((detectct(T5) = = true) AND (detectct(T7) = = true)) Then

(5a) The proof to x  0 = x is completed, and the algorithm is terminated.

(6) Else

(6a) We fail to show x  0 = x, and terminate the algorithm.

EndIf

EndProcedure

Proof of Correction:

The algorithm, X-OR-ZERO-IS-EQUAL-TO-X(T0, T1, T2), is implemented by

means of the append-head, merge, extract and detect operations. On the first

execution of Step (1), it invokes the DNA-based algorithm X-OR-ZERO(T0, T1, T2)

that is the solution of the exercise 5.1 for yielding the result of x  0 as shown in

Table 7.9.3. This indicates that after the DNA-based algorithm X-OR-ZERO(T0, T1,

T2) is implemented, T0 = {C1
1
 R2

0
 R1

1
, C1

0
 R2

0
 R1

0
}, T1 =  and T2 = . Next, Steps (2)

through (4) use three extract operations to generate six different tubes (T3 through T8)

consisting of different results. After those operations from Step (2) through Step (4)

are implemented, tubes T3 = , T4 = , T5 = {C1
1
 R2

0
 R1

1
}, T6 = , T7 = {C1

0
 R2

0
 R1

0
}

and T8 =  are obtained. If a true is returned from the first execution of Step (5), then

 63

it is at once concluded that the proof for x  0 = x is completed and the algorithm is

terminated. Otherwise, it is at once derived that we fail to complete the proof for x  0

= x and terminate the algorithm. 

7.4:

It is assumed that two binary numbers of a bit, R1 and R2, are used to encode the

first input and the second input for x  1 and x as shown in Table 7.9.4. Also it is

supposed that a binary number of a bit, C1, is employed to encode the output for the

logical operation, x  1. For the sake of convenience, it is supposed that for 1  k  2

Rk
1
 denotes the fact that the value of Rk is 1 and Rk

0
 denotes the fact that the value of

Rk is 0. Similarly, it is also assumed that C1
1
 denotes the fact that the value of C1 is 1

and C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is offered to

show x  1 = x. Tubes T0, T1 and T2 are subsequently the first, second and third

parameters, and are set to empty tubes. Tubes T3, T4, T5, T6, T7 and T8 that are

employed in the DNA-based algorithm are also set to empty tubes.

Procedure X-AND-ONE-IS-EQUAL-TO-X(T0, T1, T2)

(1) X-AND-ONE(T0, T1, T2).

(2) T3 = +(T0, C1
1
) and T4 = (T0, C1

1
).

(3) T5 = +(T3, R1
1
) and T6 = (T3, R1

1
).

(4) T7 = +(T4, R1
0
) and T8 = (T4, R1

0
).

(5) If ((detectct(T5) = = true) AND (detectct(T7) = = true)) Then

(5a) The proof to x  1 = x is completed, and the algorithm is terminated.

(6) Else

(6a) We fail to show x  1 = x, and terminate the algorithm.

EndIf

EndProcedure

Proof of Correction:

The algorithm, X-AND-ONE-IS-EQUAL-TO-X(T0, T1, T2), is implemented by

means of the append-head, merge, extract and detect operations. On the first

execution of Step (1), it calls the DNA-based algorithm X-AND-ONE(T0, T1, T2) that

is the solution of the exercise 5.2 for producing the result of x  1 as shown in Table

7.9.4. This implies that after the DNA-based algorithm X-AND-ONE(T0, T1, T2) is

implemented, T0 = {C1
1
 R2

1
 R1

1
, C1

0
 R2

1
 R1

0
}, T1 =  and T2 = . Next, Steps (2)

through (4) apply three extract operations to yield six different tubes (T3 through T8)

including different results. After those operations from Step (2) through Step (4) are

 64

implemented, tubes T3 = , T4 = , T5 = {C1
1
 R2

1
 R1

1
}, T6 = , T7 = {C1

0
 R2

1
 R1

0
}

and T8 =  are obtained. If a true is returned from the first execution of Step (5), then

it is immediately inferred that the proof for x  1 = x is completed and the algorithm is

terminated. Otherwise, it is immediately concluded that we fail to complete the proof

for x  1 = x and terminate the algorithm. 

7.5:

It is supposed that two binary numbers of a bit, R1 and R2, are employed to encode

the first input and the second input for x  x as shown in Table 7.9.5. It is also

assumed that a binary number of a bit, C1, is used to encode the output for the logical

operation, x  x. For the sake of convenience, it is assumed that for 1  k  2 Rk
1

denotes the fact that the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is

0. Similarly, it is also supposed that C1
1
 denotes the fact that the value of C1 is 1 and

C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is proposed to

demonstrate x  x = 1. Tubes T0, T1 and T2 are subsequently the first, second and third

parameters, and are set to empty tubes. Tubes T3 and T4 that are used in the

DNA-based algorithm are also set to empty tubes.

Procedure X-OR-NEGATIVE-X-IS-EQUAL-TO-ONE(T0, T1, T2)

(1) X-OR-NEGATIVE-X(T0, T1, T2).

(2) T3 = +(T0, C1
1
) and T4 = (T0, C1

1
).

(3) If (detectct(T4) = = false) Then

(3a) The proof to x  x = 1 is completed, and the algorithm is terminated.

(4) Else

(4a) We fail to show x  x = 1, and terminate the algorithm.

EndIf

EndProcedure

Proof of Correction:

The algorithm, X-OR-NEGATIVE-X-IS-EQUAL-TO-ONE(T0, T1, T2), is

implemented by means of the append-head, merge, extract and detect operations. On

the first execution of Step (1), it invokes the DNA-based algorithm

X-OR-NEGATIVE-X(T0, T1, T2) that is the solution of the exercise 5.3 for yielding

the result of x  x as shown in Table 7.9.5. This is to say that after the DNA-based

algorithm X-OR-NEGATIVE-X(T0, T1, T2) is implemented, T0 = {C1
1
 R2

0
 R1

1
, C1

1

R2
1
 R1

0
}, T1 =  and T2 = . Next, on the first execution of Step (2), it uses the

extract operation to generate two different tubes (T3 through T4) containing different

 65

results. After that operation from Step (2) is implemented, tubes T3 = {C1
1
 R2

0
 R1

1
, C1

1

R2
1
 R1

0
} and T4 =  are obtained. If a false is returned from the detect operation for

tube T4 on the first execution of Step (3), then it is at once derived that the proof for x

 x = 1 is completed and the algorithm is terminated. Otherwise, it is at once inferred

that we fail to complete the proof for x  x = 1 and terminate the algorithm. 

7.6:

It is assumed that two binary numbers of a bit, R1 and R2, are applied to encode

the first input and the second input for x  x as shown in Table 7.9.6. It is also

supposed that a binary number of a bit, C1, is employed to encode the output for the

logical operation, x  x. For the sake of convenience, it is supposed that for 1  k  2

Rk
1
 denotes the fact that the value of Rk is 1 and Rk

0
 denotes the fact that the value of

Rk is 0. Similarly, it is also assumed that C1
1
 denotes the fact that the value of C1 is 1

and C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is presented

to show x  x = 0. Tubes T0, T1 and T2 are subsequently the first, second and third

parameters, and are set to empty tubes. Tubes T3 and T4 that are applied in the

DNA-based algorithm are also set to empty tubes.

Procedure X-AND-NEGATIVE-X-IS-EQUAL-TO-ZERO(T0, T1, T2)

(1) X-AND-NEGATIVE-X(T0, T1, T2).

(2) T3 = +(T0, C1
1
) and T4 = (T0, C1

1
).

(3) If (detectct(T4) = = false) Then

(3a) The proof to x  x = 0 is completed, and the algorithm is terminated.

(4) Else

(4a) We fail to show x  x = 0, and terminate the algorithm.

EndIf

EndProcedure

Proof of Correction:

The algorithm, X-AND-NEGATIVE-X-IS-EQUAL-TO-ZERO(T0, T1, T2), is

implemented by means of the append-head, merge, extract and detect operations. On

the first execution of Step (1), it calls the DNA-based algorithm

X-AND-NEGATIVE-X(T0, T1, T2) that is the solution of the exercise 5.4 for

producing the result of x  x as shown in Table 7.9.6. This indicates that after the

DNA-based algorithm X-AND-NEGATIVE-X(T0, T1, T2) is implemented, T0 = {C1
0

R2
0
 R1

1
, C1

0
 R2

1
 R1

0
}, T1 =  and T2 = . Next, on the first execution of Step (2), it

applies the extract operation to yield two different tubes (T3 through T4) consisting of

 66

different results. After that operation from Step (2) is implemented, tubes T3 = {C1
0

R2
0
 R1

1
, C1

0
 R2

1
 R1

0
} and T4 =  are obtained. If a false is returned from the detect

operation for tube T4 on the first execution of Step (3), then it is right away concluded

that the proof for x  x = 0 is completed and the algorithm is terminated. Otherwise, it

is right away derived that we fail to complete the proof for x  x = 0 and terminate

the algorithm. 

7.7:

It is assumed that two binary numbers of a bit, R1 and R2, are used to encode the

first input and the second input for x  x as shown in Table 7.9.7. It is also supposed

that a binary number of a bit, C1, is applied to encode the output for the logical

operation, x  x. For the sake of convenience, it is supposed that for 1  k  2 Rk
1

denotes the fact that the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is

0. Similarly, it is also assumed that C1
1
 denotes the fact that the value of C1 is 1 and

C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is offered to

prove x  x = x. Tubes T0, T1 and T2 are subsequently the first, second and third

parameters, and are set to empty tubes. Tubes T3, T4, T5, T6, T7 and T8 that are

employed in the DNA-based algorithm are also set to empty tubes.

Procedure X-AND-X-IS-EQUAL-TO-X(T0, T1, T2)

(1) X-AND-X(T0, T1, T2).

(2) T3 = +(T0, C1
1
) and T4 = (T0, C1

1
).

(3) T5 = +(T3, R1
1
) and T6 = (T3, R1

1
).

(4) T7 = +(T4, R1
0
) and T8 = (T4, R1

0
).

(5) If ((detectct(T5) = = true) AND (detectct(T7) = = true)) Then

(5a) The proof to x  x = x is completed, and the algorithm is terminated.

(6) Else

(6a) We fail to show x  x = x, and terminate the algorithm.

EndIf

EndProcedure

Proof of Correction:

The algorithm, X-AND-X-IS-EQUAL-TO-X(T0, T1, T2), is implemented by

means of the append-head, merge, extract and detect operations. On the first

execution of Step (1), it calls the DNA-based algorithm X-AND-X(T0, T1, T2) that is

the solution of the exercise 5.6 for producing the result of x  x as shown in Table

7.9.7. This implies that after the DNA-based algorithm X-AND-X(T0, T1, T2) is

 67

implemented, T0 = {C1
1
 R2

1
 R1

1
, C1

0
 R2

0
 R1

0
}, T1 =  and T2 = . Next, Steps (2)

through (4) apply three extract operations to yield six different tubes (T3 through T8)

including different results. After those operations from Step (2) through Step (4) are

implemented, tubes T3 = , T4 = , T5 = {C1
1
 R2

1
 R1

1
}, T6 = , T7 = {C1

0
 R2

0
 R1

0
}

and T8 =  are obtained. If a true is returned from the first execution of Step (5), then

it is at once inferred that the proof for x  x = x is completed and the algorithm is

terminated. Otherwise, it is at once concluded that we fail to complete the proof for x

 x = x and terminate the algorithm. 

7.8:

It is supposed that two binary numbers of a bit, R1 and R2, are applied to encode

the first input and the second input for x  x as shown in Table 7.9.8. It is also

assumed that a binary number of a bit, C1, is employed to encode the output for the

logical operation, x  x. For the sake of convenience, it is assumed that for 1  k  2

Rk
1
 denotes the fact that the value of Rk is 1 and Rk

0
 denotes the fact that the value of

Rk is 0. Similarly, it is also supposed that C1
1
 denotes the fact that the value of C1 is 1

and C1
0

 denotes the fact that the value of C1 is 0. The following algorithm is offered to

demonstrate x  x = x. Tubes T0, T1 and T2 are subsequently the first, second and third

parameters, and are set to empty tubes. Tubes T3, T4, T5, T6, T7 and T8 that are used in

the DNA-based algorithm are also set to empty tubes.

Procedure X-OR-X-IS-EQUAL-TO-X(T0, T1, T2)

(1) X-OR-X(T0, T1, T2).

(2) T3 = +(T0, C1
1
) and T4 = (T0, C1

1
).

(3) T5 = +(T3, R1
1
) and T6 = (T3, R1

1
).

(4) T7 = +(T4, R1
0
) and T8 = (T4, R1

0
).

(5) If ((detectct(T5) = = true) AND (detectct(T7) = = true)) Then

(5a) The proof to x  x = x is completed, and the algorithm is terminated.

(6) Else

(6a) We fail to show x  x = x, and terminate the algorithm.

EndIf

EndProcedure

Proof of Correction:

The algorithm, X-OR-X-IS-EQUAL-TO-X(T0, T1, T2), is implemented by means

of the append-head, merge, extract and detect operations. On the first execution of

Step (1), it invokes the DNA-based algorithm X-OR-X(T0, T1, T2) that is the solution

 68

of the exercise 5.5 for generating the result of x  x as shown in Table 7.9.8. This is to

say that after the DNA-based algorithm X-OR-X(T0, T1, T2) is implemented, T0 =

{C1
1
 R2

1
 R1

1
, C1

0
 R2

0
 R1

0
}, T1 =  and T2 = . Next, Steps (2) through (4) employ

three extract operations to produce six different tubes (T3 through T8) consisting of

different results. After those operations from Step (2) through Step (4) are

implemented, tubes T3 = , T4 = , T5 = {C1
1
 R2

1
 R1

1
}, T6 = , T7 = {C1

0
 R2

0
 R1

0
}

and T8 =  are obtained. If a true is returned from the first execution of Step (5), then

it is immediately concluded that the proof for x  x = x is completed and the algorithm

is terminated. Otherwise, it is immediately inferred that we fail to complete the proof

for x  x = x and terminate the algorithm. 

7.9:

It is supposed that two binary numbers of a bit, R1 and R2, are used to encode the

two inputs for the OR operation of two bits, x  y and y  x, as shown in Table 7.9.9.

Also it is assumed that a binary number of a bit, C1, is applied to encode the output for

the OR operation. For the sake of convenience, it is assumed that for 1  k  2 Rk
1

denotes the fact that the value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is

0. Similarly, it is supposed that C1
1
 denotes the fact that the value of C1 is 1 and C1

0

denotes the fact that the value of C1 is 0. The following algorithm is presented to

prove x  y = y  x that satisfies the commutative law. Tubes T0, T1, T2, T3, T4, T5 and

T6 are subsequently the first, second, third, fourth, fifth, sixth and seventh parameters,

and are set to empty tubes. All of other tubes used in the following DNA-based

algorithm are initially set to empty tubes.

Procedure COMMUTATIVE-LAW-OF-OR(T0, T1, T2, T3, T4, T5, T6)

(1) OR(T0, T1, T2, T3, T4, T5, T6, R1, R2).

(2) OR(T20, T21, T22, T23, T24, T25, T26, R2, R1).

(3) T7 = +(T0, R1
1
) and T8 = (T0, R1

1
).

(4) T9 = +(T7, R2
1
) and T10 = (T7, R2

1
).

(5) T11 = +(T8, R2
1
) and T12 = (T8, R2

1
).

(6) T27 = +(T20, R2
1
) and T28 = (T20, R2

1
).

(7) T29 = +(T27, R1
1
) and T30 = (T27, R1

1
).

(8) T31 = +(T28, R1
1
) and T32 = (T28, R1

1
).

(9) T9
ON

 = +(T9, C1
1
) and T9

OFF
 = (T9, C1

1
).

(10) T29
ON

 = +(T29, C1
1
) and T29

OFF
 = (T29, C1

1
).

(11) T10
ON

 = +(T10, C1
1
) and T10

OFF
 = (T10, C1

1
).

(12) T30
ON

 = +(T30, C1
1
) and T30

OFF
 = (T30, C1

1
).

(13) T11
ON

 = +(T11, C1
1
) and T11

OFF
 = (T11, C1

1
).

 69

(14) T31
ON

 = +(T31, C1
1
) and T31

OFF
 = (T31, C1

1
).

(15) T12
ON

 = +(T12, C1
1
) and T12

OFF
 = (T12, C1

1
).

(16) T32
ON

 = +(T32, C1
1
) and T32

OFF
 = (T32, C1

1
).

(17) If ((detectct(T9
ON

) = = true) AND (detect(T29
ON

) = = true) AND

(detectct(T10
ON

) = = true) AND (detect(T30
ON

) = = true) AND

(detectct(T11
ON

) = = true) AND (detect(T31
ON

) = = true) AND

(detectct(T12
OFF

) = = true) AND (detect(T32
OFF

) = = true)) Then

(17a) The proof to x  y = y  x that satisfies the commutative law is completed,

and the algorithm is terminated.

(18) Else

(18a) We fail to show x  y = y  x that satisfies the commutative law, and

terminate the algorithm.

EndIf

EndProcedure

Proof of Correction:

The algorithm, COMMUTATIVE-LAW-OF-OR(T0, T1, T2, T3, T4, T5, T6), is

implemented by means of the append-head, merge, extract and detect operations. On

the first execution of Step (1), it calls the DNA-based algorithm OR(T0, T1, T2, T3, T4,

T5, T6, R1, R2) that is the solution of the exercise 3.3 for yielding the result of x  y as

shown in Table 7.9.9, where the eighth parameter, R1, is used to encode the first input

and the ninth parameter, R2, is applied to encode the second input. This implies that

after the DNA-based algorithm OR(T0, T1, T2, T3, T4, T5, T6, R1, R2) is implemented,

T0 = {C1
1
 R2

1
 R1

1
, C1

1
 R2

0
 R1

1
, C1

1
 R2

1
 R1

0
, C1

0
 R2

0
 R1

0
}, T1 = , T2 = , T3 = , T4 =

, T5 =  and T6 = . Next, on the first execution of Step (2), it invokes the

DNA-based algorithm OR(T20, T21, T22, T23, T24, T25, T26, R2, R1) that is the solution of

the exercise 3.3 for yielding the result of y  x as shown in Table 7.9.9, where the

eighth parameter, R2, is used to encode the first input and the ninth parameter, R1, is

applied to encode the second input. This indicates that after the DNA-based algorithm

OR(T20, T21, T22, T23, T24, T25, T26, R2, R1) is implemented, T20 = {C1
1
 R1

1
 R2

1
, C1

1
 R1

0

R2
1
, C1

1
 R1

1
 R2

0
, C1

0
 R1

0
 R2

0
}, T21 = , T22 = , T23 = , T24 = , T25 =  and T26 =

.

Next, Steps (3) through (5) use three extract operations to generate six different

tubes (T7 through T12) including different results. After those operations from Step (3)

through Step (5) are implemented, tubes T7 = , T8 = , T9 = {C1
1
 R2

1
 R1

1
}, T10 =

{C1
1
 R2

0
 R1

1
}, T11 = {C1

1
 R2

1
 R1

0
} and T12 = {C1

0
 R2

0
 R1

0
} are obtained. Next, on those

 70

operations from Steps (6) through (8), they apply three extract operations to produce

six different tubes (T27 through T32) containing different results. After those operations

from Step (6) through Step (8) are implemented, tubes T27 = , T28 = , T29 = {C1
1

R1
1
 R2

1
}, T30 = {C1

1
 R1

0
 R2

1
}, T31 = {C1

1
 R1

1
 R2

0
} and T32 = {C1

0
 R1

0
 R2

0
} are obtained.

Next, Steps (9) through (16) employ eight extract operations to yield sixteen

different tubes consisting of different results. After those operations from Step (9)

through Step (16) are implemented, tubes T9
ON

 = {C1
1
 R2

1
 R1

1
}, T9

OFF
 = , T10

ON
 =

{C1
1
 R2

0
 R1

1
}, T10

OFF
 = , T11

ON
 = {C1

1
 R2

1
 R1

0
}, T11

OFF
 = , T12

ON
 = , T12

OFF
 = {C1

0

R2
0
 R1

0
}, T29

ON
 = {C1

1
 R1

1
 R2

1
}, T29

OFF
 = , T30

ON
 = {C1

1
 R1

0
 R2

1
}, T30

OFF
 = , T31

ON

= {C1
1
 R1

1
 R2

0
}, T31

OFF
 = , T32

ON
 =  and T32

OFF
 = {C1

0
 R1

0
 R2

0
} are obtained. If a

true is returned from the first execution of Step (17), then it is at once derived that the

proof for x  y = y  x that satisfies the commutative law is completed and the

algorithm is terminated. Otherwise, it is right away concluded that we fail to complete

the proof for x  y = y  x that satisfies the commutative law and terminate the

algorithm. 

7.10:

It is supposed that two binary numbers of a bit, R1 and R2, are employed to encode

two inputs for x  y and y  x as shown in Table 7.9.10. Also it is assumed that a

binary number of a bit, C1, is applied to encode the output for x  y and y  x. For the

sake of convenience, it is supposed that for 1  k  2 Rk
1
 denotes the fact that the

value of Rk is 1 and Rk
0

 denotes the fact that the value of Rk is 0. Similarly, it is

assumed that C1
1
 denotes the fact that the value of C1 is 1 and C1

0
 denotes the fact that

the value of C1 is 0. The following algorithm is presented to prove x  y = y  x that

satisfies the commutative law. Tubes T0, T1, T2, T3, T4, T5 and T6 are subsequently the

first, second, third, fourth, fifth, sixth and seventh parameters, and are set to empty

tubes. All of other tubes used in the following DNA-based algorithm are initially set

to empty tubes.

Procedure COMMUTATIVE-LAW-OF-AND(T0, T1, T2, T3, T4, T5, T6)

(1) AND(T0, T1, T2, T3, T4, T5, T6, R1, R2).

(2) AND(T20, T21, T22, T23, T24, T25, T26, R2, R1).

(3) T7 = +(T0, R1
1
) and T8 = (T0, R1

1
).

(4) T9 = +(T7, R2
1
) and T10 = (T7, R2

1
).

(5) T11 = +(T8, R2
1
) and T12 = (T8, R2

1
).

(6) T27 = +(T20, R2
1
) and T28 = (T20, R2

1
).

(7) T29 = +(T27, R1
1
) and T30 = (T27, R1

1
).

 71

(8) T31 = +(T28, R1
1
) and T32 = (T28, R1

1
).

(9) T9
ON

 = +(T9, C1
1
) and T9

OFF
 = (T9, C1

1
).

(10) T29
ON

 = +(T29, C1
1
) and T29

OFF
 = (T29, C1

1
).

(11) T10
ON

 = +(T10, C1
1
) and T10

OFF
 = (T10, C1

1
).

(12) T30
ON

 = +(T30, C1
1
) and T30

OFF
 = (T30, C1

1
).

(13) T11
ON

 = +(T11, C1
1
) and T11

OFF
 = (T11, C1

1
).

(14) T31
ON

 = +(T31, C1
1
) and T31

OFF
 = (T31, C1

1
).

(15) T12
ON

 = +(T12, C1
1
) and T12

OFF
 = (T12, C1

1
).

(16) T32
ON

 = +(T32, C1
1
) and T32

OFF
 = (T32, C1

1
).

(17) If ((detectct(T9
ON

) = = true) AND (detect(T29
ON

) = = true) AND

(detectct(T10
OFF

) = = true) AND (detect(T30
OFF

) = = true) AND

(detectct(T11
OFF

) = = true) AND (detect(T31
OFF

) = = true) AND

(detectct(T12
OFF

) = = true) AND (detect(T32
OFF

) = = true)) Then

(17a) The proof to x  y = y  x that satisfies the commutative law is completed,

and the algorithm is terminated.

(18) Else

(18a) We fail to show x  y = y  x that satisfies the commutative law, and

terminate the algorithm.

EndIf

EndProcedure

Proof of Correction:

The algorithm, COMMUTATIVE-LAW-OF-AND(T0, T1, T2, T3, T4, T5, T6), is

implemented by means of the append-head, merge, extract and detect operations. On

the first execution of Step (1), it invokes the DNA-based algorithm AND(T0, T1, T2, T3,

T4, T5, T6, R1, R2) that is the solution of the exercise 3.2 for producing the result of x 

y as shown in Table 7.9.10, where the eighth parameter, R1, is applied to encode the

first input and the ninth parameter, R2, is employed to encode the second input. This is

to say that after the DNA-based algorithm AND(T0, T1, T2, T3, T4, T5, T6, R1, R2) is

implemented, T0 = {C1
1
 R2

1
 R1

1
, C1

0
 R2

0
 R1

1
, C1

0
 R2

1
 R1

0
, C1

0
 R2

0
 R1

0
}, T1 = , T2 = ,

T3 = , T4 = , T5 =  and T6 = . Next, on the first execution of Step (2), it calls the

DNA-based algorithm AND(T20, T21, T22, T23, T24, T25, T26, R2, R1) that is the solution

of the exercise 3.2 for generating the result of y  x as shown in Table 7.9.10, where

the eighth parameter, R2, is employed to encode the first input and the ninth parameter,

R1, is applied to encode the second input. This implies that after the DNA-based

algorithm AND(T20, T21, T22, T23, T24, T25, T26, R2, R1) is implemented, T20 = {C1
1
 R1

1

R2
1
, C1

0
 R1

0
 R2

1
, C1

0
 R1

1
 R2

0
, C1

0
 R1

0
 R2

0
}, T21 = , T22 = , T23 = , T24 = , T25 = 

 72

and T26 = .

Next, Steps (3) through (5) employ three extract operations to yield six different

tubes (T7 through T12) containing different results. After those operations from Step (3)

through Step (5) are implemented, tubes T7 = , T8 = , T9 = {C1
1
 R2

1
 R1

1
}, T10 =

{C1
0
 R2

0
 R1

1
}, T11 = {C1

0
 R2

1
 R1

0
} and T12 = {C1

0
 R2

0
 R1

0
} are obtained. Next, on those

operations from Steps (6) through (8), they use three extract operations to generate six

different tubes (T27 through T32) consisting of different results. After those operations

from Step (6) through Step (8) are implemented, tubes T27 = , T28 = , T29 = {C1
1

R1
1
 R2

1
}, T30 = {C1

0
 R1

0
 R2

1
}, T31 = {C1

0
 R1

1
 R2

0
} and T32 = {C1

0
 R1

0
 R2

0
} are obtained.

Next, Steps (9) through (16) employ eight extract operations to produce sixteen

different tubes including different results. After those operations from Step (9)

through Step (16) are implemented, tubes T9
ON

 = {C1
1
 R2

1
 R1

1
}, T9

OFF
 = , T10

ON
 = ,

T10
OFF

 = {C1
0
 R2

0
 R1

1
}, T11

ON
 = , T11

OFF
 = {C1

0
 R2

1
 R1

0
}, T12

ON
 = , T12

OFF
 = {C1

0

R2
0
 R1

0
}, T29

ON
 = {C1

1
 R1

1
 R2

1
}, T29

OFF
 = , T30

ON
 = , T30

OFF
 = {C1

0
 R1

0
 R2

1
}, T31

ON

= , T31
OFF

 = {C1
0
 R1

1
 R2

0
}, T32

ON
 =  and T32

OFF
 = {C1

0
 R1

0
 R2

0
} are obtained. If a

true is returned from the first execution of Step (17), then it is immediately inferred

that the proof for x  y = y  x that satisfies the commutative law is completed and the

algorithm is terminated. Otherwise, it is at once inferred that we fail to complete the

proof for x  y = y  x that satisfies the commutative law and terminate the algorithm.



